首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
In polyomavirus-transformed cells, pp60c-src is activated by association with polyomavirus middle T antigen. These complexes have a higher tyrosine kinase activity compared with that of unassociated pp60c-src. Genetic analyses have revealed that the carboxy-terminal 15 amino acids of pp60c-src and the amino-terminal half of middle T antigen are required for this association and consequent activation of the tyrosine kinase. To define in greater detail the borders of the domain in middle T antigen required for activation of pp60c-src, we constructed a set of unidirectional amino-terminal deletion mutants of middle T antigen. Analysis of these mutants revealed that the first six amino acids of middle T antigen are required for it to activate the kinase activity of pp60c-src and to transform Rat-1 fibroblasts. Analysis of a series of insertion and substitution mutants confirmed these observations and further revealed that mutations affecting the first four amino acids of middle T antigen reduced or abolished its capacity to activate the kinase activity of pp60c-src and to transform Rat-1 cells in culture. Our results suggest that the first four amino acids of middle T antigen constitute part of a domain required for activation of the pp60c-src tyrosyl kinase activity and for consequent cellular transformation.  相似文献   

2.
Repression of the tyrosine kinase activity of the cellular src protein (pp60c-src) depends on the phosphorylation of a tyrosine residue (Tyr-527) near the carboxy terminus. Tyr-527 is located 11 residues C terminal from the genetically defined end of the kinase domain (Leu-516) and is therefore in a negative regulatory region. Because the precise sequence of amino acids surrounding Tyr-527 appears to be unimportant for regulation, we hypothesized that the conformational constraints induced by phosphorylated Tyr-527 may require the correct spacing between the kinase domain (Leu-516) and Tyr-527. In this report, we show that deletions at residue 518 of two, four, or seven amino acids or insertions at this residue of two or four amino acids activated the kinase activity and thus the transforming potential of pp60c-src. As is the case for the prototype transforming variant, pp60527F, activation caused by these deletions or insertions was abolished when Tyr-416 (the autophosphorylation site) was changed to phenylalanine. In comparison with wild-type pp60c-src, the src proteins containing the alterations at residue 518 showed a lower phosphorylation state at Tyr-527 regardless of whether residue 416 was a tyrosine or a phenylalanine. Mechanisms dealing with the importance of spacing between the kinase domain and Tyr-527 are discussed.  相似文献   

3.
Analysis of the biological and biochemical activities of pp60recombinant-src proteins encoded by 12 carboxyl-terminal mutants showed that a wide family of alternate src carboxyl termini permit complete transforming and kinase activities. src proteins having carboxyl termini which are up to 10 amino acids longer than that of pp60c-src (17 amino acids longer than that of pp60v-src) still permit transformation. Transformation-positive mutations preserve leucine-516, a residue which is highly conserved in protein-tyrosine kinase sequences; removal causes in vivo protein instability. Successive deletion mutants show that this residue is at the boundary of a region required for kinase activity. pp60src which is truncated just outside this point still transforms cells and binds both pp50 and pp90 cellular proteins.  相似文献   

4.
Activation of transforming potential of the cellular raf gene has uniformly been associated with the deletion of amino-terminal coding sequences. In order to determine whether 5' truncation alone could activate cellular raf, we constructed 21 human c-raf-1 cDNAs with variable BAL 31-generated deletions distal to a Moloney murine sarcoma virus long terminal repeat and a consensus translation initiation sequence. The deletions ranged from 136 to 1,399 nucleotides of coding sequence and shortened the 648-amino-acid raf protein by 44 to 465 amino acids. The full-length c-raf-1 cDNA was nontransforming upon transfection of NIH 3T3 cells, as were four mutants with deletions of 142 or fewer amino acids. Seven of nine mutants with deletions of 154 to 273 amino acids induced transformation with efficiencies ranging from 0.25 to 70 foci per micrograms of DNA. Mutants with deletions of 303 to 324 amino acids displayed high transforming activities (comparable with that of v-raf), with a peak activity of 2,400 foci per microgram of DNA when 305 amino acids were deleted. Deletions of greater than 383 amino acids, extending into the raf kinase domain, lacked transforming activity. Northern (RNA) blotting and immunoprecipitation assays indicated that transfected NIH cells expressed raf RNAs and proteins of the expected sizes. Thus, 5' truncation alone can activate raf transforming potential, with a sharp peak of activation around amino acid 300. Analysis of three raf genes previously detected by transfection of tumor DNAs indicated that these genes were activated by recombination in raf intron 7 and encoded fusion proteins containing amino-terminal non-raf sequences. The extend of deletion of raf sequences in these recombinant genes corresponded to BAL 31 mutants which did not display high transforming activity, suggesting that the fused non-raf coding sequences may also contribute to biological activity.  相似文献   

