首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.

Background

In order to identify rice genes involved in nutrient partitioning, microarray experiments have been done to quantify genomic scale gene expression. Genes involved in nutrient partitioning, specifically grain filling, will be used to identify other co-regulated genes, and DNA binding proteins. Proper identification of the initial set of bait genes used for further investigation is critical. Hierarchical clustering is useful for grouping genes with similar expression profiles, but decreases in utility as data complexity and systematic noise increases. Also, its rigid classification of genes is not consistent with our belief that some genes exhibit multifaceted, context dependent regulation.

Results

Singular value decomposition (SVD) of microarray data was investigated as a method to complement current techniques for gene expression pattern recognition. SVD's usefulness, in finding likely participants in grain filling, was measured by comparison with results obtained previously via clustering. 84 percent of these known grain-filling genes were re-identified after detailed SVD analysis. An additional set of 28 genes exhibited a stronger grain-filling pattern than those grain-filling genes that were unselected. They also had upstream sequence containing motifs over-represented among grain filling genes.

Conclusions

The pattern-based perspective that SVD provides complements to widely used clustering methods. The singular vectors provide information about patterns that exist in the data. Other aspects of the decomposition indicate the extent to which a gene exhibits a pattern similar to those provided by the singular vectors. Thus, once a set of interesting patterns has been identified, genes can be ranked by their relationship with said patterns.
  相似文献   

2.
神经胶质瘤(glioma)是一种严重的颅内肿瘤疾病,具有高复发率、高死亡率和低治愈率等特点。利用基因微阵列数据识别与神经胶质瘤相关的特征基因,对该疾病的临床诊断和生物医学研究将起到有益的参考和借鉴作用。作者针对神经胶质瘤数据,提出了一种集成类随机森林特征基因选择方法。首先应用有监督奇异值分解对数据进行降维并粗选出基因;其次应用类随机森林特征选择方法选出特征基因。实验结果显示,该方法对分类器的适应性强;对比其他方法,分类率优势明显;更重要的是,在选出的前50个特征基因中有39个基因与神经胶质瘤或肿瘤细胞生物过程存在着密切联系,证实该方法不仅保持了较高的分类率,而且保证了选择的特征基因具有很强的生物学关联意义,具有较高的可行性和实用性。  相似文献   

3.
MOTIVATION: This paper introduces the application of a novel clustering method to microarray expression data. Its first stage involves compression of dimensions that can be achieved by applying SVD to the gene-sample matrix in microarray problems. Thus the data (samples or genes) can be represented by vectors in a truncated space of low dimensionality, 4 and 5 in the examples studied here. We find it preferable to project all vectors onto the unit sphere before applying a clustering algorithm. The clustering algorithm used here is the quantum clustering method that has one free scale parameter. Although the method is not hierarchical, it can be modified to allow hierarchy in terms of this scale parameter. RESULTS: We apply our method to three data sets. The results are very promising. On cancer cell data we obtain a dendrogram that reflects correct groupings of cells. In an AML/ALL data set we obtain very good clustering of samples into four classes of the data. Finally, in clustering of genes in yeast cell cycle data we obtain four groups in a problem that is estimated to contain five families. AVAILABILITY: Software is available as Matlab programs at http://neuron.tau.ac.il/~horn/QC.htm.  相似文献   

4.
Cluster analysis has proven to be a useful tool for investigating the association structure among genes in a microarray data set. There is a rich literature on cluster analysis and various techniques have been developed. Such analyses heavily depend on an appropriate (dis)similarity measure. In this paper, we introduce a general clustering approach based on the confidence interval inferential methodology, which is applied to gene expression data of microarray experiments. Emphasis is placed on data with low replication (three or five replicates). The proposed method makes more efficient use of the measured data and avoids the subjective choice of a dissimilarity measure. This new methodology, when applied to real data, provides an easy-to-use bioinformatics solution for the cluster analysis of microarray experiments with replicates (see the Appendix). Even though the method is presented under the framework of microarray experiments, it is a general algorithm that can be used to identify clusters in any situation. The method's performance is evaluated using simulated and publicly available data set. Our results also clearly show that our method is not an extension of the conventional clustering method based on correlation or euclidean distance.  相似文献   

5.
6.

