共查询到20条相似文献,搜索用时 0 毫秒
1.
Stereochemical analysis of the elimination reaction catalyzed by D-amino-acid oxidase. 总被引:1,自引:0,他引:1
The stereochemistry of the intramolecular proton transfer catalyzed by the flavoenzyme, D-amino-acid oxidase, during the elimination reaction of beta-chloro-alpha-amino acid substrates (Walsh et al. (1973), J. Biol. Chem. 248, 1964) has been established. Both D-erythro- and D-threo-2-amino-3-chloro(2-3H) butyrate have been shown to yield (3R)-2-keto (3-3H)-2- butyrate predominantly. Tritium kinetic isotope effects on the rate of the reaction (4.7 for the D-erythro, and 3.8 for the D-threo compound) and percentages of intramolecular triton transfer (7.2% for the D-erythro- and 2.6% for the D-threo compound) have been measured. Their implications on the mechanism of this unusual elimination reaction are discussed. 相似文献
2.
Minutolo F Bertini S Betti L Danesi R Gervasi G Giannaccini G Papi C Placanica G Barontini S Rapposelli S Macchia M 《Bioorganic & medicinal chemistry letters》2003,13(24):4405-4408
Phosphonoacetamido(oxy) groups have proven to be good mimics of the diphosphate portion in geranylgeranyl protein transferase I (GGTase I) inhibitors. The introduction of small alkyl groups (Me, Et) into the diphosphate mimic moiety caused a further decrease in collateral farnesyl protein transferase (FTase) inhibitory activity, thereby improving GGTase I over FTase selectivity. 相似文献
3.
The stereochemical course of the reaction catalyzed by the EcoRV restriction endonuclease has been determined. This endonuclease recognizes GATATC sequence and cuts between the central T and dA bases. The Rp isomer of d(GACGATsATCGTC) (this dodecamer contains a phosphorothioate rather than the usual phosphate group between the central T and dA residues, indicated by the s) was a substrate for the endonuclease. Performing this reaction in H2 18O gave [18O]dps(ATCGTC) (a pentamer containing an 18O-labeled 5'-phosphorothioate) which was converted to [18O]dAMPS with nuclease P1. This deoxynucleoside 5'-[18O]phosphorothioate was stereospecifically converted to [18O]dATP alpha S with adenylate kinase and pyruvate kinase [Brody, R. S., & Frey, P. A. (1981) Biochemistry 20, 1245-1251]. Analysis of the position of the 18O in this product by 31P NMR spectroscopy showed that it was in a bridging position between the alpha- and beta-phosphorus atoms. This indicates that the EcoRV hydrolysis proceeds with inversion of configuration at phosphorus. The simplest interpretation is that the mechanism of this endonuclease involves a direct in-line attack at phosphorus by H2O with a trigonal bipyramidal transition state. A covalent enzyme oligodeoxynucleotide species can be discounted as an intermediate. An identical result has been previously observed with the EcoR1 endonuclease [Connolly, B. A., Eckstein, F., & Pingoud, A. (1984) J. Biol. Chem. 259, 10760-10763]. X-ray crystallography has shown that both of these endonucleases contain a conserved array of amino acids at their active sites. Possible mechanistic roles for these conserved amino acids in the light of the stereochemical findings are discussed. 相似文献
4.
Stereochemical course of the reaction catalyzed by 5'-nucleotide phosphodiesterase from snake venom. 总被引:4,自引:0,他引:4
The hydrolysis reaction of ATP alpha S by snake venom phosphodiesterase is highly specific for the B diastereomer and proceeds with 88% retention of configuration at phosphorus. Since this enzyme also catalyzes the hydrolysis of the S enantimoer of O-p-nitrophenyl phenylphosphonothioate, the absolute configuration at A alpha of ATP alpha S (B) is assigned as the R configuration provided the two substrates are processed identically. A mechanism for the hydrolysis reactions catalzyed by the venom phosphodiesterase involving at least a single covalent phosphoryl-enzyme intermediate is in accord with this result. 相似文献
5.
