首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Biological nitrogen fixation of leguminous crops is becoming increasingly important in attempts to develop sustainable agricultural production. However, these crops are quite variable in their effectiveness in fixing nitrogen. By the use of the 15N isotope dilution method some species have been found to fix large proportions of their nitrogen, while others like common bean have been considered rather inefficient. Methods for increasing N2 fixation are therefore of great importance in any legume work. Attempts to enhance nitrogen fixation of grain legumes has been mainly the domain of microbiologists who have selected rhizobial strains with superior effectiveness or competitive ability. Few projects have focused on the plant symbiont with the objective of improving N2 fixation as done in the FAO/IAEA Co-ordinated Research Programme which is being reported in this volume. The objective of the present paper is to discuss some possibilities available for scientists interested in enhancing symbiotic nitrogen fixation in grain legumes. Examples will be presented on work performed using agronomic methods, as well as work on the plant and microbial symbionts. There are several methods available to scientists working on enhancement of N2 fixation. No one approach is better than the others; rather work on the legume/Rhizobium symbiosis combining experience from various disciplines in inter-disciplinary research programmes should be pursued.  相似文献   

2.
The importance of soybean as a source of oil and protein, and its ability to grow symbiotically on low-N soils, point to its continued status as the most valuable grain legume in the world. With limited new land on which to expand, and emphasis on sustainable systems, increases in soybean production will come mostly from increased yield per unit area. Improvements in biological nitrogen fixation can help achieve increased soybean production, and this chapter discusses research and production strategies for such improvement.The soybean-Bradyrhizobium symbiosis can fix about 300 kg N ha-1 under good conditions. The factors which control the amount of N fixed include available soil N, genetic determinants of compatibility in both symbiotic partners and lack of other yield-limiting factors. Response to inoculation is controlled by the level of indigenous, competing bradyrhizobia, the N demand and yield potential of the host, and N availability in the soil.Research efforts to improve BNF are being applied to both microbe and soybean. While selection continues for effective, naturally occurring bradyrhizobia for inoculants and the use of improved inoculation techniques, genetic research on bradyrhizobia to improve effectiveness and competitiveness is advancing. Selection, mutagenesis and breeding of the host have focused on supernodulation, restricted nodulation of indigenous B. japonicum, and promiscuous nodulation with strains of bradyrhizobia from the cowpea cross-inoculation group. The research from the host side appears closer to being ready for practical use in the field.Existing knowledge and technology still has much to offer in improving biological nitrogen fixation in soybean. The use of high-quality inoculants, and education about their benefits and use can still make a significant contribution in many countries. The importance of using the best adapted soybean genotype with a fully compatible inoculant cannot be overlooked, and we need to address other crop management factors which influence yield potential and N demand, indirectly influencing nitrogen fixation. The implementation of proven approaches for improving nitrogen fixation in existing soybean production demands equal attention as received by research endeavours to make future improvements.  相似文献   

3.
Four local rhizobia isolates selected after two screening experiments and five USDA Bradyrhizobium japonicum strains were estimated for N2 fixation in soybean using the 15N isotope dilution technique. Strain USDA 110 was superior to the local isolates in nodulation and N2 fixation when inoculated onto soybean cv TGX 1497-ID in a Nigerian soil and could therefore be used as an inoculant for enhanced N2 fixation in soybean in Nigeria.  相似文献   

4.
Summary Isotopic as well as non-isotopic methods were used to assess symbiotic nitrogen fixation within eight soybean [Glycine max (L.) Merr.] cultivars grown at 20 and 100 kg N/ha levels of nitrogen fertilizer under field conditions.The15N methodology revealed large differences between soybean cultivars in their abilities to support nitrogen fixation. In almost all cases, the application of 100 kg N/ha resulted in lower N2 fixed in soybean than at 20 kg N/ha in the first year of the study. However, N2 fixed in one cultivar, Dunadja, was not significantly affected by the higher rate of N fertilizer application. These results were confirmed by measurements of acetylene reduction activity, nodule dry weight and N2 fixed as measured by the difference method. Further proof of differences in N2 fixed within soybean cultivars and the ability of Dunadja to fix similar amounts of N2 at 20 and 100 kg N/ha was obtained during a second year experiment. Dunadja yield was affected by N fertilizer and produced larger yield at 100 kg N/ha than at 20 kg N/ha. This type of cultivar could be particularly useful in situations where soil N levels are high or where there is need to apply high amounts of N fertilizer.The present study reveals the great variability between legume germplasms in the ability to fix N2 at different inorganic N levels, and also the potential that exists in breeding for nitrogen fixation associative traits. The15N methodology offers a unique tool to evaluate germplasms directly in the field for their N2 fixation abilities at different N fertilizer levels.  相似文献   

