首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The dorsal marginal zone (DMZ) of the amphibian embryo is a key embryonic region involved in body axis organization and neural induction. Using time-lapse microscopic magnetic resonance imaging (MRI), we follow the pregastrula movements that lead to the formation of the DMZ of the stage 10 Xenopus embryo. 2D and 3D MRI time-lapse series reveal that pregastrular movements change the tissue architecture of the DMZ at earlier stages and in a different fashion than previously appreciated. Beginning at stage 9, epiboly of the animal cap moves tissue into the dorsal but not into the ventral marginal zone, resulting in an asymmetry between the dorsal and the ventral sides. Time-lapse imaging of labeled blastomeres shows that the animal cap tissue moves into the superficial DMZ overlying the deeper mesendoderm of the DMZ. The shearing of superficial tissue over the deeper mesendoderm creates the radial/vertical arrangement of ectoderm outside of mesendoderm within the DMZ, which is independent of involution and prior to the formation of the dorsal blastoporal lip. This tilting of the DMZ is distinct from, but occurs synchronously with, the vegetal rotation of the vegetal cell mass [R., Winklbauer, M., Schürfeld (1999). "Vegetal rotation, a new gastrulation movement involved in the internalization of the mesoderm and endoderm in Xenopus." Development. 126, 3703-3713.]. We present a revised model of gastrulation movements in Xenopus laevis.  相似文献   

2.
3.
Recent experiments suggest that Xenopus Neurotrophin Receptor Homolog 1 (NRH1) proteins act through the planar cell polarity pathway to regulate convergent extension movements during gastrulation and neurulation. We show in this paper that NRH1 proteins are also required for the proper expression of mesodermally expressed genes such as Xbra and Chordin, and to a lesser extent, of Xwnt11. Loss of NRH1 function is followed, during gastrula and neurula stages, by a dramatic increase in apoptosis. Apoptosis is delayed by injection of Xbra RNA, suggesting that cell death is a consequence, at least in part, of the down-regulation of this gene, and it is also delayed by expression of activated forms of Rho, Rac and Cdc42. These small GTPases have previously been implicated in the planar cell polarity pathway in Xenopus and, in other systems, in the regulation of apoptosis. We conclude that the effects of NRH1 proteins include the regulation of mesodermal gene expression and that the disruption of gastrulation that is caused by their loss of function is a consequence of the down-regulation of Xbra and other genes, in addition to direct interference with the planar cell polarity pathway. The apoptosis observed in embryos lacking NRH1 function is not an indirect consequence of the disruption of gastrulation, and indeed it may contribute to the observed morphological defects.  相似文献   

4.
The gastrulation of Nematostella vectensis, the starlet sea anemone, is morphologically simple yet involves many conserved cell behaviors such as apical constriction, invagination, bottle cell formation, cell migration and zippering found during gastrulation in a wide range of more morphologically complex animals.In this article we study Nematostella gastrulation using a combination of morphometrics and computational modeling. Through this analysis we frame gastrulation as a non-trivial problem, in which two distinct cell domains must change shape to match each other geometrically, while maintaining the integrity of the embryo. Using a detailed cell-based model capable of representing arbitrary cell-shapes such as bottle cells, as well as filopodia, localized adhesion and constriction, we are able to simulate gastrulation and associate emergent macroscopic changes in embryo shape to individual cell behaviors.We have developed a number of testable hypotheses based on the model. First, we hypothesize that the blastomeres need to be stiffer at their apical ends, relative to the rest of the cell perimeter, in order to be able to hold their wedge shape and the dimensions of the blastula, regardless of whether the blastula is sealed or leaky. We also postulate that bottle cells are a consequence of cell strain and low cell–cell adhesion, and can be produced within an epithelium even without apical constriction. Finally, we postulate that apical constriction, filopodia and de-epithelialization are necessary and sufficient for gastrulation based on parameter variation studies.  相似文献   

