首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 6 毫秒
1.
2.
3.
Peterson RB 《Plant physiology》1989,90(4):1322-1328
The partitioning of noncyclic photosynthetic electron transport between net fixation of CO2 and collective O2-dependent, dissipative processes such as photorespiration has been examined in intact leaf tissue from Nicotiana tabacum. The method involves simultaneous application of CO2 exchange and pulse modulated fluorescence measurements. As either irradiance or CO2 concentration is varied at 1% O2 (i.e. absence of significant O2-dependent electron flow), the quantum efficiency of PSII electron transport (se) with CO2 as the terminal acceptor is a linear function of the ratio of photochemical:nonphotochemical fluorescence quenching coefficients (i.e. qQ:qNP). When the ambient O2 concentration is raised to 20.5% or 42% the qQ:qNP is assumed to predict the quantum efficiency of total noncyclic electron transport (′se). A factor which represents the proportion of electron flow diverted to the aforementioned dissipative processes is calculated as (′sese)/′se where se is now the observed quantum efficiency of electron transport in support of net fixation of CO2. Examination of changes in electron allocation with CO2 and O2 concentration and irradiance at 25°C provides a test of the applicability of the Rubisco model to photosynthesis in vivo.  相似文献   

4.
Regulation of aspartate kinase activity was examined in some higher plant seedlings (Helianthus annuus, Raphanus sativus, Cucutnis sativus, Sinapis alba), a green (Chlorellapyrenoidosa), and a blue-green alga (Anacystis nidulans). In Cucumis sativus a concerted feedback regulation by L-lysine and L-threonine was indicated. In all the other species examined, aspartate kinase was inhibited by both L-lysine and L-threonine and it depended upon the species which of them was the strongest inhibitor. Only slight effects of L-leucine, L-isoIeucine and L-valine were observed, except in the Sinapis alba enzyme.  相似文献   

5.
The generation of nonphotochemical quenching of chlorophyll fluorescence (qN) in the antenna of photosystem II (PSII) is accompanied by the de-epoxidation of violaxanthin to antheraxanthin and zeaxanthin. The function of zeaxanthin in two mechanisms of qN, energy-dependent quenching (qE) and photoinhibitory quenching (qI), was investigated by measuring the de-epoxidation state in the antenna subcomplexes of PSII during the generation and relaxation of qN under varying conditions. Three different antenna subcomplexes were separated by isoelectric focusing: Lhcb1/2/3, Lhcb5/6, and the Lhcb4/PSII core. Under all conditions, the highest de-epoxidation state was detected in Lhcb1/2/3 and Lhcb5/6. The kinetics of de-epoxidation in these complexes were found to be similar to the formation of qE. The Lhcb4/PSII core showed the most pronounced differences in the de-epoxidation state when illumination with low and high light intensities was compared, correlating roughly with the differences in qI. Furthermore, the epoxidation kinetics in the Lhcb4/PSII core showed the most pronounced differences of all subcomplexes when comparing the epoxidation after either moderate or very strong photoinhibitory preillumination. Our data support the suggestion that zeaxanthin formation/epoxidation in Lhcb1-3 and Lhcb5/6 may be related to qE, and in Lhcb4 (and/or PSII core) to qI.  相似文献   

6.
Biosynthesis of Carotenoids in the Chloroplasts of Algae and Higher Plants   总被引:2,自引:0,他引:2  
Physiological, biochemical, and genetic aspects of carotenoid biosynthesis in the chloroplast membranes of green algae and higher plants are discussed starting from the earliest stages of biosynthesis of key C5-isoprene units. The latter are synthesized either from acetate (C2) to mevalonic acid (C6) or from glucose (C6) by forming glyceraldehyde 3-phosphate (C3) and pyruvate decarboxylation product (C2) through intermediate compounds to isopentenyl diphosphate (C5). In all organisms, the further carotenoid synthesis from isopentenyl diphosphate and its isomer dimethylallyl diphosphate (C5) proceeds through their transformation into geranyl diphosphate (C10), farnesyl diphosphate (C15), geranylgeranyl diphosphate (C20) and phytoene (C40). Phytoene desaturation (dehydrogenation) to carotene, neurosporene, and lycopene, and all steps of their cyclization to , and carotenes are discussed in detail. The synthesis of xanthophylls in chloroplasts is presented as the sequential formation of hydroxy-, epoxy- and oxo- groups. Genetic control of biosynthesis, as well as the localization and functional role of carotenoids in the chloroplast membranes of plants and algae are briefly discussed.  相似文献   

