首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two plasmid-containing Escherichia coli strains which overproduce manganese superoxide dismutase by 4- to 5-fold and iron superoxide dismutase by about 7-fold were not more resistant than parent strains to 1 mM paraquat (a known generator of superoxide) as measured by effects on growth, survival and induction of stringency. These results indicate that overproduction of superoxide dismutase does not mitigate the growth-inhibitory effects of 1 mM paraquat, including those which are expressed through induction of the stringency mechanism.  相似文献   

2.
The sodB gene encoding the only superoxide dismutase (Fe-SOD) in cells of the cyanobacterium Synechocystis sp. PCC6803 was inactivated with gentamycin resistance aacC1 marker insertions located in the direct or inverted order toward the sodB gene. The corresponding delta sodB12 and delta sodB22 mutants are characterized by the complete absence of superoxide dismutase activity and the loss of viability upon standard photoautotrophic cultivation. Mutant cells can grow under conditions of a decreased illumination intensity and upon addition of NaHCO3 with catalase or bovine serum albumin in the growth medium. The delta sodB22 mutant is auxotrophic for leucine due to the polar effect of insertion into the sodB gene on the downstream leuB gene controlling leucine biosynthesis. These data suggest that Fe-SOD is very important for providing tolerance of Synechocystis cells to oxidative stress and that sodB and leuB genes are organized into a single operon.  相似文献   

3.
Much has been published on the non-enzymatic antioxidant L-ascorbic acid (vitamin C), but even so its interaction with endogenous cellular defense systems has not yet been fully elucidated. Our study investigated the antioxidant activity of L-ascorbic acid in wild-type strain EG103 (SOD) Saccharomyces cerevisiae and isogenic mutant strains deficient in cytosolic superoxide dismutase (sod1delta), mitochondrial superoxide dismutase (sod2delta) or both (sod1delta sod2delta), metabolizing aerobically or anaerobically with and without the stressing agent paraquat. The results show that during both aerobic and anaerobic metabolism there was a significant increase in the survival of both wild-type S. cerevisiae cells and the mutant cells (sod1delta, sod2delta and sod1delta sod2delta) when pretreated with L-ascorbic acid before exposure to paraquat. Exposure to paraquat resulted in higher catalase activity but this significantly decreased when the cells were pre-treated with L-ascorbic acid. These results demonstrate that due to the damage caused by paraquat, the antioxidant protection of L-ascorbic acid seems to be mediated by catalase levels in yeast cells.  相似文献   

4.
Superoxide dismutase and O2 lethality in Bacteroides fragilis.   总被引:2,自引:0,他引:2       下载免费PDF全文
Exposure of midlog Bacteroides fragils (VPI 2393) to 2% O2-98% N2 caused a three- to fivefold increase in superoxide dismutase specific activity within the cells. The increase in specific activity was completed within 90 min after exposure to oxygen and was dependent upon protein synthesis. Cells containing the higher superoxide dismutase level were more resistant to the effects of 5 atm of oxygen tension than were cells containing the lower level of superoxide dismutase but were equally resistant to 5 atm of nitrogen tension. Similar results were observed upon comparing viability experiments with B. fragilis and B. vulgatus. Superoxide dismutase activity in sonic extracts of B. fragilis was rapidly inactivated by exposure to 5 mM H2O2 and was inhibited by 1 mM NaN3 but not 5 mM NaCN. The inhibition pattern is identical to the pattern demonstrated for the purified iron-containing enzyme from Escherichia coli B and suggests that the superoxide dismutase in B. fragilis is an iron enzyme.  相似文献   

5.
A current hypothesis explaining the toxicity of superoxide anion in vivo is that it oxidizes exposed [4Fe-4S] clusters in certain vulnerable enzymes causing release of iron and enzyme inactivation. The resulting increased levels of "free iron" catalyze deleterious oxidative reactions in the cell. In this study, we used low temperature Fe(III) electron paramagnetic resonance (EPR) spectroscopy to monitor iron status in whole cells of the unicellular eukaryote, Saccharomyces cerevisiae. The experimental protocol involved treatment of the cells with desferrioxamine, a cell-permeant, Fe(III)-specific chelator, to promote oxidation of all of the "free iron" to the Fe(III) state wherein it is EPR-detectable. Using this method, a small amount of EPR-detectable iron was detected in the wild-type strain, whereas significantly elevated levels were found in strains lacking CuZn-superoxide dismutase (CuZn-SOD) (sod1 delta), Mn-SOD (sod2 delta), or both SODs, throughout their growth but particularly in stationary phase. The accumulation was suppressed by expression of wild-type human CuZn-SOD (in the sod1 delta mutant), by pmr1, a genetic suppressor of the sod delta mutant phenotype (in the sod1 delta sod2 delta double knockout strain), and by anaerobic growth. In wild-type cells, an increase in the EPR-detectable iron pool could be induced by treatment with paraquat, a redox-cycling drug that generates superoxide. Cells that were not pretreated with desferrioxamine had Fe(III) EPR signals that were equally as strong as those from treated cells, indicating that "free iron" accumulated in the ferric form in our strains in vivo. Our results indicate a relationship between superoxide stress and iron handling and support the above hypothesis for superoxide-related oxidative damage.  相似文献   