5.
The c-src protein isolated from neuronal cells (pp60c-src+) displays a higher level of protein kinase activity than does pp60c-src from nonneural tissues. There are two structural alterations present in the amino-terminal half of pp60c-src+ expressed in neurons which could contribute to the enhanced activity of this form of pp60c-src: (i) a hexapeptide insert located at amino acid 114 of avian pp60c-src+ and (ii) a novel site(s) of serine phosphorylation. We characterized pp60c-src+ expressed in a nonneuronal cell type to identify factors that regulate the activity of the c-src+ protein and the importance of the neuronal environment on this regulation. The c-src+ protein overexpressed in chicken embryo fibroblasts (CEFs) displayed higher kinase activity than did pp60c-src. The major sites of phosphorylation of the c-src+ protein were Ser-17 and Tyr-527. The unique site(s) of serine phosphorylation originally identified in pp60c-src+ expressed in neurons was not detected in the c-src+ protein overexpressed in CEFs. Therefore, the hexapeptide insert is sufficient to cause an elevation in the tyrosine protein kinase activity of pp60c-src+. Our data also indicate that CEFs infected with the Rous sarcoma virus (RSV)c-src+ display phenotypic changes that distinguish them from cultures producing pp60c-src and that pp60c-src+-expressing cells are better able to grow in an anchorage-independent manner. The level of total cellular tyrosine phosphorylation in RSVc-src+-infected cultures was moderately higher than the level observed in cultures infected with RSVc-src. This level was not as pronounced as that observed in cells infected with RSVv-src or oncogenic variants of RSVc-src. Thus, pp60c-src+ could be considered a partially activated c-src variant protein much like other c-src proteins that contain mutations in the amino-terminal domain.  相似文献   

6.
The transforming activity of polyoma virus middle-T antigen is believed to be dependent on its ability to form a complex with the cellular tyrosine protein kinase, pp60c-src. This hypothesis is based on observations of mutants of middle-T which demonstrated a correlation between these two activities. To investigate further the significance of pp60c-src association in transformation by middle-T, a series of deletion and point mutants were constructed around the NG59 lesion since this region has been implicated in pp60c-src binding. Analysis of the middle-T variants revealed a complete correlation between the presence of associated activated pp60c-src and the ability to transform. Further, this ability of pp60c-src to associate with middle-T may depend on the presence of a beta-turn between amino acids 177 and 180. The results indicate the NG59 phenotype results from the introduction of an isoleucine residue between amino acids 177 and 178 rather than the transition mutation at 179. The mutant MG1 is a single point mutation (at residue 180) and represents the smallest change in the middle-T which abolishes both the transformating and kinase activity of middle-T. Taken together, the data suggest the region surrounding the NG59 lesion is involved in the formation of an active complex between middle-T and pp60c-src and strongly suggest that this association is an absolute requirement for polyoma virus-induced transformation.  相似文献   

7.
The products of the viral and cellular src genes, p60v-src and p60c-src, appear to be composed of multiple functional domains. Highly conserved regions called src homology 2 and 3 (SH2 and SH3), comprising amino acid residues 88 to 250, are believed to modulate the protein-tyrosine kinase activity present in the carboxy-terminal halves of the src proteins. To explore the functions of these regions more fully, we have made 34 site-directed mutations in a transformation-competent c-src gene encoding phenylalanine in place of tyrosine 527 (Y527F c-src). Twenty of the new mutations change only one or two amino acids, and the remainder delete small or large portions of the SH2-SH3 region. These mutant alleles have been incorporated into a replication-competent Rous sarcoma virus vector to examine the biochemical and biological properties of the mutant proteins after infection of chicken embryo fibroblasts. Four classes of mutant proteins were observed: class 1, mutants with only slight differences from the parental gene products; class 2, mutant proteins with diminished transforming and specific kinase activities; class 3, mutant proteins with normal or enhanced specific kinase activity but impaired biological activity, often as a consequence of instability; and class 4, mutant proteins with augmented biological and catalytic activities. In general, there was a strong correlation between total kinase activity (or amounts of intracellular phosphotyrosine-containing proteins) and transforming activity. Deletion mutations and some point mutations affecting residues 109 to 156 inhibited kinase and transforming functions, whereas deletions affecting residues 187 to 226 generally had positive effects on one or both of those functions, confirming that SH2-SH3 has complex regulatory properties. Five mutations that augmented the transforming and kinase activities of Y527F c-src [F172P, R175L, delta(198-205), delta(206-226), and delta(176-226)] conferred transformation competence on an otherwise normal c-src gene, indicating that mutations in SH2 (like previously described lesions in SH3, the kinase domain, and a carboxy-terminal inhibitory domain) can activate c-src.  相似文献   