Stereochemical analysis of peptide bond hydrolysis catalyzed by the aspartic proteinase penicillopepsin 总被引:6,自引:0,他引:6
The X-ray crystal structures of native penicillopepsin and of its complex with a synthetic analogue of the inhibitor pepstatin have been refined recently at 1.8-A resolution. These highly refined structures permit a detailed examination of peptide hydrolysis in the aspartic proteinases. Complexes of penicillopepsin with substrate and catalytic intermediates were modeled, by using computer graphics, with minimal perturbation of the observed inhibitor complex. A thallium ion binding experiment shows that the position of solvent molecule O39, between Asp-33(32) and Asp-213(215) in the native structure, is favorable for cations, a fact that places constraints on possible mechanisms. A mechanism for hydrolysis is proposed in which Asp-213(215) acts as an electrophile by protonating the carbonyl oxygen of the substrate, thereby polarizing the carbon-oxygen bond, a water molecule bound to Asp-33(32) (O284 in the native structure) attacks the carbonyl carbon as the nucleophile in a general-base mechanism, the newly pyramidal peptide nitrogen is protonated, either from the solvent after nitrogen inversion or by an internal proton transfer via Asp-213(215) from a hydroxyl of the tetrahedral carbon, and the tetrahedral intermediate breaks down in a manner consistent with the stereoelectronic hypothesis. The models permit the rationalization of observed subsite preferences for substrates and may be useful in predicting subsite preferences of other aspartic proteinases. 相似文献
6.
Dursina B Thomä NH Sidorovitch V Niculae A Iakovenko A Rak A Albert S Ceacareanu AC Kölling R Herrmann C Goody RS Alexandrov K 《Biochemistry》2002,41(21):6805-6816
Small GTPases from the Rab/Ypt family regulate events of vesicular traffic in eukaryotic cells. For their activity, Rab proteins require a posttranslational modification that is conferred by Rab geranylgeranyltransferase (RabGGTase), which attaches geranylgeranyl moieties onto two cysteines of their C terminus. RabGGTase is present in both lower and higher eukaryotes in the form of heterodimers composed of alpha and beta subunits. However, the alpha subunits of RabGGTases from lower eukaryotes, including Saccharomyces cerevisiae (yRabGGTase), are half the size of the corresponding subunit of the mammalian enzyme. This difference is due to the presence of additional immunoglobulin (Ig)-like and leucine rich (LRR) domains in the mammalian transferase. To understand the possible evolutionary implications and functional consequences of structural differences between RabGGTases of higher and lower eukaryotes, we have investigated the interactions of yeast RabGGTase with its lipid and protein substrate. We have demonstrated that geranylgeranyl pyrophosphate binds to the enzyme with an affinity of ca. 40 nM, while binding of farnesyl pyrophosphate is much weaker, with a K(d) value of ca. 750 nM. This finding suggests that despite the structural difference, yRabGGTase selects its lipid substrate in a fashion similar to mammalian RabGGTase. However, unlike the mammalian enzyme, yRabGGTase binds prenylated and unprenylated Ypt1p:Mrs6p complexes with similar affinities (K(d) ca. 200 nM). Moreover, in contrast to the mammalian enzyme, phosphoisoprenoids do not influence the affinity of Mrs6p for yRabGGTase. Using an in vitro prenylation assay, we have demonstrated that yRabGGTase can prenylate Rab proteins in complex with mammalian REP-1, thus indicating that neither the LRR nor the Ig-like domains, nor the recently discovered alternative pathway of catalytic complex assembly, are essential for the catalytic activity of RabGGTase. Despite the ability to function in concert with yRabGGTase in vitro, expression of mammalian REP-1 could not complement deletion of MRS6 gene in S. cerevisiae in vivo. The implications of these findings are discussed. 相似文献
7.
Stereochemical course of the reaction catalyzed by guanylate cyclase from bovine retinal rod outer segments 总被引:4,自引:0,他引:4
The stereochemical course of the reaction catalyzed by guanylate cyclase from bovine retinal rod outer segments was investigated using phosphorothioate analogs of GTP as chiral probes. (Sp)-Guanosine 5'-O-(1-thiotriphosphate) (Sp-GTP alpha S) is a substrate, whereas (Rp)-GTP alpha S is a competitive inhibitor (K1 = 0.1 mM), but not a substrate. (Sp)-GTP alpha S is converted into (Rp)-guanosine 3':5'-monophosphorothioate, showing that the reaction proceeds with inversion of configuration at the alpha-phosphorus atom. Km and Vmax for (Sp)-GTP alpha S (at low [Ca2+], 20 nM) are 3.7 mM and 1.1 nmol/min/mg of rhodopsin, respectively, compared with 1.1 mM and 23.1 nmol/min/mg of rhodopsin for GTP. Vmax for the cyclization of (Sp)-GTP alpha S, as for GTP, increases 10-20-fold when the calcium level is lowered. This activity change is centered at approximately 90 nM and has a Hill coefficient of 4.8. The configuration of the metal-substrate complex was determined by measuring the effectiveness of the Sp and Rp isomers of GTP alpha S and guanosine 5'-O-(2-thiotriphosphate) (GTP beta S) in the presence of Mg2+ or Mn2+. (Sp)-GTP alpha S is a substrate with either Mg2+ or Mn2+, whereas (Rp)-GTP beta S is a substrate with only Mn2+. These findings suggest that the substrate is a metal-beta, gamma-bidentate complex with delta screwsense. We also found that the cyclization reaction catalyzed by the membrane-bound guanylate cyclase from sea urchin sperm proceeds with inversion of configuration at the alpha-phosphorus atom. The stereochemical course of the reactions catalyzed by all prokaryotic and eukaryotic adenylate cyclases and guanylate cyclases studied thus far is the same. 相似文献
8.