5.
An individual soybean breeder can generate over one hundred thousand new genotypes each year. The efficiency of selection in these populations could be improved if these genotypes were effectively screened with one DNA marker that identified an important gene, and if laboratory throughput was high and costs were low. Our aim was to develop a rapid genotyping procedure for resistance to the soybean cyst nematode. A high-throughput genotyping method was developed with fluorogenic probes to distinguish between two insertion polymorphisms in alleles of an AFLP marker that is located about 50 kbp from the Rhg4 gene candidate. The assay uses the 5 exonuclease activity of Taq polymerase in conjunction with fluorogenic probes for each allele. The method can be used for scoring the polymorphism in a recombinant inbred line population and for screening parent lines in a breeding program. The TaqmanTM method of determining genotype was accurate in 90% of scores in the RIL population compared to 95% accuracy with electrophoresis. Among 94 cultivars that are parents in our breeding program allele 2 that is derived from the sources of resistance to SCN was common in resistant cultivars (30 of 56) but rare in susceptible cultivars (3 of 38). Therefore, this method can be applied to automated large-scale genotyping for soybean breeding programs.  相似文献   

6.
Brazil has succeeded in sustaining production of soybean [Glycine max (L.) Merrill] by relying mainly on symbiotic N2 fixation, thanks to the selection and use in inoculants of very effective strains of Bradyrhizobium japonicum and Bradyrhizobium elkanii. It is desirable that rhizobial strains used in inoculants have stable genetic and physiological traits, but experience confirms that rhizobial strains nodulating soybean often lose competitiveness in the field. In this study, soybean cultivar BR 16 was single-inoculated with four B. japonicum strains (CIAT 88, CIAT 89, CIAT 104 and CIAT 105) under aseptic conditions. Forty colonies were isolated from nodules produced by each strain. The progenitor strains, the isolates and four other commercially recommended strains were applied separately to the same cultivar under controlled greenhouse conditions. We observed significant variability in nodulation, shoot dry weight, shoot total N, nodule efficiency (total N mass over nodule mass) and BOX-PCR fingerprinting profiles between variant and progenitor strains. Some variant strains resulted in significantly larger responses in terms of shoot total N, dry weight and nodule efficiency, when compared to their progenitor strain. These results highlight the need for intermittent evaluation of stock bacterial cultures to guarantee effective symbiosis after inoculation. Most importantly, it indicates that it is possible to improve symbiotic effectiveness by screening rhizobial strains for higher N2 fixation capacity within the natural variability that can be found within each progenitor strain.  相似文献   

7.
Two wild legume plants,Glycine soja andCassia mimosoides var.nomame, and a cultivated plant, soybean (Glycine max), were employed for a study of triple symbiosis with an inoculum ofScutellispora heterogama harvested from natural soils and an inoculum of their own rhizobial cells. The dry weight, colonization of arbuscular mycorrhizal fungus, nodule formation and N2-fixation activity were estimated as the parameters of triple symbiosis. The two wild legume plants showed greater growth with colonization of arbuscular mycorrhizae than with nodulation, whereas the cultivated legume showed more nodulation than colonization of arbuscular mycorrhizae. Moreover,S. heterogama appeared to stimulate the triple symbiosis for the wild legume plants. The results suggested that spores ofS. heterogama are important in disturbed soils in Korea.  相似文献   

8.
Moawad  H.  Badr El-Din  S.M.S.  Abdel-Aziz  R.A. 《Plant and Soil》1998,204(1):95-106
The diversity of rhizobia nodulating common bean ( Phaseolus vulgaris), berseem clover (Trifolium alexanderinum) and lentil (Lens culinaris) was assessed using several characterization techniques, including nitrogen fixation efficiency, intrinsic antibiotic-resistance patterns (IAR), plasmid profiles, serological markers and rep-PCR fingerprinting. Wide diversity among indigenous rhizobial populations of the isolates from lentil, bean and clover was found. Strikingly, a large percentage of the indigenous rhizobial population was extremely poor at fixing nitrogen. This emphasizes the need to increase the balance of highly efficient strains within the rhizobial population. Use of high-quality inocula strains that survive and compete with other less-desired and less-efficient N2-fixing rhizobia represents the best approach to increase biological nitrogen fixation of the target legume. In field-grown lentils, the inoculant strains were not able to outcompete the indigenous rhizobia and the native lentil rhizobia occupied 76–88% of the total nodules formed on inoculated plants. Nitrogen fixation by lentils, estimated using the 15N isotope dilution technique, ranged between 127 to 139 kg ha-1 in both inoculated and un-inoculated plants. With berseem clover, the inoculant strains were highly competitive against indigenous rhizobia and occupied 52–79% of all nodules. Inoculation with selected inocula improved N2 fixation by clover from 162 to 205 kg ha-1 in the three cuts as compared with 118 kg ha-1 in the un-inoculated treatment. The results also indicated the potential for improvement of N2 fixation by beans through the application of efficient N2-fixing rhizobia.  相似文献   