8.
The polyoma middle tumor antigen (MTAg) associates with the src proto-oncogene product pp60c-src in infected or transformed rodent cells. The tyrosine protein kinase activity of pp60c-src, as measured by in vitro phosphorylation of pp60c-src itself or the exogenous substrate enolase, was increased 10- to 20-fold in cells transformed or infected with transformation-competent polyoma virus compared with controls. pp60c-src associated with MTAg and precipitated with polyoma antitumor serum had a novel site(s) of in vitro tyrosine phosphorylation within its amino-terminal domain. These observations suggest that association of MTAg with pp60c-src alters the accessibility of pp60c-src tyrosine residues for phosphorylation in vitro and increases pp60c-src protein kinase activity. Several transformation-defective mutants of MTAg did not cause amino-terminal tyrosine phosphorylation of pp60c-src in vitro or enhance its protein kinase activity, suggesting that these properties correlate with the transforming ability of MTAg. However, one transformation-defective MTAg mutant, dl1015, did cause amino-terminal tyrosine phosphorylation of pp60c-src in vitro and did enhance its protein kinase activity. This suggests that properties of MTAg, in addition to modifying the structure and function of pp60c-src, may be important for transformation.  相似文献   

9.
Recombinant adenoviruses bearing the avian c-src gene and polyomavirus middle-T-antigen gene were isolated and used to simultaneously overexpress both proteins in human 293 cells. Cells overexpressing both proteins had greater middle-T-antigen-associated tyrosine kinase activity than cells overexpressing only middle T antigen. By contrast, the intrinsic pp60c-src tyrosine kinase activity was not greater in cells overexpressing both proteins than in cells overexpressing only pp60c-src. This system of simultaneous overexpression provides a means of obtaining large quantities of pp60c-src, middle T antigen, and the complex between them.  相似文献   

10.
The src gene of Rous sarcoma virus (v-src) and its cellular homolog, the c-src gene, share extensive sequence homology. The most notable differences between these genes reside in the region encoding the carboxy terminus of the src proteins. We constructed mutations within the 3' end of the v-src gene to determine the significance of this region to the transforming potential of the v-src protein, pp60v-src. The mutants CHdl300 and CHis1511 contain mutations that alter the last 23 amino acids of pp60v-src, whereas the mutant CHis1545-C contains a linker insertion that alters the last 11 amino acids of pp60v-src, and the mutant CHis1545-H contains a linker insertion that results in a 9-amino-acid insertion at position 415. Plasmids bearing each of these mutations were unable to transform chicken cells when introduced into these cells by DNA transfection. In addition, the structurally altered src proteins encoded by the mutants had much-reduced levels of tyrosine protein kinase activity in vivo, as measured by autophosphorylation and phosphorylation of the 34,000-Mr cellular protein, and in vitro, as determined by measuring the level of pp60src autophosphorylation. These data indicate that the carboxy-terminal amino acid sequences play an important role in maintaining the structure of the catalytic domain of pp60v-src. In contrast, the transfection of chicken cells with plasmid DNA containing a chimeric v-c-src gene resulted in morphological cell transformation and the synthesis of an enzymatically active hybrid protein. Therefore, the carboxy-terminal sequence alterations observed in the c-src protein do not alone serve to alter the functional activity of a hybrid v-c-src protein appreciably.  相似文献   