F Eckstein J W Karpen J M Critchfield L Stryer 《The Journal of biological chemistry》1988,263(28):14080-14085
The stereochemical course of hydrolysis catalyzed by the cyclic GMP phosphodiesterase from bovine retinal rod outer segments was determined. The Sp diastereomer of guanosine 3',5'-cyclic monophosphorothioate was hydrolyzed by cyclic GMP phosphodiesterase in H2(18)O to give [16O,18O]guanosine 5'-monophosphorothioate. This isotopomer was reacted with diphenyl phosphorochloridate to form the two diastereomers of P1-(5'-guanosyl) P2-(diphenyl) 1-thiodiphosphate. The 31P NMR spectrum of this mixture of diastereomers was identical to that obtained from [16O,18O]guanosine 5'-monophosphorothioate resulting from the hydrolysis of the Rp diastereomer of guanosine 5'-p-nitrophenyl phosphorothioate by snake venom phosphodiesterase. This finding indicates that the 18O is bridging in the Rp diastereomer of the P1-(5'-guanosyl) P2-(diphenyl) 1-thiodiphosphate and nonbridging in the Sp diastereomer. As the snake venom phosphodiesterase reaction is known to proceed with retention of configuration, it follows that hydrolysis by retinal rod cyclic GMP phosphodiesterase proceeds with inversion of configuration at the phosphorus atom. 相似文献
9.
The gamma subunit of mammalian trimeric G proteins has been shown previously to be modified in vivo on a cysteine residue situated at the carboxyl-terminal sequence-Cys-Ala-Ile-Leu-COOH by a 20-carbon prenyl moiety geranylgeranyl (Mumby, S. M., Casey, P. J., Gilman, A. G., Gutowski, S., and Sternweis, P. C. (1990) Proc. Natl. Acad. Sci. U.S.A. 87, 5873-5877; Yamane, H. K., Farnsworth, C. C., Xie, H., Howald, W., Fung, B. K-K., Clarke, S., Gelb, M. H., and Glomset, J. A. (1990) Proc. Natl. Acad. Sci. U.S.A. 87, 5866-5872). A biotinylated peptide acceptor comprising the eight carboxyl-terminal amino acids of the gamma subunit and tritiated geranylgeranyl diphosphate were utilized to monitor a protein:prenyl transferase activity in rat organs of varying age. The transferase activity was dependent upon the presence of divalent metal ions and maximal activity was achieved with either 1 mM ZnCl2 or 20 mM MgCl2. Activity was shown to be linear with respect to time, protein concentration, substrate concentration, and the pH optimum was 7.5. Protein:geranylgeranyl transferase activity was detected in all rat organs studied with the highest specific activity in brain S100. No activity was detected in the membrane fraction. The specific activity in brain, liver, kidney, and heart increased with age. Radioactivity incorporated into the peptide acceptor from both [1-3H]geranylgeranyl diphosphate and [5-3H]mevalonate by 21-day-old rat brain S100 was released by treatment with methyl iodide, and in both cases, analysis of the cleavage products by reversed phase high performance liquid chromatography showed a peak of radioactivity co-eluting with a geranylgeraniol standard which was well resolved from a farnesol standard. This indicated that the rat brain S100 contained not only the protein:geranylgeranyl transferase but also geranylgeranyl synthetase activity and that the peptide acceptor was specific for geranylgeranyl under the conditions tested. 相似文献
10.