9.
Legume N2 fixation is variable, but nonetheless is a valuable process in world agriculture. There is great potential to increase the contribution by the crop legumes to the world's supply of soil.N. This will be achieved by (i) increasing the area of legumes sown by farmers; (ii) improved management of the crops in order that the major determinants of productivity, e.g. land area, water availability, are converted to harvested product with maximum efficiency; and (iii) genetic modification of the commonly-grown species to ensure high dependence of the legume crop on N2 fixation at all levels of productivity. Currently-used methods for measuring N2 fixation and for assessing heritability and repeatability of N2 fixation in breeding and selection programs are reviewed. Results from research programs to define genetic variation in N2 fixation and to enhance N2 fixation through selection and breeding are presented with particular emphasis on common bean (Phaseolus vulgaris) and soybean (Glycine max).  相似文献   

10.
The host range nodulation efficiency of four genetically marked frenchbean rhizobial strains (HURR-3, Raj-2, Raj-5 and Raj-6) was studied with five legume hosts namely, frenchbean (Phageolus vulgaris L.), pigeonpea [Cajanus cajan (L.) Millsp.], mungbean [Vigna radiata (L.) Wilezek.], urdbean [Vigna mungo (L.) Hepper.] and soybean [Glycine max (L.) Merril.]. Except soybean and pigeonpea, all other legume hosts were nodulated by two or more frenchbean rhizobial strains tested. Rhizobia were isolated from nodules produced by strains, HURR-3 and Raj-5, on main (frenchbean) and different (mungbean and urdbean) hosts. There was marked improvement in host range nodulation and nitrogen fixation efficiency of rhizobial strains, HURR-3 and Raj-5. after their isolation from chance nodules on different hosts. This is clearly evident from the ability of such isolates to form nodules on pigeonpea besides mungbean and urdbean, and higher nodulation in all the above three different hosts. The phage-susceptibility pattern and intrinsic antibiotic resistance (used as markers) of the two strains did not change after their passage through different hosts. The results indicate that frenchbean rhizobia had undergone some modification in symbiotic behaviour to adapt to wide host range during their passage through different (alternate?) hosts.  相似文献   

11.
Snap bean fields in 12 of the 25 governorates of Egypt were surveyed to determine the distribution and taxonomy of snap bean-nodulating rhizobia. Nodulation rates in the field were very low, indicating that Egyptian soils do not have sufficient numbers of snap bean-compatible Rhizobium spp. A total of 87 rhizobial isolates were assayed on the most commonly grown cultivars in order to identify the most effective strains. The five most effective isolates (R11, R13, R28, R49 and R52) were fast-growing and utilized a wide range of carbon and nitrogen sources. A phylogenetic assignment of these strains by analysis of the 16S ribosomal RNA gene suggested that all fell within the Rhizobium etliRhizobium leguminosarum group. Strains R11, R49 and R52 all clustered with other identified R. etli strains, while strains R13 and R28 were more distinct. The distinctness of R13 and R28 was supported by physiological characteristics, such as their ability to utilize citrate, erythritol, dulcitol and lactate. Strains R13 and R28 also yielded the highest plant nitrogen content of all isolates.The highly effective strains isolated in this study, in particular strains R13 and R28, are promising candidates for improving crop yields. The data also suggested that these two strains represented a novel sub-group within the R. etli–R. leguminosarum group. As snap bean is a crop of great economic value to Egypt, the identification of highly effective rhizobial strains adapted to Egyptian soils, such as strains R13 and R28, is of great interest.  相似文献   