7.
N2O Evolution by Green Algae   总被引:1,自引:1,他引:0       下载免费PDF全文
Evidence is presented here that axenic cultures of Chlorella, Scenedesmus, Coelastrum, and Chlorococcum spp. evolve N2O when grown on NO2, showing that the Chlorophyceae are a source of N2O in aquatic systems.  相似文献   

8.
9.
藻类产生及清除过氧化氢的研究   总被引:1,自引:0,他引:1  
过氧化氢的生物生成是天然水体中H2O2的来源之一。从藻类产生及分解过氧化氢的途径,影响过氧化氢产量的主要因素,如藻的种类、细胞的渗透性、藻的生长阶段、藻浓度和光照条件等几方面对这一领域的研究作了综述。  相似文献   

10.
The quantum yield of photosynthetic O2 exchange was measured in eight species of leaf succulents representative of both malic enzyme type and phosphoenolpyruvate carboxykinase type CAM plants. Measurements were made at 25°C and CO2 saturation using a leaf disc O2 electrode system, either during or after deacidification. The mean quantum yield was 0.095 ± 0.012 (sd) moles O2 per mole quanta, which compared with 0.094 ± 0.006 (sd) moles O2 per mole quanta for spinach leaf discs measured under the same conditions. There were no consistent differences in quantum yield between decarboxylation types or during different phases of CAM metabolism. On the basis of current notions of compartmentation of CAM biochemistry, our observations are interpreted to indicate that CO2 refixation is energetically independent of gluconeogenesis during deacidification.  相似文献   

11.
高等植物环式电子传递的生理作用   总被引:1,自引:0,他引:1  
环式电子传递做为一种可供选择的电子传递途径之一,近几年被证实它对于许多高等植物的生长是必需的.环式电子传递通过促进跨类囊体膜质子梯度的建立一方面激发ATP合成酶合成ATP,另一方面加强了光系统Ⅱ处的热耗散,稳定了放氧复合体,从而保护光系统Ⅱ免受光抑制.同时,它还可以缓解光系统Ⅰ处电子受体的过度还原,减少超氧阴离子在光系统Ⅰ处的合成,防止光系统Ⅰ受到光抑制.本文简要地综述了环式电子传递的途径、其参与ATP合成的作用、对光系统Ⅱ和光系统Ⅰ光保护作用及其对环境胁迫的响应和调节,并对环式电子传递的研究提出了展望.  相似文献   

12.
DAP (4,6.Diamidino-2-phenylindole) has been shown in this investigation to be a convenient and reliable DNA-specific nuclear stain which will exhibit pale blue fluorescence under ultraviolet irradiation. It could be employed to stain the nucleus in living plant specimens by simply immersing them in highly diluted DAPI solution (ca. 0.5 ppm) for 2–24 hours. The specimen with stained nucleus is still capable of exhibiting cyclosis. The seedling may grow steadily in such solution. Hence, the whole procedure is well suited for the preliminary survey of occurrence of nuclear extrusion in various higher plants chosen at random. As most investigations on nuclear extrusion have been intensively conducted on two monocots (wheat and Allium), special attention is paid to dicots. Free hand sections consisting of several layers of cells in thickness are taken from the various parts of a plant (flower bracts, petals and stipule) to avoid artificial indlced by injury ,and stripping. The main findings are summarized in Table, and the microscopic record illustrated in figures. The preliminary survey has adequately demonstrated that the frequency of successful detection of nuclear extrusion in plant samples taken at random is rather high although its occurrence is rare. Patient search under microscope is usually required. In general it is present in embryonic as well as in senescent tissues and in tissues of transitory existence such as the leaf hairs, but it is absent in mature normal function-organs. The results are in conformity with those of prefious observations.  相似文献   