Yuji Masuda Mamoru Takahashi Saburo Fukuda Masaharu Sumii Kenji Kamiya 《The Journal of biological chemistry》2002,277(4):3040-3046
The Rev1 protein, a member of a large family of translesion DNA polymerases, catalyzes a dCMP transfer reaction. Recombinant mouse Rev1 protein was found to insert a dCMP residue opposite guanine, adenine, thymine, cytosine, uracil, and an apurinic/apyrimidinic site and to have weak ability for transfer to a mismatched terminus. The mismatch-extension ability was strongly enhanced by a guanine residue on the template near the mismatched terminus; this was not the case with an apurinic/apyrimidinic site and the other template nucleotides. Kinetic analysis of the dCMP transferase reaction provided evidence for high affinity for dCTP with template G but not the other templates, whereas the template nucleotide did not much affect the V(max) value. Furthermore, it could be established that the mouse Rev1 protein inserts dGMP and dTMP residues opposite template guanine at a V(max) similar to that for dCMP. 相似文献
11.
Protein farnesyltransferase catalyzes the posttranslational farnesylation of several proteins involved in signal transduction, including Ras, and is a target enzyme for antitumor therapies. Efficient product formation catalyzed by protein farnesyltransferase requires an enzyme-bound zinc cation and high concentrations of magnesium ions. In this work, we have measured the pH dependence of the chemical step of product formation, determined under single-turnover conditions, and have demonstrated that the prenylation rate constant is enhanced by two deprotonations. Substitution of the active site zinc by cadmium demonstrated that one of the ionizations reflects deprotonation of the metal-coordinated thiol of the peptide "CaaX" motif, pK(a1) = 6.0. These data provide additional evidence for the direct involvement of a metal-coordinated sulfur nucleophile in catalysis. The second ionization was assigned to a hydroxyl on the pyrophosphate moiety of farnesyl pyrophosphate, pK(a2) = 7.4. Deprotonation of this group is important for binding of magnesium. This second ionization is not observed for catalysis in the absence of magnesium or when the substrate is farnesyl monophosphate. These data indicate that the maximal rate constant for prenylation requires formation of a zinc-coordinated thiolate nucleophile and enhancement of the electrophilic character at C1 of the farnesyl chain by magnesium ion coordination of the pyrophosphate leaving group. 相似文献
12.
Manuel Arellano Pedro M. Coll Wenli Yang Angel Duran Fuyuhiko Tamanoi & Pilar Perez 《Molecular microbiology》1998,29(6):1357-1367
The Schizosaccharomyces pombe cwg2+ gene encodes the β-subunit of geranylgeranyl transferase I (GGTase I), which participates in the post-translational C-terminal modification of several small GTPases, allowing their targeting to the membrane. Using the two-hybrid system, we have identified the cwp1+ gene that encodes the α-subunit of the GGTase I. cwp1p interaction with cwg2p was mapped to amino acids 1–244 or 137–294 but was not restricted to amino acids 137–244. The genomic cwp1+ was isolated and sequenced. It has two putative open reading frames of 677 and 218 bp, separated by a 51 bp intron. The predicted amino acid sequence shows significant similarity to GGTase I α-subunits from different species. However, complementation of Saccharomyces cerevisiae ram2-1 mutant by overexpressing the cwp1+ gene was not possible. Expression of both cwg2+ and cwp1+ in Escherichia coli allowed ‘in vitro’ reconstitution of the GGTase I activity. S. pombe cells expressing the mutant enzyme containing the cwg2-1 mutation do not grow at 37°C, but the growth defect can be suppressed by the addition of sorbitol. Actin immunostaining of the cwg2-1 mutant strain grown at 37°C showed an abnormal distribution of actin patches. The cwg2-1 mutation was identified as a guanine to adenine substitution at nucleotide 604 of the coding region, originating the change A202T in the cwg2p. Deletion of the cwg2 gene is lethal; Δcwg2 spores can divide two or three times before losing viability. Most cells have aberrant morphology and septation defects. Overexpression of the rho1G15VC199R double-mutant allele in S. pombe caused loss of polarity but was not lethal and did not render the (1–3)β-D -glucan synthase activity independent of GTP. Therefore, geranylgeranylation of rho1p is required for the appropriate function of this GTPase. 相似文献
13.