5.
Myristoylated alanine-rich C kinase substrate (MARCKS) is an actin-binding, membrane-associated protein expressed during Xenopus embryogenesis. We analyzed its function in cytoskeletal regulation during gastrulation. Here, we show that blockade of its function impaired morphogenetic movements, including convergent extension. MARCKS was required for control of cell morphology, motility, adhesion, protrusive activity, and cortical actin formation in embryonic cells. We also demonstrate that the noncanonical Wnt pathway promotes the formation of lamellipodia- and filopodia-like protrusions and that MARCKS is necessary for this activity. These findings show that MARCKS regulates the cortical actin formation that is requisite for dynamic morphogenetic movements.  相似文献   

6.
E Amaya  T J Musci  M W Kirschner 《Cell》1991,66(2):257-270
Peptide growth factors may play a role in patterning of the early embryo, particularly in the induction of mesoderm. We have explored the role of fibroblast growth factor (FGF) in early Xenopus development by expressing a dominant negative mutant form of the FGF receptor. Using a functional assay in frog oocytes, we found that a truncated form of the receptor effectively abolished wild-type receptor function. Explants from embryos expressing this dominant negative mutant failed to induce mesoderm in response to FGF. In whole embryos the mutant receptor caused specific defects in gastrulation and in posterior development, and overexpression of a wild-type receptor could rescue these developmental defects. These results demonstrate that the FGF signaling pathway plays an important role in early embryogenesis, particularly in the formation of the posterior and lateral mesoderm.  相似文献   

7.
PI3K and Erk MAPK mediate ErbB signaling in Xenopus gastrulation   总被引:1,自引:0,他引:1  
Nie S  Chang C 《Mechanisms of development》2007,124(9-10):657-667
ErbB signaling regulates cell adhesion and movements during Xenopus gastrulation, but the downstream pathways involved have not been elucidated. In this study, we show that phosphatidylinositol-3 kinase (PI3K) and Erk mitogen-activated protein kinase (MAPK) mediate ErbB signaling to regulate gastrulation. Both PI3K and MAPK function sequentially in mesoderm specification and movements, and ErbB signaling is important only for the late phase activation of these pathways to control cell behaviors. Activation of either PI3K or Erk MAPK rescues gastrulation defects in ErbB4 morphant embryos, and restores convergent extension in the trunk mesoderm as well as coherent cell migration in the head mesoderm. The two signals preferentially regulate different aspects of cell behaviors, with PI3K more efficient in rescuing cell adhesion and spreading and MAPK more effective in stimulating the formation of filopodia. PI3K and MAPK also weakly activate each other, and together they modulate gastrulation movements. Our results reveal that PI3K and Erk MAPK, which have previously been considered as mesodermal inducing signals, also act downstream of ErbB signaling to participate in regulation of gastrulation morphogenesis.  相似文献   

8.
Platelet-derived growth factor receptor (PDGFR) signaling is required for normal gastrulation in Xenopus laevis. Embryos deprived of PDGFR signaling develop with a range of gastrulation-specific defects including spina bifida, shortened anteroposterior axis, and reduced anterior structures. These defects arise because the involuting mesoderm fails to move appropriately. In this study, we determine that inhibition of PDGFR signaling causes prospective head mesoderm cells to appear in the blastocoel cavity at the onset of gastrulation, stage 10. These aberrant cells undergo apoptosis via the caspase 3 pathway at an embryonic checkpoint called the early gastrula transition (EGT). They are TUNEL-positive and have increased levels of caspase 3 activity compared to control embryos. Apoptotic death of these mesoderm cells can be prevented by co-injection of mRNA encoding Bcl-2 or by injection of either a general caspase inhibitor or a caspase 3-specific inhibitor. Prevention of cell death, however, is not sufficient to rescue gastrulation defects in these embryos. Based on these data, we propose that PDGFR signaling is necessary for survival of prospective head mesoderm cells, and also plays an essential role in the control of their cell movement during gastrulation.  相似文献   

