首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Purpose

To evaluate the displacement of the central ocular surface during non-contact tonometry with and without soft contact lenses and determine the factors associated with the displacement of the central ocular surface and intraocular pressure (IOP) reading changes caused by wearing soft contact lenses (CLs).

Methods

One eye each in 21 subjects was studied. The cornea was photographed using a high-speed camera at 5,000 frames/sec during non-contact tonometry without contact lenses (NCL), with -5.0 diopters (D), -0.5 D and +5.0 D CL. The displacement of the ocular surface and the factors affecting displacement at the IOP reading and maximum displacement time were investigated.

Results

The IOP readings while wearing +5 D CL were significantly higher than those obtained while wearing -5 D CL. The ocular surface displacement between +5 D CL and other groups were significantly different. A significant positive correlation was found between the ocular surface displacement of subjects at the IOP reading time and the IOP obtained with the non-contact tonometer. A significant negative correlation was found between the ocular surface curvature and the IOP obtained using the non-contact tonometer. The radius of curvature of the ocular surface affected the displacement during the IOP reading and maximum displacement time.

Conclusions

Our results indicate that soft contact lens use changes the ocular surface behavior and IOP readings during non-contact tonometry. The radius of curvature of the eye affects the ocular surface displacement and IOP readings in this situation.  相似文献   

2.
The HMGN proteins are a group of non-histone nuclear proteins that associate with the core nucleosome and alter the structure of the chromatin fiber. We investigated the distribution of the three best characterized HMGN family members, HMGN1, HMGN2 and HMGN3 during mouse eye development. HMGN1 protein is evenly distributed in all ocular structures of 10.5 days post-coitum (dpc) mouse embryos however, by 13.5dpc, relatively less HMGN1 is detected in the newly formed lens fiber cells compared to other cell types. In the adult, HMGN1 is detected throughout the retina and lens, although in the cornea, HMGN1 protein is predominately located in the epithelium. HMGN2 is also abundant in all ocular structures of mouse embryos, however, unlike HMGN1, intense immunolabeling is maintained in the lens fiber cells at 13.5dpc. In the adult eye, HMGN2 protein is still found in all lens nuclei while in the cornea, HMGN2 protein is mostly restricted to the epithelium. In contrast, the first detection of HMGN3 in the eye is in the presumptive corneal epithelium and lens fiber cells at 13.5dpc. In the lens, HMGN3 remained lens fiber cell preferred into adulthood. In the cornea, HMGN3 is transiently upregulated in the stroma and endothelium at birth while its expression is restricted to the corneal epithelium in adulthood. In the retina, HMGN3 upregulates around 2 weeks of age and is found at relatively high levels in the inner nuclear and ganglion cell layers of the adult retina. RT-PCR analysis determined that the predominant HMGN3 splice form found in ocular tissues is HMGN3b which lacks the chromatin unfolding domain although HMGN3a mRNA is also detected. These results demonstrate that the HMGN class of chromatin proteins has a dynamic expression pattern in the developing eye.  相似文献   

3.
Cranial neural crest cells migrate into the periocular region and later contribute to various ocular tissues including the cornea, ciliary body and iris. After reaching the eye, they initially pause before migrating over the lens to form the cornea. Interestingly, removal of the lens leads to premature invasion and abnormal differentiation of the cornea. In exploring the molecular mechanisms underlying this effect, we find that semaphorin3A (Sema3A) is expressed in the lens placode and epithelium continuously throughout eye development. Interestingly, neuropilin-1 (Npn-1) is expressed by periocular neural crest but down-regulated, in a manner independent of the lens, by the subpopulation that migrates into the eye and gives rise to the cornea endothelium and stroma. In contrast, Npn-1 expressing neural crest cells remain in the periocular region and contribute to the anterior uvea and ocular blood vessels. Introduction of a peptide that inhibits Sema3A/Npn-1 signaling results in premature entry of neural crest cells over the lens that phenocopies lens ablation. Furthermore, Sema3A inhibits periocular neural crest migration in vitro. Taken together, our data reveal a novel and essential role of Sema3A/Npn-1 signaling in coordinating periocular neural crest migration that is vital for proper ocular development.  相似文献   