S Menon M Stahl R Kumar G Y Xu F Sullivan 《The Journal of biological chemistry》1999,274(38):26743-26750
Recently the genes encoding the human and Escherichia coli GDP-mannose dehydratase and GDP-fucose synthetase (GFS) protein have been cloned and it has been shown that these two proteins alone are sufficient to convert GDP mannose to GDP fucose in vitro. GDP-fucose synthetase from E. coli is a novel dual function enzyme in that it catalyzes epimerizations and a reduction reaction at the same active site. This aspect separates fucose biosynthesis from that of other deoxy and dideoxy sugars in which the epimerase and reductase activities are present on separate enzymes encoded by separate genes. By NMR spectroscopy we have shown that GFS catalyzes the stereospecific hydride transfer of the ProS hydrogen from NADPH to carbon 4 of the mannose sugar. This is consistent with the stereospecificity observed for other members of the short chain dehydrogenase reductase family of enzymes of which GFS is a member. Additionally the enzyme is able to catalyze the epimerization reaction in the absence of NADP or NADPH. The kinetic mechanism of GFS as determined by product inhibition and fluorescence binding studies is consistent with a random mechanism. The dissociation constants determined from fluorescence studies indicate that the enzyme displays a 40-fold stronger affinity for the substrate NADPH as compared with the product NADP and utilizes NADPH preferentially as compared with NADH. This study on GFS, a unique member of the short chain dehydrogenase reductase family, coupled with that of its recently published crystal structure should aid in the development of antimicrobial or anti-inflammatory compounds that act by blocking selectin-mediated cell adhesion. 相似文献
14.
The ram2 and cal1 genes encode the alpha and beta subunits of yeast geranylgeranyl protein transferase type I (GGPT-I), respectively. Arginine 166 of the beta subunit was changed to isoleucine (betaR166I), histidine 216 to aspartic acid (betaH216D), and asparagine 282 to alanine (betaN282A) by sequential PCR using mutagenic primers. The mutants were expressed under the same conditions as the wild-type and were assayed for GGPT-I activity. Wild-type yeast GGPT-I, alphaH145D, alphaD140N, betaR166I, betaH216D and betaN282A mutant GGPT-Is were partially purified by ammonium sulfate fractionation followed by a Q-Sepharose column. Characterization studies were performed using the active fraction of the Q-Sepharose column. In the chemical modification reactions, the catalytic activity of purified enzyme decreased in proportion to the concentration of modifying reagents, such as phenylglyoxal and diethyl pyrocarbonate (DEPC). Geranylgeranyl pyrophosphate (GGPP) protected the enzyme activity from the modification with phenylglyoxal. The measurement of GGPP binding to wild-type and five mutant GGPT-Is was performed by a gel-filtration assay. The binding of GGPP to the betaR166I mutant was low and the Km value for GGPP in the betaR166I mutant increased about 29-fold. Therefore, the results suggest a role for this arginine residue that directly influences the GGPP binding. The activity of the DEPC-modified GGPT-I was inhibited by 80% at 5 mM DEPC. The differential absorption at 242 nm may suggest that at this concentration the modified histidine residues were 1.5 mol per GGPT-I. The protein substrate, glutathione S-transferase fused undecapeptide (GST-CAIL) protected the enzyme from inactivation by DEPC, and the Km value for GST-CAIL in the betaH216D mutant increased about 12-fold. The trypsin digestion of [14C]DEPC-modified enzyme yielded a single radioactive peptide. As a result of the sequence of this radioactive peptide, the histidine 216 residue was assumed to be an essential part of binding of peptide substrate. 相似文献
15.
Stereochemical course of thiophosphoryl transfer catalyzed by cytosolic phosphoenolpyruvate carboxykinase 总被引:1,自引:0,他引:1
Rat liver cytosolic phosphoenolpyruvate carboxykinase (PEPCK) utilizes inosine 5'-(3-thiotriphosphate) (ITP gamma S) as an excellent substrate, with Km and V values of 0.08 mM and 37 mumol min-1 (mg of protein)-1, respectively, compared with the corresponding values of 0.168 mM and 76 mumol min-1 (mg of protein)-1 for ITP. Thus, the V/Km values for the two substrates are the same. Reaction of (RP)-[gamma-18O2]ITP gamma S with oxalacetate catalyzed by cytosolic PEPCK produces (SP)-thio[18O]phosphoenolpyruvate. Therefore, thiophosphoryl transfer catalyzed by this enzyme proceeds with overall inversion of configuration at P. The reaction mechanism involves an uneven number of phosphotransfer steps, most likely a single step transfer between bound substrates. The results do not support the involvement of a phosphoryl enzyme intermediate in the mechanism. 相似文献
16.