6.
1. The oxidation of NADPH2 by leucocyte granules, as measured at acid pH in the presence of Mn-2+, was found to be inhibited by superoxide dismutase. 2. Omission of Mn-2+ markedly lowered the oxidase activity at acid pH, which was still inhibited by superoxide dismutase. 3. At alkaline pH the oxidase activity was lower than at acid pH. 4. During oxidation of NADPH2 by leucocyte granules, reduction of cytochrome c occurred which was partially inhibited by superoxide dismutase. 5. It was concluded that NADPH2 oxidation occurs through an enzymatic reaction and a nonenzymatic chain reaction. Superoxide anion (O-minus-2 and NADPH- free radical would be involved in the chain reaction. The differential sensitivity of NADPH2 oxidation to superoxide dismutase in different experimental conditions (see above 1, 2 and 3) was explained on the basis of changes in the properties of the chain reaction.  相似文献   

7.
The effects of ozone at 0.25, 0.40, and 1.00 ppm on Listeria monocytogenes were evaluated in distilled water and phosphate-buffered saline. Differences in sensitivity to ozone were found to exist among the six strains examined. Greater cell death was found following exposure at lower temperatures. Early stationary-phase cells were less sensitive to ozone than mid-exponential- and late stationary-phase cells. Ozonation at 1.00 ppm of cabbage inoculated with L. monocytogenes effectively inactivated all cells after 5 min. The abilities of in vivo catalase and superoxide dismutase to protect the cells from ozone were also examined. Three listerial test strains were inactivated rapidly upon exposure to ozone. Both catalase and superoxide dismutase were found to protect listerial cells from ozone attack, with superoxide dismutase being more important than catalase in this protection.  相似文献   

8.
The oxidation of dianisidine, photosensitized by riboflavin, is accelerated by superoxide dismutase. Polyacrylamide gel electropherograms soaked in riboflavin plus dianisidine and subsequently illuminated develop stable brown bands at positions bearing superoxide dismutase activity. This constitutes a new, convenient, and advantageous activity stain for this class of enzymes. Peroxidases are also stained by this procedure due to the photochemical production of H2O2. This does not constitute an interference with the specificity of the stain, since peroxidase bands develop more slowly than superoxide dismutase bands and can be further identified through the use of inhibitors or of independent staining for peroxidase. The new, positive activity stain for superoxide dismutases can be applied to crude extracts of cells.  相似文献   

9.
The effects of dietary vitamin B-2 and vitamin E on delta9-desaturation of stearoyl-CoA, catalase, glutathione peroxidase, superoxide dismutase and electron transport components in rat liver microsomes have been investigated. delta9-desaturase activities were decreased on diets deficient of vitamin B-2, E and supplemented with E. Among the peroxide-scavenging enzymes, only the catalase activity in microsomes correlates significantly with delta9-desaturase activity. In vitro addition of bovine catalase had no effect on microsomal delta9-desaturase activity on control diet. However, it enhanced the delta9-desaturation in microsomes on vitamin B-2-deficient diet which contained low catalase and high superoxide dismutase activities, compared to those in microsomes of control diet. It is suggested that the hydrogen peroxide-generating and -decomposing systems may play an important role on the delta9-desaturase activity in microsomes.  相似文献   

10.
S. cerevisiae strain delta sodl lacking Cu,Zn-superoxide dismutase and delta sodl delta sod2 mutant lacking both Cu,Zn-SOD and Mn-superoxide dismutase displayed strongly reduced aerobic growth on glucose, glycerol and lactate; delta sod2 deletion had no effect on aerobic growth on glucose and largely precluded growth on glycerol and lactate. The oxygen-induced growth defects and their alleviation by antioxidants depended on growth conditions, in particular on oxygen supply to cells. Under strong aeration, vitamins A and E had a low effect, 100 mumol/L quercetin alleviated the growth defects of all three mutants while beta-carotene had no growth-restoring effect. The superoxide producer paraquat inhibited the aerobic growth of all three mutants in a concentration-dependent manner. Low concentrations of antioxidants had no effect on paraquat toxicity while higher concentrations supported the toxic effect of the agent.  相似文献   