4.
Amino acid changes in the retina, vitreous, lens, iris-ciliary body and cornea of the rat eye were determined during postnatal growth. The amino acid concentrations of the ocular tissues showed varying profiles at various developmental stages. These results suggest a different timetable for development of each ocular tissue or indicate a synthesis of specific proteins in the postnatal period. Adult amino acid levels appeared to be fully reached on the 30th day after birth at the latest. Quantitatively the greatest changes were observed in taurine concentrations, which increased in all five ocular tissues during maturation. GABA changes paralleled those of taurine in the retina, whereas in the other ocular tissues GABA changes were very low. The greatest decrease in glutamic acid and aspartic acid concentration during postnatal development was in the lens, where these amino acids probably are needed for the synthesis of the lenticular proteins, the alpha-, beta-, and gamma-crystallines.  相似文献   

5.
We compared albino (aI), dilute (aID), and wild-type (AI+) quail in their ocular responses to continuous light, the rearing condition that brings on light-induced avian glaucoma (LIAG) in domestic chickens. At age 3 months, all quail kept under 24L/OD showed the retarded corneal growth and corneal flattening characteristic of LIAG. Unlike chickens, quail did not suffer pathological eye enlargement during the early growing period. However, by 6 months of age, 24L/OD albinos showed an almost 20% increase in eye weight compared with 12L/12D albinos. The increase in eye weight for 24L/OD dilutes at 6 months of age was 18%; for 24L/OD wild types, it was 16%. Intraocular pressure, the key criterion for glaucoma, was almost twice as high at 6 months of age in 24L/OD wild types as it was in 12L/12D wild types and showed similar but even greater increases in dilutes and albinos reared under continuous light. Across-genotype comparisons revealed additional effects of the mutant genes themselves: the eyes of albinos were 22.6% larger. The eyes of dilutes showed a similar but smaller response--5% and 6.6%, respectively, and correlated increases in globe dimensional parameters. The flat cornea characteristic of LIAG appeared in all three mutants, but only when environmental light had been kept at 24L/OD. This further separates the LIAG effect from the phenomenon we call albino quail macrophthalmos.  相似文献   

6.
The Mexican tetra Astyanax mexicanus has many of the favorable attributes that have made the zebrafish a model system in developmental biology. The existence of eyed surface (surface fish) and blind cave (cavefish) dwelling forms in Astyanax also provides an attractive system for studying the evolution of developmental mechanisms. The polarity of evolutionary changes and the environmental conditions leading to the cavefish phenotype are known with certainty, and several different cavefish populations have evolved constructive and regressive changes independently. The constructive changes include enhancement of the feeding apparatus (jaws, taste buds, and teeth) and the mechanosensory system of cranial neuromasts. The homeobox gene Prox 1, which is expressed in the expanded taste buds and cranial neuromasts, is one of the genes involved in the constructive changes in sensory organ development. The regressive changes include loss of pigmentation and eye degeneration. Although adult cavefish lack functional eyes, small eye primordia are formed during embryogenesis, which later arrest in development, degenerate, and sink into the orbit. Apoptosis and lens signaling to other eye parts, such as the cornea, iris, and retina, result in the arrest of eye development and ultimate optic degeneration. Accordingly, an eye with restored cornea, iris, and retinal photoreceptor cells is formed when a surface fish lens is transplanted into a cavefish optic cup, indicating that cavefish optic tissues have conserved the ability to respond to lens signaling. Genetic analysis indicates that multiple genes regulate eye degeneration, and molecular studies suggest that Pax6 may be one of the genes controlling cavefish eye degeneration. Further studies of the Astyanax system will contribute to our understanding of the evolution of developmental mechanisms in vertebrates.  相似文献   