The steric course of methyl group transfer catalyzed by two DNA methylases, HhaI methylase, a DNA (cytosine-5)-methyltransferase, and EcoRI methylase, which methylates at N6 of adenosine, has been studied with (methyl-R)- and (methyl-S)-[methyl-2H1,3H]adenosylmethionine as the methyl donor, using as substrates poly-d(GC) (HhaI) and the dodecamer oligonucleotide duplex d(CGCGAATTCGCG) (EcoRI), respectively. The methylated nucleotides were degraded to convert the chiral methyl groups into acetic acid for configurational analysis. It was found that both enzymatic reactions proceed with inversion of configuration of the methyl group. 相似文献
17.
Many proteins utilize segmental motions to catalyze a specific reaction. The Omega loop of triosephosphate isomerase (TIM) is important for preventing the loss of the reactive enediol(ate) intermediate. The loop opens and closes even in the absence of the ligand, and the loop itself does not change conformation during movement. The conformational changes are localized to two hinges at the loop termini. Glycine is never observed in native TIM hinge sequences. In this paper, the hypothesis that limited access to conformational space is a requirement for protein hinges involved in catalysis was tested. The N-terminal hinge was mutated to P166/V167G/W168G (PGG), and the C-terminal hinge was mutated to K174G/T175G/A176G (GGG) in chicken TIM. The single-hinge mutants PGG and GGG had k(cat) values 200-fold lower than that of the wild type and K(m) values 10-fold higher. The k(cat) of double-hinge mutant P166/V167G/W168G/K174G/T175G/A176G was reduced 2500-fold; the K(m) was 10-fold higher. A combination of primary kinetic isotope effect measurements, isothermal calorimetric measurements, and (31)P NMR spectroscopic titration with the inhibitor 2-phosphoglycolate revealed that the mutants have a different ligand-binding mode than that of the wild-type enzyme. The predominant conformations of the mutants even in the presence of the inhibitor are loop-open conformations. In conclusion, mutation of the hinge residues to glycine resulted in the sampling of many more hinge conformations with the consequence that the population of the active-closed conformation is reduced. This reduced population results in a reduced catalytic activity. 相似文献
18.
19.
Stereochemical course of thiophosphoryl group transfer catalyzed by mitochondrial phosphoenolpyruvate carboxykinase 总被引:1,自引:0,他引:1
K F Sheu H T Ho L D Nolan P Markovitz J P Richard M F Utter P A Frey 《Biochemistry》1984,23(8):1779-1783
Guinea pig liver mitochondrial phosphoenolpyruvate carboxykinase catalyzes the conversion of (Rp)-guanosine 5'-(3-thio[3-18O]triphosphate) and oxalacetate to (Sp)-[18O] thiophosphoenolpyruvate , GDP, and CO2 by a mechanism that involves overall inversion in the configuration of the chiral [18O]thiophosphate group. This result is most consistent with a single displacement mechanism in which the [18O]thiophosphoryl group is transferred from (Rp)-guanosine 5'-(3-thio[3-18O]triphosphate) bound at the active site directly to enolpyruvate generated at the active site by the decarboxylation of oxalacetate. In particular, this result does not indicate the involvement of a covalent thiophosphoryl-enzyme on the reaction pathway. 相似文献
20.
The steric course of peptide hydrolysis catalyzed by serine proteases has been studied on the basis of the available, extensive structural data and taking into account the stereoelectronic theory of Deslongchamps (Heterocycles, 7, 1271 (1977)). These studies allowed elucidation of the structure of intermediates, in particular of the tetrahedral intermediate, and of the main structural events taking place during catalysis. They reveal a difficulty inherent in the generally accepted mechanism of peptide hydrolysis: protonation of the leaving nitrogen in the configuration arising from nucleophilic attack of Ser-195 on the carbonyl carbon cannot take place internally from His-57. Two alternative mechanisms are discussed which are compatible with all implications of the stereoelectronic theory. The main features of the more probable mechanism are: (i) a conformational change allowing the imidazole ring of His-57 to occupy two distinct positions; in one position a proton is abstracted from Oγ of Ser-195, and in the other this proton is donated to the leaving nitrogen; (ii) a configurational change (inversion) of the pyramidal leaving nitrogen reorienting the lone-pair orbital developed during nucleophilic attack; in one orientation CO bond breaking, and in the other CN bond breaking, is allowed. This inversion process confers on the nitrogen the property of a switch controlling the breakdown of the tetrahedral intermediate. 相似文献