Background  

Microarrays permit biologists to simultaneously measure the mRNA abundance of thousands of genes. An important issue facing investigators planning microarray experiments is how to estimate the sample size required for good statistical power. What is the projected sample size or number of replicate chips needed to address the multiple hypotheses with acceptable accuracy? Statistical methods exist for calculating power based upon a single hypothesis, using estimates of the variability in data from pilot studies. There is, however, a need for methods to estimate power and/or required sample sizes in situations where multiple hypotheses are being tested, such as in microarray experiments. In addition, investigators frequently do not have pilot data to estimate the sample sizes required for microarray studies.  相似文献   

7.
We present an association rule mining method for mining high confidence rules, which describe interesting gene relationships from microarray datasets. Microarray datasets typically contain an order of magnitude more genes than experiments, rendering many data mining methods impractical as they are optimised for sparse datasets. A new family of row-enumeration rule mining algorithms have emerged to facilitate mining in dense datasets. These algorithms rely on pruning infrequent relationships to reduce the search space by using the support measure. This major shortcoming results in the pruning of many potentially interesting rules with low support but high confidence. We propose a new row-enumeration rule mining method, MaxConf, to mine high confidence rules from microarray data. MaxConf is a support-free algorithm which directly uses the confidence measure to effectively prune the search space. Experiments on three microarray datasets show that MaxConf outperforms support-based rule mining with respect to scalability and rule extraction. Furthermore, detailed biological analyses demonstrate the effectiveness of our approach -- the rules discovered by MaxConf are substantially more interesting and meaningful compared with support-based methods.  相似文献   

8.
Scoring clustering solutions by their biological relevance   总被引:1,自引:0,他引:1  
MOTIVATION: A central step in the analysis of gene expression data is the identification of groups of genes that exhibit similar expression patterns. Clustering gene expression data into homogeneous groups was shown to be instrumental in functional annotation, tissue classification, regulatory motif identification, and other applications. Although there is a rich literature on clustering algorithms for gene expression analysis, very few works addressed the systematic comparison and evaluation of clustering results. Typically, different clustering algorithms yield different clustering solutions on the same data, and there is no agreed upon guideline for choosing among them. RESULTS: We developed a novel statistically based method for assessing a clustering solution according to prior biological knowledge. Our method can be used to compare different clustering solutions or to optimize the parameters of a clustering algorithm. The method is based on projecting vectors of biological attributes of the clustered elements onto the real line, such that the ratio of between-groups and within-group variance estimators is maximized. The projected data are then scored using a non-parametric analysis of variance test, and the score's confidence is evaluated. We validate our approach using simulated data and show that our scoring method outperforms several extant methods, including the separation to homogeneity ratio and the silhouette measure. We apply our method to evaluate results of several clustering methods on yeast cell-cycle gene expression data. AVAILABILITY: The software is available from the authors upon request.  相似文献   

9.
The most widely used statistical methods for finding differentially expressed genes (DEGs) are essentially univariate. In this study, we present a new T(2) statistic for analyzing microarray data. We implemented our method using a multiple forward search (MFS) algorithm that is designed for selecting a subset of feature vectors in high-dimensional microarray datasets. The proposed T2 statistic is a corollary to that originally developed for multivariate analyses and possesses two prominent statistical properties. First, our method takes into account multidimensional structure of microarray data. The utilization of the information hidden in gene interactions allows for finding genes whose differential expressions are not marginally detectable in univariate testing methods. Second, the statistic has a close relationship to discriminant analyses for classification of gene expression patterns. Our search algorithm sequentially maximizes gene expression difference/distance between two groups of genes. Including such a set of DEGs into initial feature variables may increase the power of classification rules. We validated our method by using a spike-in HGU95 dataset from Affymetrix. The utility of the new method was demonstrated by application to the analyses of gene expression patterns in human liver cancers and breast cancers. Extensive bioinformatics analyses and cross-validation of DEGs identified in the application datasets showed the significant advantages of our new algorithm.  相似文献   

10.
Microarray technologies, which can measure tens of thousands of gene expression values simultaneously in a single experiment, have become a common research method for biomedical researchers. Computational tools to analyze microarray data for biological discovery are needed. In this paper, we investigate the feasibility of using formal concept analysis (FCA) as a tool for microarray data analysis. The method of FCA builds a (concept) lattice from the experimental data together with additional biological information. For microarray data, each vertex of the lattice corresponds to a subset of genes that are grouped together according to their expression values and some biological information related to gene function. The lattice structure of these gene sets might reflect biological relationships in the dataset. Similarities and differences between experiments can then be investigated by comparing their corresponding lattices according to various graph measures. We apply our method to microarray data derived from influenza-infected mouse lung tissue and healthy controls. Our preliminary results show the promise of our method as a tool for microarray data analysis.  相似文献   

11.