7.
ALDH3A1 (aldehyde dehydrogenase 3A1) is abundant in the mouse cornea but undetectable in the lens, and ALDH1A1 is present at lower (catalytic) levels in the cornea and lens. To test the hypothesis that ALDH3A1 and ALDH1A1 protect the anterior segment of the eye against environmentally induced oxidative damage, Aldh1a1(-/-)/Aldh3a1(-/-) double knock-out and Aldh1a1(-/-) and Aldh3a1(-/-) single knock-out mice were evaluated for biochemical changes and cataract formation (lens opacification). The Aldh1a1/Aldh3a1- and Aldh3a1-null mice develop cataracts in the anterior and posterior subcapsular regions as well as punctate opacities in the cortex by 1 month of age. The Aldh1a1-null mice also develop cataracts later in life (6-9 months of age). One- to three-month-old Aldh-null mice exposed to UVB exhibited accelerated anterior lens subcapsular opacification, which was more pronounced in Aldh3a1(-/-) and Aldh3a1(-/-)/Aldh1a1(-/-) mice compared with Aldh1a1(-/-) and wild type animals. Cataract formation was associated with decreased proteasomal activity, increased protein oxidation, increased GSH levels, and increased levels of 4-hydroxy-2-nonenal- and malondialdehyde-protein adducts. In conclusion, these findings support the hypothesis that corneal ALDH3A1 and lens ALDH1A1 protect the eye against cataract formation via nonenzymatic (light filtering) and enzymatic (detoxification) functions.  相似文献   

8.
Pseudomonas aeruginosa keratitis is one of the most destructive diseases of the cornea. The host response to this infection is critical to the outcome, and is regulated by cytokines produced in the ocular tissue. In this study, we assessed the relative contribution of the cytokines produced in the cornea to the inflammatory response of the whole eye to gain a better understanding of the inflammatory and regulatory processes in the ocular environment during localized corneal infection. C57BL/6 mice were challenged by topical application of P. aeruginosa to wounded corneas. Corneas and whole eyes were harvested 24 h post-challenge and bacterial numbers, myeloperoxidase levels and the levels of cytokines known to be important in keratitis were determined. The site of production of IL-6 and KC in the retina was determined by in situ hybridization. Before infection, 90% of macrophage inflammatory protein (MIP)-2 and approximately 80% of all IFN-gamma and IL-10 produced constitutively in the eye was found outside the cornea. Twenty-four hours after infection, bacterial numbers, levels of myeloperoxidase, and levels of MIP-2 and IL-1 were not different, whether measured in cornea or whole eye. However, expression of IL-6, KC, IFN-gamma and IL-10 was significantly greater in whole eyes than in the corneas of infected eyes. The cells expressing IL-6 and KC in the retina were identified by in situ hybridization. This study indicates that during corneal inflammation, the response of the whole eye as well as the cornea needs to be considered.  相似文献   

9.
HPM长期辐照的眼生物效应研究   总被引:1,自引:0,他引:1  
目的:研究高功率微波(HPM)在不同平均功率和不同重复频率条件下长期多次照射对眼组织结构的生物效应,为我国HPM安全防护提供生物学依据。方法:采用自行研制的HPM效应模拟源远场平面波(峰值功率密度50W/cm^2)分3个不同平均功率水平,每天6min持续照射1个月,并在照后5个时间点通过眼底镜、裂隙灯观察、组织病理学方法等研究HPM长期照射对动物眼重要部位结构的生物效应。结果:HPM照射后眼角膜、晶状体、眼底等组织结构都出现了不同程度的病理变化,并呈现出一定的时效和量效关系;其中角膜病变依剂量不同可分别于照后2月到照后6月恢复正常,而晶状体病变在观察期内(照后6月)仍未见恢复,照射后动物眼底动静脉和毛细血管稍有扩张充血,但未见瘢痕、裂隙、出血等表现。结论:实验所用剂量范围内的HPM重复照射可以对动物角膜、晶状体、玻璃体等部位造成一定程度的生物效应,并呈现出一定的量效关系;在实验的观察期内,角膜和眼底依照射剂量不同可分别于照后不同期间恢复正常,但晶状体混浊在观察期末仍未见恢复,能否发展成微波白内障尚需观察。  相似文献   