11.
Stable, free radical nitroxides are commonly used ESR spectroscopy tools. However, it has recently been found that ESR observable signal from 5-membered ring spin-adducts or stable label nitroxides is lost or diminished by reaction with superoxide. A similar radical-radical annihilation was not found for six membered ring nitroxide radicals. To discern why six-membered ring nitroxides are not reduced under superoxide flux generated by hypoxanthine/xanthine oxidase, spectrophoprmetric (Cyt C) and chemilu-minescence (lucigenin) and ESR assays were used to follow the reactions. Spectrophotometry and chemi-luminescence clearly demonstrated that the six-membered piperidine-I-oxyl compounds (TEMPO, TEMPOL, and TEMPAMIN) rapidly react with superoxide: rate constants at pH 7.8 ranging from 7 × 104 to 1.2 × 10-5M-1s-l. The absence of detectable ESR signal loss results from facile re-oxidation of the corresponding hydroxylamine by superoxide. To fully corroborate the efficiency of the 6-membered nitroxide superoxide dismutase activity, they were shown to protect fully mammalian cells from oxidative damage resulting from exposure to the superoxide and hydrogen peroxide generating system hypoxanthine/ xanthine oxidase. Since six-membered cyclic nitroxides react with superoxide about 2 orders of magnitude faster than the corresponding 5-membered ring nitroxides. they may ultimately be more useful as superoxide oxide dismutase mimetic agents.  相似文献   

12.
The effects of ozone at 0.25, 0.40, and 1.00 ppm on Listeria monocytogenes were evaluated in distilled water and phosphate-buffered saline. Differences in sensitivity to ozone were found to exist among the six strains examined. Greater cell death was found following exposure at lower temperatures. Early stationary-phase cells were less sensitive to ozone than mid-exponential- and late stationary-phase cells. Ozonation at 1.00 ppm of cabbage inoculated with L. monocytogenes effectively inactivated all cells after 5 min. The abilities of in vivo catalase and superoxide dismutase to protect the cells from ozone were also examined. Three listerial test strains were inactivated rapidly upon exposure to ozone. Both catalase and superoxide dismutase were found to protect listerial cells from ozone attack, with superoxide dismutase being more important than catalase in this protection.  相似文献   

13.
Reactive oxygen species are well-known mediators of various biological responses. Recently, new homologues of the catalytic subunit of NADPH oxidase have been discovered in non-phagocytic cells. These new homologues (Nox1-Nox5) produce low levels of superoxides compared to the phagocytic homologue Nox2/gp91phox. Using Nox1 siRNA, we show that Nox1-dependent superoxide production affects the migration of HT29-D4 colonic adenocarcinoma cells on collagen-I. Nox1 inhibition or down-regulation led to a decrease of superoxide production and alpha 2 beta 1 integrin membrane availability. An addition of arachidonic acid stimulated Nox1-dependent superoxide production and HT29-D4 cell migration. Pharmacological evidences using phospholipase A2, lipoxygenases and protein kinase C inhibitors show that upstream regulation of Nox1 relies on arachidonic acid metabolism. Inhibition of 12-lipoxygenase decreased basal and arachidonic acid induced Nox1-dependent superoxide production and cell migration. Migration and ROS production inhibited by a 12-lipoxygenase inhibitor were restored by the addition of 12(S)-HETE, a downstream product of 12-lipoxygenase. Protein kinase C delta inhibition by rottlerin (and also GO6983) prevented Nox1-dependent superoxide production and inhibited cell migration, while other protein kinase C inhibitors were ineffective. We conclude that Nox1 activation by arachidonic acid metabolism occurs through 12-lipoxygenase and protein kinase C delta, and controls cell migration by affecting integrin alpha 2 subunit turn-over.  相似文献   

14.
The kinetics of 4-anilino-5-methoxydioxybenzene-1,2 (AMOBQH2) autoxidation in biochemical systems possessing the superoxide dismutase activity were studied. The autoxidation of AMOBQH2 is affected by superoxide dismutase, which is indicative of participation of the superoxide radical in this process. The main kinetic effect of superoxide dismutase consists in a decrease of the effective rate constant for AMOBQH2 autoxidation. Peroxidase releases the superoxide dismutase inhibition of AMOBQH2 autoxidation. The data obtained are discussed in terms of a biochemical mechanism of action of biologically active aminoaromatic derivatives of o-benzoquinone.  相似文献   