11.
We introduced two mutations into the carboxy-terminal regulatory region of chicken pp60c-src. One, F527, replaces tyrosine 527 with phenylalanine. The other, Am517, produces a truncated pp60c-src protein lacking the 17 carboxy-terminal amino acids. Both mutant proteins were phosphorylated at tyrosine 416 in vivo. The specific activity of the Am517 mutant protein kinase was similar to that of wild-type pp60c-src whereas that of the F527 mutant was 5- to 10-fold higher. Both mutant c-src genes induced focus formation on NIH 3T3 cells, but the foci appeared at lower frequency, and were smaller than foci induced by polyoma middle tumor antigen (mT). The wild-type or F527 pp60c-src formed a complex with mT, whereas the Am517 pp60c-src did not. The results suggest that one, inability to phosphorylate tyrosine 527 increases pp60c-src protein kinase activity and transforming ability; two, transformation by mT involves other events besides lack of phosphorylation at tyrosine 527 of pp60c-src; three, activation of the pp60c-src protein kinase may not be required for transformation by the Am517 mutant; and four, the carboxyl terminus of pp60c-src appears to be required for association with mT.  相似文献   

12.
Interaction with the src family of tyrosine kinases is crucial to the transforming action of polyomavirus middle T-antigen (MT). Association with MT activates the tyrosine kinase activity of pp60(c-src) and, through subsequent MT phosphorylation, creates binding sites for signalling molecules whose stimulation culminates in cell transformation. Despite this importance, and many studies, little is known of the mechanisms by which pp60(c-src) binds to MT. We report here isolation of the first MT mutants that disrupt pp60(c-src) binding without affecting the interaction between MT and protein phosphatase 2A (PP2A). Through deletion analysis we established that interaction with pp60(c-src) requires the sequences between amino acids 185 and 210 of MT, but these residues have no effect on PP2A binding. Cells expressing these mutants showed few altered properties, indicating that the PP2A-MT interaction alone has little influence on cell phenotype. Subcellular location of these mutant MT molecules was indistinguishable by immunofluorescence analysis from that of wild-type MT but was altered markedly on loss of PP2A binding. This suggests a possible role for PP2A in specifying subcellular distribution.  相似文献   

13.
The majority of the carboxy-terminal half of polyomavirus middle-T antigen has been variously mutated and, with the exception of the putative membrane-binding domain (amino acids 394 to 415), was found to be largely dispensible for the transforming activity of the protein. A comparison of the small-T antigen amino acid sequences (equivalent to the region of middle-T encoded by exon 1) of simian virus 40, BK virus, polyomavirus, and a recently described hamster papovavirus highlighted regions of potential interest in mapping functions to the amino-terminal half of polyomavirus middle-T antigen. The regions of interest include amino acids 168 to 191 (previously investigated by this group [S. H. Cheng, W. Markland, A. F. Markham, and A. E. Smith, EMBO J. 5:325-334, 1986]), two cysteine-rich clusters (amino acids 120 to 125 and 148 to 153), and amino acids 92 to 117 (within the limits of the previously described hr-t mutant, SD15). Point mutations, multiple point mutations, and deletions were made by site-specific and site-directed mutagenesis within the cysteine-rich clusters and residues 92 to 117. Studies of the transforming ability of the altered middle-T species demonstrated that this activity is highly sensitive to amino acid changes. All four regions (as defined above) within the amino-terminal half of middle-T have now been studied in detail. The phenotype of the mutants is predominantly transformation defective, and the corresponding variant middle-T species are characterized by being either totally or severely handicapped in the ability to associate actively with pp60c-src. Whether the mutations affect the regions of interaction between middle-T and pp60c-src or simply interfere with the overall conformation of this domain is not known. However, there would appear to be a conformational constraint on this portion of the molecule with regard to its interaction with pp60c-src and by extension to the ability of the middle-T species to transform.  相似文献   