10.
目的:研究5mW/cm2的S波段高功率微波(high-power microwave,HPM)对动物眼的组织结构和功能的影响,为我国高功率微波安全防护标准的制定提供参考。方法:S波段HPM模拟源以远场平面波(平均功率5mW/cm2)分三种不同的峰值功率(G1、G2、G3组)进行单次照射,并在照后7个时间点,通过眼底镜、裂隙灯观察、视网膜电图测定、组织病理学等方法研究HPM对动物的角膜、晶状体、视网膜等眼重要部位的结构与功能的影响。结果:HPM照射后角膜表面平滑无异常,未见混浊、粗糙等病理现象发生;晶状体在观察期内无肉眼可见的晶状体混浊,实质和晶状体后囊和玻璃体无异常;照射后即刻动物眼底动静脉和毛细血管稍有扩张充血,并于1天~3天后恢复正常表现;病理染色显示G1和G2组照后1天视网膜内外节排列稍有紊乱,照后3天~7天内恢复;G3组稍重,可见外核层细胞排列松散,于照后7天~14天后亦恢复正常;视网膜电图显示与照前相比,三组在照后1天的视网膜电图都有所降低,但3天后恢复正常,直至照后28天无明显改变。结论:5mW/cm2的S波段HPM单次照射对角膜、晶状体和玻璃体等部位不能造成损伤,视网膜在照后有轻微病理变化,但很快可以恢复。大鼠眼视功能在照后可出现暂时但可逆性的下降。此剂量范围的HPM照射对眼组织结构和功能无显著影响。  相似文献   

11.
12.
13.
To investigate the effect of systemic anesthesia on ocular effects and temperature in rabbit eyes exposed to microwaves, one eye each of 43 male pigmented rabbits (Dutch, 1.8-2.2 kg) was exposed at 2.45 GHz for 60-20 min (300 mW/cm2; 108 W/kg), either under anesthesia (ketamine hydrochloride (5 mg/kg) + xylazine (0.23 mg/kg)) or without anesthesia. Changes in the anterior segment were evaluated by image analysis utilizing a Scheimpflug camera, specular microscopy, and a laser flare cell meter. Temperatures within the eye were measured during microwave exposure by a Fluoroptic thermometer. The exposed eyes showed miosis, conjunctival congestion, corneal edema, and an increase in the light scattering of the anterior shallow cortex in the pupillary area of the lens. The group under systemic anesthesia showed much stronger symptoms than those treated without anesthesia. All of the anterior ocular changes disappeared within a week. The highest temperature during exposure was in the vitreous, followed by the anterior chamber, and the retrobulbar cavity of the orbit. The ocular temperatures of the rabbits under systemic anesthesia were 2-9 degrees C higher than those without anesthesia. Body temperature showed an increase of 1 degrees C during the exposure. Acute high intensity microwave exposure temporarily induced anterior segments inflammation and lens changes. The more pronounced ocular effects in the anesthetized rabbits were associated with the significantly higher ocular temperatures in the anesthetized animals. The influence of systemic anesthesia on ocular changes should be considered.  相似文献   