13.
14.
15.
Schopfer P 《Plant physiology》1994,104(4):1269-1275
A sensitive tissue-print assay for the detection and histological localization of H2O2 in freshly cut organ sections was developed by impregnating nitrocellulose paper with a mixture of Kl and soluble starch. H2O2 transferred from the cut surface of the section to the dried paper forms I2, which can be visualized by the intensely colored I2-starch complex. The detection limit of the assay is in the range of 0.1 to 0.2 mmol L-1 H2O2. Due to the rapid immobilization of H2O2 in the paper, very clear prints of the tissue distribution of H2O2 can be obtained with a spatial resolution on the level of single cells. The application of this rapid and simple assay is explored in five experimental examples demonstrating that the in vivo level of H2O2 varies strikingly in different tissues and can be regulated by developmental factors such as hormones, light, and wounding. The results show that: (a) In the hypocotyl of soybean (Glycine max L.) seedlings the apoplastic H2O2 level increases strongly from top to base, accompanied by characteristic changes in its histological distribution. (b) In the epicotyl of pea (Pisum sativum L.) seedlings the induction of lateral expansion by ethylene is correlated with a depletion of H2O2 in the cell walls of the expanding tissues. (c) In the hypocotyl of bean (Phaseolus vulgaris L.) seedlings H2O2 is primarily localized in a ring of parenchymatic tissue between xylem and cortex next to lignifying cells but not in the lignifying cells themselves. (d) In the hypocotyl of sunflower (Helianthus annuus L.) and cucumber (Cucumis sativus L.) seedlings the light-mediated inhibition of elongation growth is correlated with a strong increase in H2O2 in the epidermis and in the vascular bundles. (e) Potato (Solanum tuberosum L.) tubers show high levels of H2O2 only in the outer cell layers but are able to accumulate H2O2 in the inner tissue upon wounding.  相似文献   

16.
本文综述了脱落酸作为根源信号物质经由木质部被传递到叶片,经重新分配再与脱落酸受体结合,然后刺激气孔开放因子,调节烟酰胺腺嘌呤二核苷酸磷酸氧化酶等关键酶活性产生过氧化氢,过氧化氢可使胞质碱化并刺激钙离子通道使钙离子内流,活化阴离子通道使阴离子外流,最终导致气孔关闭的一系列过程。该过程涉及到的因子包括:脱落酸受体、气孔开放因子、磷脂酰环己六醇、分裂原激活蛋白激酶、烟酰胺腺嘌呤二核苷酸磷酸氧化酶、Ca^(2+)、pH、一氧化氮等。  相似文献   

17.
Artificially mediated linear (methylviologen) and cyclic (phenazine methosulfate) electron transport induced zeaxanthin-dependent and independent (constitutive) nonphotochemical quenching in osmotically shocked chloroplasts of pea (Pisum sativum L. cv Oregon). Nonphotochemical quenching was quantitated as Stern-Volmer quenching (SVN) calculated as (Fm/F′m)-1 where Fm is the fluorescence intensity with all PSII reaction centers closed in a nonenergized, dark-adapted state and F′m is the fluorescence intensity with all PSII reaction centers closed in an energized state. Reversal of quenching by nigericin and electron-transport inhibitors showed that both quenching types were energy-dependent SVN. Under light-induced saturating ΔpH, constitutive-SVN reached steady-state in about 1 minute whereas zeaxanthin-SVN continued to develop for several minutes in parallel with the slow kinetics of violaxanthin deepoxidation. SVN above the constitutive level and relative zeaxanthin concentration showed high linear correlations at steady-state and during induction. Furthermore, Fo quenching, also treated as Stern-Volmer quenching (SVO) and calculated as (Fo/F′o)-1, showed high correlation with zeaxanthin and consequently with SVN (Fo and F′o are fluorescence intensities with all PSII reaction centers in nonenergized and energized states, respectively). These results support the view that zeaxanthin increases SVN above the constitutive level in a concentration-dependent manner and that zeaxanthin-dependent SVN occurs in the pigment bed. Preforming zeaxanthin increased the rate and extent of SVN, indicating that slow events other than the amount of zeaxanthin also affect final zeaxanthin-SVN expression. The redox state of the primary electron acceptor of photosystem II did not appear to determine SVN. Antimycin, when added while chloroplasts were in a dark-adapted or nonenergized state, inhibited both zeaxanthin-SVN and constitutive-SVN induced by linear and cyclic electron transport. These similarities, including possible constitutive Fo quenching, suggest that zeaxanthin-dependent and constitutive SVN are mechanistically related.  相似文献   