14.
Human cell lines with neuronal and neuroendocrine features were examined for their expression of pp60c-src, the cellular homolog of the transforming gene product pp60v-src of Rous sarcoma virus. Four neuroblastoma (LA-N-5, SH-SY5Y, Paju, and SK-N-MC) and three small-cell lung carcinoma (U-2020, U-1690, and U-1285) cell lines were selected on the basis of their stage of neurocrine differentiation, as determined by the expression of neuron-specific enolase. In an immune complex protein kinase assay, all seven cell lines displayed c-src kinase activity which was considerably higher than that found in nonneurocrine cells (human diploid fibroblasts, glioma, and non-small cell lung carcinoma cell lines). Furthermore, the c-src kinase activity, as determined by autophosphorylation or phosphorylation of an exogenous substrate, enolase, correlated with the stage of neurocrine differentiation. There was an approximately 30-fold difference in c-src kinase autophosphorylation activity between the cell lines representing the highest and lowest stages of neurocrine differentiation. A similar variation was found in the steady-state levels of the c-src protein of these cell lines. Highly differentiated neuroblastoma cells expressed two forms of the src protein. Digestion by Staphylococcus aureus V8 protease did reveal structural diversity in the amino-terminal ends of these c-src molecules. In summary, we found a clear correlation between c-src kinase activity and the stage of neuronal and neuroendocrine differentiation. Thus, the phenotypic similarity between neurons and neuroendocrine cells includes high c-src expression.  相似文献   

15.
Polyomavirus middle T antigen (MT) is the major transforming protein of the virus. It functions through interactions with a number of cellular proteins involved in cell proliferation. MT forms complexes with protein phosphatase 2A (PP2A), pp60c-src, phosphatidylinositol 3-kinase, and Shc. We introduced both deletion and point mutations into three regions of MT and examined their ability to associate with PP2A and pp60c-src. The first 25 amino acid residues of MT are required for association with PP2A and pp60c-src. Amino acids 105 to 111, comprising the sequence Cys-Arg-Met-Pro-Leu-Thr-Cys, is also required for complex formation between MT and PP2A. However, the sequence Asp-Lys-Gly-Gly (amino acids 44 to 47), also found in the B subunit of PP2A, is dispensable for complex formation between MT and PP2A. We find a strict correlation between the ability of MT to associate with PP2A and the ability of MT to associate with pp60c-src. One mutant, L5E, associates with a phosphatase other than PP2A, pp60c-src, and phosphatidylinositol 3-kinase in a manner similar to that of wild-type MT yet is reduced in its transforming ability on NIH 3T3 cells.  相似文献   

16.
In vivo effect of sodium orthovanadate on pp60c-src kinase.   总被引:7,自引:4,他引:3  
We have compared the tyrosine kinase activity of pp60c-src isolated from intact chicken embryo fibroblasts treated with micromolar sodium orthovanadate for 4 h and from untreated cells. We found an approximate 50% reduction in both autophosphorylation of pp60c-src and phosphorylation of casein when examined in the immune complex kinase assay. The reduction of in vitro enzymatic activity correlated with a vanadate-induced increase in in vivo phosphorylation of pp60c-src at the major site of tyrosine phosphorylation in the carboxyl-terminal half of the molecule and at serine in the amino-terminal half of the molecule. Our observations in vivo and those of Courtneidge in vitro (EMBO J. 4:1471-1477, 1985) suggest that vanadate may enhance a cellular regulatory mechanism that inhibits the activity of pp60c-src in normal cells. A likely candidate for this mechanism is phosphorylation at a tyrosine residue distinct from tyrosine 416, probably tyrosine 527 in the carboxyl-terminal sequence of amino acids unique to pp60c-src. The regulatory role, if any, of serine phosphorylation in pp60c-src remains unclear. The 36-kilodalton phosphoprotein, a substrate of pp60v-src, showed a significant phosphorylation at tyrosine after treatment of normal chicken embryo fibroblasts with vanadate. Assuming that pp60c-src is inhibited intracellularly by vanadate, either another tyrosine kinase is stimulated by vanadate (e.g., a growth factor receptor) or the 36-kilodalton phosphoprotein in normal cells is no longer rapidly dephosphorylated by a tyrosine phosphatase in the presence of vanadate.  相似文献   