14.
Funduscopy is one of the most commonly used diagnostic tools in the ophthalmic practice, allowing for a ready assessment of pathological changes in the retinal vasculature and the outer retina. This non-invasive technique has so far been rarely used in animal model for ophthalmic diseases, albeit its potential as a screening assay in genetic screens. The zebrafish (Danio rerio) is well suited for such genetic screens for ocular alterations. Therefore we developed funduscopy in adult zebrafish and employed it as a screening tool to find alterations in the anterior segment and the fundus of the eye of genetically modified adult animals.A stereomicroscope with coaxial reflected light illumination was used to obtain fundus color images of the zebrafish. In order to find lens and retinal alterations, a pilot screen of 299 families of the F3 generation of ENU-treated adult zebrafish was carried out.Images of the fundus of the eye and the anterior segment can be rapidly obtained and be used to identify alterations in genetically modified animals. A number of putative mutants with cataracts, defects in the cornea, eye pigmentation, ocular vessels and retina were identified. This easily implemented method can also be used to obtain fundus images from rodent retinas.In summary, we present funduscopy as a valuable tool to analyse ocular abnormalities in adult zebrafish and other small animal models. A proof of principle screen identified a number of putative mutants, making funduscopy based screens in zebrafish feasible.  相似文献   

15.
Larval Xenopus laevis at stage 56 (Nieuwkoop and Faber, '56) were subjected to various types of lentectomy: (1) simple lentectomy, from the pupillary space after incision of outer and inner cornea; (2) lentectomy from the dorsal region of the eye; (3) lentectomy from the dorsal region of the eye and simultaneous incision of the outer cornea; (4) lentectomy from the dorsal region of the eye and simultaneous incision of the outer and inner cornea. The results obtained show that the outer cornea underwent lens-forming transformations only when the inner cornea had been incised, thus permitting outer cornea (Experiments I-IV). No lens regeneration occurred when the inner cornea was left intact (Experiments II, III). It was concluded that the factor(s) allowing the lens-forming transformations of the outer cornea is not an aspecific nutritional factor(s) but a more specific factor(s) that cannot reach the outer cornea when the inner cornea is intact. Therefore, the absence of the lens and sufficient nutrient available to the outer cornea are not enough to allow lens regeneration from the outer cornea. When lens removal was carried out through the dorsal part of the eye (Experiments III-IV) the lens regenerated from the pericorneal epidermis of this region in a large number of cases.  相似文献   

16.
Proteases in eye development and disease   总被引:1,自引:0,他引:1  
The eye is one of the classical systems in developmental biology. Furthermore, diseases of the eye, many of which have a developmental basis, have devastating effects that often result in blindness. Proteases have diverse roles in ocular physiology and pathophysiology. Here, a broad overview is provided of the recent literature pertaining to the involvement of proteases in various aspects of eye development and disease: lens development (focusing on apoptosis and lens fiber cell denucleation and organelle loss) and cataract progression, cornea development and disease, retina development and degeneration, sclera development and myopia, and the trabecular meshwork and glaucoma. Proteases discussed include caspases, calpains, matrix metalloproteases (MMPs), a disintegrin and metalloproteinases (ADAMs) and ADAM with thrombospondin motifs (ADAMTS), the ubiquitin-proteasome pathway (UPP), tissue plasminogen activator (tPA), and secretases. It is clear that proteases have diverse and important roles in ocular development and disease, and represent, in many cases, useful therapeutic targets for treating ocular conditions, which would otherwise lead to visual impairment.  相似文献   

17.
The aim of this paper was to evaluate the ocular findings in patients with chronic renal failure (CRF) undergoing haemodialysis (HD). In 64 patients undergoing haemodialysis (30 female and 34 male), aged 24-83 years (mean 58 years) on haemodialysis 1-213 months (mean 47 months) complete ocular examination were performed: visual acuity (VA), intraocular pressure (IOP), biomicroscopic examination and fundoscopy. On right eye sixty-nine percent of patents had VA 0.6 or better, and on left eye 84% of patients had VA 0.6 or better. Mean IOP before dialysis was 15 mmHg and after dialysis was 14 mmHg. In 9 patients (14%) we found corneo-conjunctival calcium deposits. No correlation of ocular calcification and parathyroid hormone (PTH) level or calcium and phosphate product were observed. 39 (60%) patients had cataract. Hypertensive vascular changes were seen in 44 (68%) patients and in 6 (7%) patients age-related macular degeneration. Seven patients had diabetes mellitus and in 5 diabetic retinopathy was observed. Patients with CRF or who are receiving HD represent unique group of patients. Pathologic change could be found in many tissue and organs, therefore we suggest ocular examination more frequently in dialysis patients.  相似文献   