18.
The principles of chlorophyll fluorescence quenching analysisby the saturation pulse method are outlined with emphasis onparticular aspects encountered in the study of eukaryotic algaeand cyanobacteria. Major differences of these photosyntheticorganisms with respect to higher plant leaves, for which quenchinganalysis originally was developed, are very rapid inductionof O2-dependent electron flow, close interaction between photosyntheticand respiratory metabolism, dark reduction of the plastoquinonepool and pronounced state transitions of energy distributionbetween the two photosystems. It is shown that the use of 25–50ms pulses of saturating light for determination of maximal fluorescenceyield is advantageous, in contrast to the 0.5–2 s pulsescommonly used with higher plants. The shorter pulses are lessinvasive with respect to the induction of energising electronflow which can induce non-photochemical quenching and statechanges. In particular, short saturation pulses are essentialto study true dark changes of fluorescence yield. As an example,the induction of pronounced quenching of maximal fluorescencein Chlamydomonas by dark-anaerobic incubation is demonstrated.Analysis of the rapid rise kinetics upon onset of saturatinglight reveals two major phases, O-I1 and I1-I2, with distinctlydifferent properties. Arguments are put forward that an assessmentof maximal fluorescence yield with single turnover saturatingflashes is problematic, as there is a type of photochemicalquenching, the elimination of which during the I1-I2 phase requiresmultiple turnovers at photosystem II. Furthermore, the variablefluorescence represented by the two phases is affected differentlyby non-photochemical quenching. It is shown that dark-anaerobicquenching in Chlamydomonas as well as state 2 quenching in Synechocystisare correlated with a preferential suppression of the I1-I2phase. Experiments with Synechocystis are presented which demonstratethe potential of saturation pulse quenching analysis for thestudy of reversible state changes. The mutant M55 of Synechocystis6803 appears to be "locked" in state 1. 1Present address: Lehrstuhl Botanik I, Mittlerer Dallenbergweg64, D-97082 Würzburg, Germany  相似文献   

19.
Stone parsley, soybean, sunflower, sweet potato, potato, andadlay cultivated in a Cd2+-containing medium had Cd-bindingcomplexes with molecular weights of about 4,000 in the roottissues. The complexes were similar to the complex previouslyfound in water hyacinth roots in their absorption and CD spectraand their amino acid compositions. The results indicate thewidespread existence of complexes similar to fission yeast Cd-BPlin roots of various plants. (Received June 30, 1986; Accepted December 18, 1986)  相似文献   

20.
Wong SC  Woo KC 《Plant physiology》1986,80(4):877-883
Rates of CO2 assimilation and steady state chlorophyll a fluorescence were measured simultaneously at different intercellular partial pressures of CO2 in attached cotton (Gossypium hirsutum L. cv Deltapine 16) leaves at 25°C. Electron transport activity for CO2 assimilation plus photorespiration was calculated for these experiments. Under light saturating (1750 microeinsteins per square meter per second) and light limiting (700 microeinsteins per square meter per second) conditions there was a good correlation between fluorescence and the calculated electron transport activity at 19 and 200 millibars O2, and between fluorescence and rates of CO2 assimilation at 19 millibars but not 200 millibars O2. The values of fluorescence measured at about 220 microbars intercellular CO2 were not greatly affected by increasing O2 from 19 to 800 millibars. Fluorescence increased with light intensity at any one intercellular CO2 partial pressure. But the values obtained for fluorescence, expressed as a ratio of the maximum fluorescence obtained in DCMU-treated tissue, over the same range of CO2 partial pressure at 500 microeinsteins per square meter per second were similar to those obtained at 1000 and 2000 microeinsteins per square meter per second. There were two phases in the observed correlation between fluorescence and calculated electron transport activity: an initial inverse relationship at low CO2 partial pressures which reversed to a positive correlation at higher values of CO2 partial pressures. Similar results were observed in the C3 species Helianthus annuus L., Phaseolus vulgaris L., and Brassica chinensis. In all C4 species (Zea mays L., Sorghum bicolor L., Panicum maximum Jacq., Amaranthus edulis Speg., and Echinochloa frumentacea [Roxb.] Link) examined changes in fluorescence were directly correlated with changes in CO2 assimilation rates. The nature and the extent to which Q (primary quencher) and high-energy state (qE) quenching function in determining the steady state fluorescence obtained during photosynthesis in leaves is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号