9.
The Wiskott-Aldrich syndrome protein (WASP) family of molecules integrates upstream signalling events with changes in the actin cytoskeleton. N-WASP has been implicated both in the formation of cell-surface projections (filopodia) required for cell movement and in the actin-based motility of intracellular pathogens. To examine N-WASP function we have used homologous recombination to inactivate the gene encoding murine N-WASP. Whereas N-WASP-deficient embryos survive beyond gastrulation and initiate organogenesis, they have marked developmental delay and die before embryonic day 12. N-WASP is not required for the actin-based movement of the intracellular pathogen Listeria but is absolutely required for the motility of Shigella and vaccinia virus. Despite these distinct defects in bacterial and viral motility, N-WASP-deficient fibroblasts spread by using lamellipodia and can protrude filopodia. These results imply a crucial and non-redundant role for N-WASP in murine embryogenesis and in the actin-based motility of certain pathogens but not in the general formation of actin-containing structures.  相似文献   

10.
11.
We have undertaken the first detailed analysis of Rho GTPase function during vertebrate development by analyzing how RhoA and Rac1 control convergent extension of axial mesoderm during Xenopus gastrulation. Monitoring of a number of parameters in time-lapse recordings of mesoderm explants revealed that Rac and Rho have both distinct and overlapping roles in regulating the motility of axial mesoderm cells. The cell behaviors revealed by activated or inhibitory versions of these GTPases in native tissue were clearly distinct from those previously documented in cultured fibroblasts. The dynamic properties and polarity of protrusive activity, along with lamellipodia formation, were controlled by the two GTPases operating in a partially redundant manner, while Rho and Rac contributed separately to cell shape and filopodia formation. We propose that Rho and Rac operate in distinct signaling pathways that are integrated to control cell motility during convergent extension.  相似文献   

12.
Fibroblast growth factor (FGF) signaling has been shown to play critical roles in vertebrate segmentation and elongation of the embryonic axis. Neither the exact roles of FGF signaling, nor the identity of the FGF ligands involved in these processes, has been conclusively determined. Fgf8 is required for cell migration away from the primitive streak when gastrulation initiates, but previous studies have shown that drastically reducing the level of FGF8 later in gastrulation has no apparent effect on somitogenesis or elongation of the embryo. In this study, we demonstrate that loss of both Fgf8 and Fgf4 expression during late gastrulation resulted in a dramatic skeletal phenotype. Thoracic vertebrae and ribs had abnormal morphology, lumbar and sacral vertebrae were malformed or completely absent, and no tail vertebrae were present. The expression of Wnt3a in the tail and the amount of nascent mesoderm expressing Brachyury were both severely reduced. Expression of genes in the NOTCH signaling pathway involved in segmentation was significantly affected, and somite formation ceased after the production of about 15-20 somites. Defects seen in the mutants appear to result from a failure to produce sufficient paraxial mesoderm, rather than a failure of mesoderm precursors to migrate away from the primitive streak. Although the epiblast prematurely decreases in size, we did not detect evidence of a change in the proliferation rate of cells in the tail region or excessive apoptosis of epiblast or mesoderm cells. We propose that FGF4 and FGF8 are required to maintain a population of progenitor cells in the epiblast that generates mesoderm and contributes to the stem cell population that is incorporated in the tailbud and required for axial elongation of the mouse embryo after gastrulation.  相似文献   

13.
During vertebrate gastrulation, highly coordinated cellular rearrangements lead to the formation of the three germ layers, ectoderm, mesoderm and endoderm. In zebrafish, silberblick (slb)/wnt11 regulates normal gastrulation movements by activating a signalling pathway similar to the Frizzled-signalling pathway, which establishes epithelial planar cell polarity (PCP) in Drosophila. However, the cellular mechanisms by which slb/wnt11 functions during zebrafish gastrulation are still unclear. Using high-resolution two-photon confocal imaging followed by computer-assisted reconstruction and motion analysis, we have analysed the movement and morphology of individual cells in three dimensions during the course of gastrulation. We show that in slb-mutant embryos, hypoblast cells within the forming germ ring have slower, less directed migratory movements at the onset of gastrulation. These aberrant cell movements are accompanied by defects in the orientation of cellular processes along the individual movement directions of these cells. We conclude that slb/wnt11-mediated orientation of cellular processes plays a role in facilitating and stabilising movements of hypoblast cells in the germ ring, thereby pointing at a novel function of the slb/wnt11 signalling pathway for the regulation of migratory cell movements at early stages of gastrulation.  相似文献   