12.
Isolation of microorganisms, screening for desirable characters and selection of efficient strains are important steps to optimize high crop yields and improve the sustainability of the ecosystem. The objective of this study was isolate and identify Azopirillum spp. with enhanced potential to promote plant growth among the natural bacterial population associated with rhizosphere soil, roots and stem of maize collected from five maize-growing regions within the southern state of Rio Grande do Sul in Brazil. Diazotrophic microorganisms were isolated using semi-solid N-free and solid selective media NFb. In order to select the most efficient isolates as candidates for plant growth promotion, the purified bacterial strains were studied for cell morphology, and Gram staining, streptomycin resistance, as well as screened for their potential for nitrogen fixation and auxin production under sterile conditions. Among 224 isolates obtained 121 were able to fix nitrogen and produce auxin. The 30 most promising isolates produced indole-3-acetic acid (IAA) ranging in concentration from 3.51 μg to 246.69 μg IAA mg−1. Nitrogen fixation ranged from 15.43 μg to 95.21 μg of N mg protein−1 day−1 From the 30 most productive isolates, chromosomal DNA was extracted and a portion of the nifH gene was amplified and sequenced. Twenty-nine isolates were found to be similar to the Azospirillum genus and one isolate was found to be similar to Herbaspirillum seropedicae. These bacterial isolates revealed potential to increase crop productivity, however field crop experiments in Rio Grande do Sul climatic conditions should be done in order to formulate recommendations for their use as inoculants.  相似文献   

13.
This study characterized genetically 30 fast-growing rhizobial strains isolated from nodules of Asian and modern soybean genotypes that had been inoculated with soils from disparate regions of Brazil. Analyses by rep-PCR (ERIC and REP) and RAPD indicated a high level of genetic diversity among the strains. The RFLP-PCR and sequencing analysis of the 16S rRNA genes indicated that none of the strains was related to Sinorhizobium (Ensifer) fredii, whereas most were related to Rhizobium tropici (although they were unable to nodulate Phaseolus vulgaris) and to Rhizobium genomic species Q. One strain was related to Rhizobium sp. OR 191, while two others were closely related to Agrobacterium (Rhizobium) spp.; furthermore, symbiotic effectiveness with soybean was maintained in those strains. Five strains were related to Bradyrhizobium japonicum and B. elkanii, with four of them being similar to strains carried in Brazilian inoculants, therefore modifications in physiological properties, as a shorter doubling time might have resulted from adaptation to local conditions. Phospholipid fatty acid analysis (PFLA) was less precise in delineating taxonomic relationships. The strains fit into eight Nod-factor profiles that were related to rhizobial species, but not to N2-fixation capacity or competitiveness. The data obtained highlight the diversity and promiscuity of rhizobia in the tropics, being capable of nodulating exotic legumes and might reflect ecological strategies to survive in N-poor soils; in addition, the diversity could also represent an important source of efficient and competitive rhizobial strains for the tropics. Putative new rhizobial species were detected only in undisturbed soils. Three species (R. tropici, B. japonicum and B. elkanii) were found under the more sustainable management system known as no-till, while the only species isolated from soils under conventional till was R. tropici. Those results emphasize that from the moment that agriculture was introduced into undisturbed soils rhizobial diversity has changed, being drastically reduced when a less sustainable soil management system was adopted.  相似文献   

14.
Drought is an important environmental factor that can affect rhizobial competition and N2 fixation. Three alfalfa (Medicago sativa L. and M. falcata L.) accessions were grown in pots containing soil from an irrigated (Soil 1) and a dryland (Soil 2) alfalfa field in northern Utah, USA. Mutants of three strains of Rhizobium meliloti Dang. from Pakistan (UL 136, UL 210, and UL 222) and a commercial rhizobial strain 102F51a were developed with various levels of resistance to streptomycin. Seeds inoculated with these individual streptomycin-resistant mutants were sown in the two soils containing naturalized rhizobial populations. Soils in the pots were maintained at −0.03, −0.5, and −1.0 MPa. After 10 weeks, plants were harvested and nodule isolates were cultured on agar medium with and without streptomycin to determine nodule occupancy (proportion of the nodules occupied by introduced rhizobial strains). Number of nodules, nodule occupancy, total plant dry weight, and shoot N were higher for Soil 1 than Soil 2. Number of nodules, plant dry weight, and shoot N decreased as drought increased from −0.03 to −1.0 MPa in the three alfalfa accessions. Rhizobial strains UL 136 and UL 222 were competitive with naturalized alfalfa rhizobia and were effective at symbiotic N2 fixation under drought. These results suggest that nodulation, growth, and N2 fixation in alfalfa can be improved by inoculation with competitive and drought-tolerant rhizobia and may be one economically feasible way to increase alfalfa production in water-limited environments. Joint contribution from USDA-ARS and the Utah Agric. Exp. Sta., Utah State Univ., Logan, UT 84322-4810, USA. Journal Paper No. 4931. Joint contribution from USDA-ARS and the Utah Agric. Exp. Sta., Utah State Univ., Logan, UT 84322-4810, USA. Journal Paper No. 4931.  相似文献   