Background  

Microarray technology has made it possible to simultaneously measure the expression levels of large numbers of genes in a short time. Gene expression data is information rich; however, extensive data mining is required to identify the patterns that characterize the underlying mechanisms of action. Clustering is an important tool for finding groups of genes with similar expression patterns in microarray data analysis. However, hard clustering methods, which assign each gene exactly to one cluster, are poorly suited to the analysis of microarray datasets because in such datasets the clusters of genes frequently overlap.  相似文献   

12.
Hoshida Y 《PloS one》2010,5(11):e15543
Gene-expression signature-based disease classification and clinical outcome prediction has not been widely introduced in clinical medicine as initially expected, mainly due to the lack of extensive validation needed for its clinical deployment. Obstacles include variable measurement in microarray assay, inconsistent assay platform, analytical requirement for comparable pair of training and test datasets, etc. Furthermore, as medical device helping clinical decision making, the prediction needs to be made for each single patient with a measure of its reliability. To address these issues, there is a need for flexible prediction method less sensitive to difference in experimental and analytical conditions, applicable to each single patient, and providing measure of prediction confidence. The nearest template prediction (NTP) method provides a convenient way to make class prediction with assessment of prediction confidence computed in each single patient's gene-expression data using only a list of signature genes and a test dataset. We demonstrate that the method can be flexibly applied to cross-platform, cross-species, and multiclass predictions without any optimization of analysis parameters.  相似文献   

13.
14.
MOTIVATION: One problem with discriminant analysis of DNA microarray data is that each sample is represented by quite a large number of genes, and many of them are irrelevant, insignificant or redundant to the discriminant problem at hand. Methods for selecting important genes are, therefore, of much significance in microarray data analysis. In the present study, a new criterion, called LS Bound measure, is proposed to address the gene selection problem. The LS Bound measure is derived from leave-one-out procedure of LS-SVMs (least squares support vector machines), and as the upper bound for leave-one-out classification results it reflects to some extent the generalization performance of gene subsets. RESULTS: We applied this LS Bound measure for gene selection on two benchmark microarray datasets: colon cancer and leukemia. We also compared the LS Bound measure with other evaluation criteria, including the well-known Fisher's ratio and Mahalanobis class separability measure, and other published gene selection algorithms, including Weighting factor and SVM Recursive Feature Elimination. The strength of the LS Bound measure is that it provides gene subsets leading to more accurate classification results than the filter method while its computational complexity is at the level of the filter method. AVAILABILITY: A companion website can be accessed at http://www.ntu.edu.sg/home5/pg02776030/lsbound/. The website contains: (1) the source code of the gene selection algorithm; (2) the complete set of tables and figures regarding the experimental study; (3) proof of the inequality (9). CONTACT: ekzmao@ntu.edu.sg.  相似文献   

15.
As whole genome sequences continue to expand in number and complexity, effective methods for comparing and categorizing both genes and species represented within extremely large datasets are required. Methods introduced to date have generally utilized incomplete and likely insufficient subsets of the available data. We have developed an accurate and efficient method for producing robust gene and species phylogenies using very large whole genome protein datasets. This method relies on multidimensional protein vector definitions supplied by the singular value decomposition (SVD) of a large sparse data matrix in which each protein is uniquely represented as a vector of overlapping tetrapeptide frequencies. Quantitative pairwise estimates of species similarity were obtained by summing the protein vectors to form species vectors, then determining the cosines of the angles between species vectors. Evolutionary trees produced using this method confirmed many accepted prokaryotic relationships. However, several unconventional relationships were also noted. In addition, we demonstrate that many of the SVD-derived right basis vectors represent particular conserved protein families, while many of the corresponding left basis vectors describe conserved motifs within these families as sets of correlated peptides (copeps). This analysis represents the most detailed simultaneous comparison of prokaryotic genes and species available to date.  相似文献   