14.
The capacity for extension of the dorsal marginal zone (DMZ) in Pleurodeles waltl gastrulae was studied by scanning electron microscopy and grafting experiments. At the onset of gastrulation, the cells of the animal pole (AP) undergo important changes in shape and form a single layer. As gastrulation proceeds, the arrangement of cells also changes in the noninvoluted DMZ: radial intercalation leads to a single layer of cells. Grafting experiments involving either AP or DMZ explants were performed using a cell lineage tracer. When rotated 90 degrees or 180 degrees, grafted DMZ explants were able to involute normally and there was extension according to the animal-vegetal axis of the host. In contrast, neither single nor bilayered explants from AP involutes completely, and neither extends when grafted in place of the DMZ. Furthermore, when inside of the host, these AP grafts curl up and inhibit the closure of the blastopore. Once transplanted to the AP region, the DMZ showed no obvious autonomous extension. DMZs cultured in vitro showed little extension and this only from the late gastrula stage onward. Removal of blastocoel roof blocked involution to a varied extent, depending on the developmental stage of the embryos. From these results, it is argued that differences could well exist in the mechanism of gastrulation between anuran and urodele embryos. That migrating mesodermal cells play a major role in urodele gastrulation is discussed.  相似文献   

15.
We analyzed the notochord formation, formation of the prechordal plate, and patterning of anteroposterior regional specificity of the involuting and extending archenteron roof of a urodele, Cynops pyrrhogaster. The lower (LDMZ) and upper (UDMZ) domains of the dorsal marginal zone (DMZ) of the early gastrula involuted and formed two distinct domains: the anterior fore-notochordal endodermal roof and the posterior domain containing the prospective notochord. Cygsc is expressed in the LDMZ from the onset of gastrulation, and the Cygsc-expressing LDMZ planarly induces the notochord in the UDMZ at the early to mid gastrula stages. At the mid to late gastrula stages, part of the Cygsc-expressing LDMZ is confined to the prechordal plate. On the other hand, Cybra expression only begins at mid gastrula stage, coincident with notochord induction at this stage. Anteroposterior regional specificity of the neural plate was patterned by the posterior domain of the involuting archenteron roof containing the prospective notochord at the mid to late gastrula stages. Cynops gastrulation thus differs significantly from Xenopus gastrulation in that the regions of the DMZ are specified from the onset of gastrulation, while the equivalent state of specification does not occur in Cynops until the middle of gastrulation. Thus we propose that Cynops gastrulation is divided into two phases: a notochord induction phase in the early to mid gastrula, and a neural induction phase in the mid to late gastrula.  相似文献   

16.
The formation of the head and trunk-tail organizers in the dorsal marginal zone (DMZ) of an amphibian embryo is thought to require spatial and temporal interactions between the Nieuwkoop center and the DMZ. Recent studies of the Xenopus embryo suggested that intra-DMZ interaction is also needed to establish the regional specificity of the DMZ. However, it is not yet clarified when and how the final pattern of the head and trunk-tail organizers is established. To analyze the intra-DMZ interactions, we injected suramin into the blastocoel of the mid-blastula of the urodele, Cynops pyrrhogaster, at 6 h prior to the onset of gastrulation. The pigmented blastopore formed normally, but the convergent extension and involution of the DMZ and dorsal axis formation of the embryo were completely inhibited. Expression of gsc, chd and Lim-1 were not maintained, but noggin was unaffected in the suramin-treated embryos. Dorsal axis formation and the expression of these genes of the suramin-treated embryos were rescued by replacing the lower endodermal half of the DMZ (LDMZ) with normal LDMZ. The present results of embryological and molecular examinations indicate that organizing activity of the early Cynops gastrula DMZ is restricted to the LDMZ, and that the organizing activity of the LDMZ is established during the late blastula stages. The results also indicate that LDMZ triggers the sequential interaction within the DMZ that establishes the final pattern of the regional specificity of the DMZ, and that the formation of the LDMZ is a primary and necessary event for dorsal axis formation.  相似文献   