17.
The proteins encoded by the oncogene v-src and its cellular counterpart c-src (designated generically here as pp60src) are tightly associated with both plasma membranes and intracellular membranes. This association is due in part to the amino-terminal myristylation of pp60src, but several lines of evidence suggest that amino-terminal portions of the protein itself are also involved. We now report that pp60src contains at least three domains which, in conjunction with myristylation, are capable of mediating attachment to membranes and determining subcellular localization. We identified these domains by fusing various portions of pp60src to pyruvate kinase, which is normally a cytoplasmic protein. Amino acids 1 to 14 of pp60src are sufficient to mediate both myristylation and the attachment of pyruvate kinase to cytoplasmic granules. In contrast, amino acids 38 to 111 mediate association with the plasma membrane and perinuclear membranes, whereas amino acids 204 to 259 mediate association primarily with perinuclear membranes. We conclude that pp60src contains independent domains that target the protein to distinctive subcellular locations and thus may facilitate diverse biological functions of the protein.  相似文献   

18.
Previous studies have shown that carboxyl-terminal mutation of pp60c-src can activate its transforming ability. Conflicting results have been reported for the transforming ability of pp60c-src mutants having only mutations outside its carboxyl-terminal region. To clarify the effects of such mutations, we tested the activities of chimeric v(amino)- and c(carboxyl)-src (v/c-src) proteins at different dosages in NIH 3T3 cells. The focus-forming activity of Rous sarcoma virus long terminal repeat (LTR)-src expression plasmids was significantly reduced when the v-src 3' coding region was replaced with the corresponding c-src region. This difference was masked when the Rous sarcoma virus LTR was replaced with the Moloney murine leukemia virus LTR, which induced approximately 20-fold more protein expression, but even focus-selected lines expressing v/c-src proteins were unable to form large colonies in soft agarose or tumors in NFS mice. This suggests that pp60c-src is not equally sensitive to mutations in its different domains and that there are at least two distinguishable levels of regulation, the dominant one being associated with its carboxyl terminus. v/c-src chimeric proteins expressed with either LTR had high in vitro specific kinase activity equal to that of pp60v-src but, in contrast, were phosphorylated at both Tyr-527 and Tyr-416. Total cell protein phosphotyrosine was enhanced in cells incompletely transformed by v/c-src proteins to the same extent as in v-src-transformed cells, suggesting that the carboxyl-terminal region may affect substrate specificity in a manner that is important for transformation.  相似文献   

19.
Protein kinase C phosphorylates pp60src at a novel site   总被引:53,自引:0,他引:53  
The transforming protein of Rous sarcoma virus (pp60v-src) and its normal cellular homolog (pp60c-src) are demonstrated to be phosphorylated at serine 12 in vivo under certain conditions. We propose that protein kinase C is responsible for this modification based on the following evidence. First, the tumor promoters, 12-O-tetradecanoylphorbol-13-acetate and teleocidin, and synthetic diacylglycerol, known activators of protein kinase C in vivo, cause nearly complete phosphorylation of pp60src at serine 12. Second, among five purified serine/threonine-specific protein kinases tested, only protein kinase C phosphorylates pp60c-src and pp60v-src in vitro at serine 12. Third, purified protein kinase C phosphorylates a synthetic peptide corresponding to the N-terminal 20 amino acids of pp60c-src at serine 12. The physiological significance of this novel phosphorylation is discussed.  相似文献   

20.
To determine the potential role of pp60c-src in polyomavirus-transformed cells, we constructed a recombinant plasmid with the mouse metallothionein-I promoter upstream of a src gene in an anti-sense orientation. We cotransfected this plasmid into middle tumor antigen-transformed FR3T3 cells with a plasmid containing the neomycin resistance gene, and G418 resistant colonies were selected. Analysis of these cells for pp60c-src expression revealed that 50 of the 200 cellular clones screened were found to have decreased levels of c-src expression when compared with the parental middle tumor antigen-transformed cells. Three independent clones which transcribed the expected 3.6-kilobase src complementary RNA and had levels of pp60c-src kinase activity comparable to that of normal FR3T3 cells were further analyzed. In the presence of Cd2+, these clones grew significantly slower in monolayer cultures than either the parental transformed cells (FR18-1) or FR18-1 cells transfected with the neomycin resistance gene alone. The morphology of these clones in the presence of Cd2+ was distinct from that of either the parental FR18-1 cells or normal FR3T3 cells. The clones expressing the complementary src RNA were found to form fewer colonies in soft agar, form fewer foci on monolayers of normal rat cells, and form tumors more slowly following injection into syngenic rats when compared with parental FR18-1 cells. The results of these studies suggest that the level of pp60c-src kinase activity affects the growth characteristics and transformation properties of polyoma virus-transformed rat cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号