15.
Reactive oxygen species (ROS) such as superoxide and hydrogen peroxide are known to play an important role in the proliferation and viability of vascular smooth muscle cells. In this study, we determined the effects of increased superoxide dismutase and catalase activity on fetal pulmonary arterial smooth muscle cell (FPASMC) proliferation and viability using EUK-134, a superoxide dismutase/catalase mimetic. Treatment of FPASMC with EUK-134 or with a combination of superoxide dismutase and catalase enzymes decreased superoxide and hydrogen peroxide levels as detected by the fluorescent dyes dihydroethidium and dichlorodihydrofluorescein diacetate, respectively. EUK-134 (5 microM) attenuated serum-induced FPASMC proliferation, whereas 50 microM EUK-134 decreased the number of viable cells, suggesting cell death. Conversely, combined superoxide dismutase and catalase enzyme activity equivalent to 50 microM EUK-134 prevented proliferation but did not reduce the number of viable FPASMC. The loss of mitochondrial membrane potential after 18 h, an increase in caspase-9 and caspase-3 activity after 24 h, and the subsequent appearance of TdT-mediated dUTP nick end labeling-positive nuclei were detected in FPASMC after treatment with 50 microM EUK-134. This indicates an induction of programmed rather than necrotic cell death and suggests that prolonged removal of ROS is required to stimulate apoptosis. Compounds such as EUK-134 may, therefore, prove more effective than enzymic antioxidants over longer periods, especially when the aim is to decrease the number of smooth muscle cells in diseases resulting from excessive muscularization.  相似文献   

16.
The endothelium is a key site of injury from reactive oxygen species that can potentially be protected by the antioxidant enzymes superoxide dismutase and catalase. Large proteins, such as superoxide dismutase and catalase, do not readily penetrate cell membranes, which limits their efficacy in protecting cells from cellular reactions involving both intracellularly and extracellularly generated reactive oxygen species. Two methods are described that promote enzyme delivery to cultured endothelial cells and confer increased resistance to oxidative stress. The first method is to entrap the antioxidant enzymes within liposomes, which then become incorporated by endothelial cells and can increase enzyme specific activities by as much as 44-fold within 2 h. The second method involves covalent conjugation of polyethylene glycol (PEG) to superoxide dismutase and catalase, a technique that increases circulatory half-life and reduces protein immunogenicity. Conjugation of PEG to superoxide dismutase and catalase increased cellular-specific activities of these enzymes in cultured endothelial cells (but at a slower rate than for liposome entrapped enzymes) and rendered these cells more resistant to oxidative stress. Both liposome-mediated delivery and PEG conjugation offer an additional benefit over native superoxide dismutase and catalase because they can increase cellular antioxidant activities in a manner that can provide protection from both intracellular and extracellular superoxide and hydrogen peroxide.  相似文献   

17.
Beta-amyloid peptides (Abeta) are major constituents of senile plaques in Alzheimer's disease (AD) brain and contribute to neurodegeneration, operating through activation of apoptotic pathways. It has been proposed that Abeta induces death by oxidative stress, possibly through the generation of peroxynitrite from superoxide and nitric oxide. Estrogen is thought to play a protective role against neurodegeneration through a variety of mechanisms including scavenging of reactive oxygen species (ROS). In this study, we have challenged with Abeta, either in the presence or in the absence of 17beta-estradiol, differentiated human neuroblastoma SH-SY5Y cells (named line SH) and the same line overexpressing anti-oxidant enzyme superoxide dismutase 1 (SOD1; named line WT). We have observed that: (1) WT cells are less susceptible than SH cells to Abeta insult; (2) caspase-3, but not caspase-1, is involved in Abeta-induced apoptosis in this system; (3) estrogen protects both lines, without significantly affecting SOD activity; and (4) copper chelators prevent Abeta-induced toxicity. Our results further support the notion that anti-oxidant therapy might be beneficial in the treatment of AD by preventing activation of selected apoptotic pathways.  相似文献   