17.
The syndecans, a family of transmembrane heparan sulfate proteoglycans, are ubiquitous molecules whose intracellular function is still unknown. To examine the function of syndecan-2, one of the most abundant heparan sulfate proteoglycan in fibroblasts, we performed transfection studies in COS-1 and Swiss 3T3 cells. Endogenous syndecan-2 colocalized with F-actin in cortical structures. Overexpression of full-length syndecan-2 induced the formation of long filopodia-like structures. These changes correlated with a rearrangement of the actin cytoskeleton, which strongly colocalized with syndecan-2. Overexpression of syndecan-2 lacking the extracellular domain increased the number of microspikes on the cell surface but failed to induce filopodia. Addition of heparin blocked the effect of full-length syndecan-2, suggesting that heparan sulfate chains in the extracellular domain are necessary to induce filopodia. Coexpression of cdc42Hs negative-dominant N17 blocked syndecan-2-induced filopodia and cdc42Hs positive-dominant V12 had a synergic effect. This indicates that active cdc42Hs is necessary for syndecan-2 induction of filopodia. These results provide a link between syndecan-2, actin cytoskeleton, and cdc42Hs.  相似文献   

18.
19.
During mouse gastrulation, cells in the primitive streak undergo epithelial–mesenchymal transformation and the resulting mesenchymal cells migrate out laterally to form mesoderm and definitive endoderm across the entire embryonic cylinder. The mechanisms underlying mesoderm and endoderm specification, migration, and allocation are poorly understood. In this study, we focused on the function of mouse Cripto, a member of the EGF-CFC gene family that is highly expressed in the primitive streak and migrating mesoderm cells on embryonic day 6.5. Conditional inactivation of Cripto during gastrulation leads to varied defects in mesoderm and endoderm development. Mutant embryos display accumulation of mesenchymal cells around the shortened primitive streak indicating a functional requirement of Cripto during the formation of mesoderm layer in gastrulation. In addition, some mutant embryos showed poor formation and abnormal allocation of definitive endoderm cells on embryonic day 7.5. Consistently, many mutant embryos that survived to embryonic day 8.5 displayed defects in ventral closure of the gut endoderm causing cardia bifida. Detailed analyses revealed that both the Fgf8–Fgfr1 pathway and p38 MAP kinase activation are partially affected by the loss of Cripto function. These results demonstrate a critical role for Cripto during mouse gastrulation, especially in mesoderm and endoderm formation and allocation.  相似文献   

20.
小鼠早期胚胎发育包含原肠运动和器官发生等重要发育过程,这些过程受多种信号通路调控,其中有Wnt、BMP、Nodal、FGF等信号通路,它们之间进行精细严密的协调,保证胚胎发育的正确进行。β-联蛋白作为Wnt配体的共同下游信号分子,在小鼠原肠运动和器官发生中发挥至关重要的作用。Wntless/GPR177在以前的研究中已被报道参与调节Wnt配体的成熟、分选和分泌等,小鼠全身剔除Wntless(Wls)将严重影响胚胎体轴形成。在该研究中,Wls被特异性地在上胚层、心血管中胚层和心肌祖细胞中剔除,以探索Wls如何参与到小鼠原肠运动和心血管发育中。我们发现,在上胚层剔除Wls后,明显阻断了上皮-间充质转化过程,这是中胚层迁移中的关键步骤。在Wls条件性剔除的上胚层中,β-联蛋白表达模式发生变化,表达水平明显下降;E-钙黏着蛋白和N 钙黏着蛋白明显上升。此外,被剔除Wls的上胚层中,细胞凋亡明显增加。不论是在心脏中胚层还是在心脏前体细胞中,剔除Wls都导致严重的心血管发育缺陷和胚胎死亡,证明Wls对心脏发育同样十分重要。这些研究结果证明,Wntless在小鼠原肠运动和心脏发育中均发挥十分重要的作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号