16.
MOTIVATION: This paper presents a global test to be used for the analysis of microarray data. Using this test it can be determined whether the global expression pattern of a group of genes is significantly related to some clinical outcome of interest. Groups of genes may be any size from a single gene to all genes on the chip (e.g. known pathways, specific areas of the genome or clusters from a cluster analysis). RESULT: The test allows groups of genes of different size to be compared, because the test gives one p-value for the group, not a p-value for each gene. Researchers can use the test to investigate hypotheses based on theory or past research or to mine gene ontology databases for interesting pathways. Multiple testing problems do not occur unless many groups are tested. Special attention is given to visualizations of the test result, focussing on the associations between samples and showing the impact of individual genes on the test result. AVAILABILITY: An R-package globaltest is available from http://www.bioconductor.org  相似文献   

17.
F Fogolari  S Tessari  H Molinari 《Proteins》2002,46(2):161-170
One of the standard tools for the analysis of data arranged in matrix form is singular value decomposition (SVD). Few applications to genomic data have been reported to date mainly for the analysis of gene expression microarray data. We review SVD properties, examine mathematical terms and assumptions implicit in the SVD formalism, and show that SVD can be applied to the analysis of matrices representing pairwise alignment scores between large sets of protein sequences. In particular, we illustrate SVD capabilities for data dimension reduction and for clustering protein sequences. A comparison is performed between SVD-generated clusters of proteins and annotation reported in the SWISS-PROT Database for a set of protein sequences forming the calycin superfamily, entailing all entries corresponding to the lipocalin, cytosolic fatty acid-binding protein, and avidin-streptavidin Prosite patterns.  相似文献   

18.
MOTIVATION: Association pattern discovery (APD) methods have been successfully applied to gene expression data. They find groups of co-regulated genes in which the genes are either up- or down-regulated throughout the identified conditions. These methods, however, fail to identify similarly expressed genes whose expressions change between up- and down-regulation from one condition to another. In order to discover these hidden patterns, we propose the concept of mining co-regulated gene profiles. Co-regulated gene profiles contain two gene sets such that genes within the same set behave identically (up or down) while genes from different sets display contrary behavior. To reduce and group the large number of similar resulting patterns, we propose a new similarity measure that can be applied together with hierarchical clustering methods. RESULTS: We tested our proposed method on two well-known yeast microarray data sets. Our implementation mined the data effectively and discovered patterns of co-regulated genes that are hidden to traditional APD methods. The high content of biologically relevant information in these patterns is demonstrated by the significant enrichment of co-regulated genes with similar functions. Our experimental results show that the Mining Attribute Profile (MAP) method is an efficient tool for the analysis of gene expression data and competitive with bi-clustering techniques.  相似文献   

19.
Analysis of variance for gene expression microarray data.   总被引:22,自引:0,他引:22  
Spotted cDNA microarrays are emerging as a powerful and cost-effective tool for large-scale analysis of gene expression. Microarrays can be used to measure the relative quantities of specific mRNAs in two or more tissue samples for thousands of genes simultaneously. While the power of this technology has been recognized, many open questions remain about appropriate analysis of microarray data. One question is how to make valid estimates of the relative expression for genes that are not biased by ancillary sources of variation. Recognizing that there is inherent "noise" in microarray data, how does one estimate the error variation associated with an estimated change in expression, i.e., how does one construct the error bars? We demonstrate that ANOVA methods can be used to normalize microarray data and provide estimates of changes in gene expression that are corrected for potential confounding effects. This approach establishes a framework for the general analysis and interpretation of microarray data.  相似文献   

20.
Discriminant analysis to evaluate clustering of gene expression data   总被引:1,自引:0,他引:1  
In this work we present a procedure that combines classical statistical methods to assess the confidence of gene clusters identified by hierarchical clustering of expression data. This approach was applied to a publicly released Drosophila metamorphosis data set [White et al., Science 286 (1999) 2179-2184]. We have been able to produce reliable classifications of gene groups and genes within the groups by applying unsupervised (cluster analysis), dimension reduction (principal component analysis) and supervised methods (linear discriminant analysis) in a sequential form. This procedure provides a means to select relevant information from microarray data, reducing the number of genes and clusters that require further biological analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号