18.
This paper presents an elastohydrodynamic model of the human eyelid wiper. Standard lubrication theory is applied to the fluid layer between the eyelid wiper and ocular surface. The role of the lubrication film is to reduce the shear stresses by preventing solid to solid contact between the eyelid wiper and ocular surface. For the lubrication film to be effective, it is required that the orientation of the eyelid wiper changes between the opening and closing phases of a blink. In order to model this, the hydrodynamic model is coupled with an elastic mattress model for the soft tissue of the eyelid wiper and ocular surface. This leads to a one-dimensional non-linear partial differential equation governing the fluid pressure in the lubrication film. In order to solve the differential equation, a loading condition or constraint equation must be specified. The resulting system is then solved numerically. The model allows predictions of the tear film flux from under the upper eyelid, as well as normal and shear stresses acting on the ocular surface. These factors are important in relation to dry eye syndrome, deformation of the cornea and contact lens design. It is found that the pressure and shear stress under the eyelid act across a length of approximately 0.1 mm which is consistent with clinical observations. It order to achieve a flow of tears from under the upper eyelid during a blink, the model requires that the normal force the eyelid applies to the ocular surface during the closing phase of the blink is significantly higher than during the opening phase of the blink. Electronic Supplementary Material The online version of this article () contains supplementary material, which is available to authorized users.  相似文献   

19.
The refracton hypothesis describes the lens and cornea together as a functional unit that provides the proper ocular transparent and refractive properties for the basis of normal vision. Similarities between the lens and corneal crystallins also suggest that both elements of the refracton may also contribute to the antioxidant defenses of the entire eye. The cornea is the primary physical barrier against environmental assault to the eye and functions as a dominant filter of UV radiation. It is routinely exposed to reactive oxygen species (ROS)-generating UV light and molecular O(2) making it a target vulnerable to UV-induced damage. The cornea is equipped with several defensive mechanisms to counteract the deleterious effects of UV-induced oxidative damage. These comprise both non-enzymatic elements that include proteins and low molecular weight compounds (ferritin, glutathione, NAD(P)H, ascorbate and alpha-tocopherol) as well as various enzymes (catalase, glucose-6-phosphate dehydrogenase, glutathione peroxidase, glutathione reductase, and superoxide dismutase). Several proteins accumulate in the cornea at unusually high concentrations and have been classified as corneal crystallins based on the analogy of these proteins with the abundant taxon-specific lens crystallins. In addition to performing a structural role related to ocular transparency, corneal crystallins may also contribute to the corneal antioxidant systems through a variety of mechanisms including the direct scavenging of free radicals, the production of NAD(P)H, the metabolism and/or detoxification of toxic compounds (i.e. reactive aldehydes), and the direct absorption of UV radiation. In this review, we extend the discussion of the antioxidant defenses of the cornea to include these highly expressed corneal crystallins and address their specific capacities to minimize oxidative damage.  相似文献   

20.
The lens and cornea combine to form a single optical element in which transparency and refraction are the fundamental biophysical characteristics required for a functional visual system. Although lens and cornea have different cellular and extracellular specializations that contribute to transparency and refraction, their development is closely related. In the embryonic mouse, the developing cornea and lens separate early. In contrast, zebra fish lens and cornea remain connected during early development and the optical properties of the cornea and lens observed by slit lamp and quasielastic laser light scattering spectroscopy (QLS) are more similar in the zebra fish eye than in the mouse eye. Optical similarities between cornea and lens of zebra fish may be the result of similarities in the cellular development of the cornea and lens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号