18.
The conformational stability and reversibility of unfolding of the human dimeric enzyme Cu Zn superoxide dismutase (HSOD) and the three mutant enzymes constructed by replacement of Cys6 by Ala and Cys111 by Ser, singly and in combination, were determined by differential scanning calorimetry. The differential scanning calorimetry profile of wild-type HSOD consists of two components, which probably represent the unfolding of the oxidized and reduced forms of the enzyme, with denaturation temperatures (Tm) of 74.9 and 83.6 degrees C, approximately 7 degrees lower than those for bovine superoxide dismutase (BSOD). The conformational stabilities of the two components of the mutant HSOD's differ only slightly from those of the wild type (delta delta Gs of -0.2 to +0.8 kcal/mol of dimer), while replacement of the BSOD Cys6 by Ala is somewhat destabilizing (delta delta G of -0.7 to -1.3 kcal/mol of dimer). These small alterations in conformational stability do not correlate with the large increases in resistance to thermal inactivation following substitution of free Cys in both HSOD and BSOD (McRee, D.E., Redford, S.M., Getzoff, E.D., Lepock, J.R., Hallewell, R.A., and Tainer, J.A. (1990) J. Biol. Chem. 265, 14234-14241 and Hallewell, R.A., Imlay, K.C., Laria, I., Gallegos, C., Fong, N., Irvine, B., Getzoff, E.D., Tainer, J.A., Cubelli, D.E., Bielski, B.H.J., Olson, P., Mallenbach, G.T., and Cousens, L.S. (1991) Proteins Struct. Funct. Genet., submitted for publication). The reversibility of unfolding was determined by scanning part way through the profile, cooling, rescanning, and calculating the amount of protein irreversibly unfolded by the first scan. The order of reversibility at a constant level of unfolding is the same as the order of resistance to inactivation for both the HSOD and BSOD wild-type and mutant enzymes. Thus, the greater resistance to thermal inactivation of the superoxide dismutase enzymes with free Cys replaced by Ala or Ser is dominated by a greater resistance to irreversible unfolding and relatively unaffected by changes in conformational stability.  相似文献   

19.
AIMS: To improve the resting cell bioconversion of penicillin G to deacetoxycephalosporin G (DAOG) by elimination of an oxidizing intermediate which inactivates the enzyme during the reaction. METHODS AND RESULTS: Resting cells of Streptomyces clavuligerus strain NP1 were incubated with penicillin G, required co-factors and decane in the presence of catalase or superoxide dismutase, and production of DAOG was measured. Catalase stimulated the bioconversion but superoxide dismutase did not. CONCLUSIONS: Production of hydrogen peroxide during the ring expansion reaction is at least partially responsible for enzyme inactivation. SIGNIFICANCE AND IMPACT OF THE STUDY: Catalase addition improves the bioconversion and will contribute to the eventual replacement of the current multi-step, expensive and environmentally-unfriendly chemical ring expansion by a biological route.  相似文献   

20.
Autoxidation of 6-hydroxydopamine (6-OHDA) proceeds through a balanced network of: transition metal ions, superoxide, hydrogen peroxide, hydroxyl radicals, and other species. The contribution of each to the reaction mechanism varies dramatically depending upon which scavengers are present. The contribution of each propagating intermediate increases when the involvement of others is diminished. Thus, superoxide (which is relatively unimportant when metal ions can participate) dominates the reaction when transition metal ions are bound (especially at higher pH), and it becomes essential in the simultaneous presence of catalase plus chelators. Transition metal ions participate more if superoxide is excluded; hydrogen peroxide becomes more important if both .O2- and metal ions are excluded; and hydroxyl radicals contribute more to the reaction mechanism if both H2O2 and .O2- are excluded. Superoxide dismutase inhibited strongly, by two distinct mechanisms: a high affinity mechanism (less than 13% inhibition) at catalytically effective concentrations, and a low affinity mechanism (almost complete inhibition at the highest concentrations) which depends upon both metal binding and catalytic actions. In the presence of DETAPAC catalytic concentrations of superoxide dismutase inhibited by over 98%. Conversely, metal chelating agents inhibited strongly in the presence of superoxide dismutase. When present alone they stimulated (like EDTA), inhibited (like desferrioxamine), or had little effect (like DETAPAC). Catalase which stimulated slightly but consistently (less than 5%) when added alone, inhibited 100% in the presence of superoxide dismutase + DETAPAC. However, in the absence of DETAPAC, catalase decreased inhibition by superoxide dismutase, yielding a 100% increase in reaction rate. Hydroxyl scavengers (formate, mannitol or glucose) alone produced little or no (less than 10%) inhibition, but inhibited by 30% in the presence of catalase + superoxide dismutase. Paradoxically, they stimulated the reaction in the presence of catalase + superoxide dismutase + DETAPAC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号