15.
J. Evans 《Plant and Soil》1982,66(3):439-442
Summary The effect of mineral nitrogen on establishment and activity of symbioses between soybean and several strains ofRhizobium japonicum and on the establishment of nodules ofR. japonicum isolated from nodules of field crops is studied. All strains were highly susceptible to the effects of 200 ppm NO3–N on the establishment of symbiosis; 50 ppm NO3–N had little effect. Response of symbioses establishhed in the absence of mineral N to short term exposure to nitrate or ammonium varied significantly between strains. Nodule isolates from soybean crops growing in nitrifying soil were no less susceptible to the inhibitory effects of mineral N on nodule formation than a laboratory culture of the commercial inoculant strain.  相似文献   

16.
Two hundred and fifty strains, all of them representatives of native Bradyrhizobium sp., isolated from soils cultivated with soybean have been characterized by their denitrification activity. In addition, the denitrification potential of those soils was also measured by evaluating the most-probable-number (MPN) of denitrifying bacteria and the denitrification enzyme assay (DEA). Of the 250 isolates tested, 73 were scored as probable denitrifiers by a preliminary screening method. Only 41 were considered denitrifiers because they produced gas bubbles in Durham tubes, cultures reached an absorbance of more than 0.1 and NO3− and NO2− were not present. Ten of these 41 were selected to confirm denitrification and to study denitrification genes. According to N2O production and cell protein concentration with NO3−, the isolates could be differentiated in three categories of denitrifiers. The presence of the napA, nirK, norC and nosZ genes was detected by production of a diagnostic PCR product using specific primers. RFLP from the 16S-23S rDNA spacer region (IGS) revealed that denitrifiers strains could be characterized as Bradyrhizobium japonicum and strains which were non-respiratory denitrifiers as B. elkanii.  相似文献   

17.
Nodules from mungbean crop raised for the first time at Ram Dhan Singh (RDS) farm of Chaudhary Charan Singh (CCS) Haryana Agricultural University, Hisar were collected from 17 different locations. Twenty-five mungbean rhizobia were isolated and authenticated by plant infection test. DNA of all these rhizobia was extracted purified and amplified using enterobacterial repetitive intergenic consensus (ERIC) primers. All the mungbean rhizobial isolates were clustered into 4 groups at 65% of similarity and were further divided into 17 subclusters at 80% of similarity. All the 4 types of rhizobia were not present at any of the location and group 2 or 4 rhizobia were invariably present. Efficacy of these rhizobia in terms of nodulation, nitrogen uptake and chlorophyll a fluorescence was determined under pot culture conditions. Strain MB 307 showed maximum nitrogen uptake of 31.9 mg N plant−1 followed by strain MB 1205, MB 1206(2), MB 308, MB 1524 and strain MB 1521 was found to be the least efficient in terms of N 2 fixation. Nodule occupancy by different rhizobia ranged from 5.5 to 40.3%. Most of the strains belonging to the 2nd group which clustered maximum number of strains were comparatively better competitors and formed 19.5–40.3% of the nodules and were also effective. Isolate MB 307, the most efficient strain, was found to have nodule occupancy of 31.5%. Such type of predominant, efficient and better competitor strains should be selected for enhancing nodule competitiveness.  相似文献   

18.
Kucey  R. M. N.  Snitwongse  P.  Chaiwanakupt  P.  Wadisirisuk  P.  Siripaibool  C.  Arayangkool  T.  Boonkerd  N.  Rennie  R. J. 《Plant and Soil》1988,108(1):33-41
Controlled environment and field studies were conducted to determine relationships between various measurements of N2 fixation using soybeans and to use these measures to evaluate a number ofBradyrhizobium japonicum strains for effectiveness in N2 fixation in Thai soils.15N dilution measurements of N2 fixation showed levels of fixation ranging from 32 to 161 kg N ha−1 depending on bacterial strain, host cultivar and location. Midseason measures of N2 fixation were correlated with each other, but not related measures taken at maturity. Ranking ofB. japonicum strains based on performance under controlled conditions in N-free media were highly correlated with rankings based on soybean seed yields and N2 fixation under field conditions. This study showed that inoculation of soybeans with effectiveB. japonicum strains can result in significant increases in yield and uptake of N through fixation. The most effective strains tested for use in Thai conditions were those isolated from Thai soils; however, effective strains from other locations were also of benefit.  相似文献   

19.
Soybean is the most important leguminous crop in Brazil and the nitrogen required for plant growth is supplied byBradyrhizobium bacteria through the symbiotic relation established by the inoculation process. Since 1992, two new strains, CPAC 7 and CPAC 15, which have been shown to increase yields in several field experiments, have been recommended in Brazilian commercial inoculants. CPAC 15 is a natural variant of theB. elkanii SEMIA 566 strain, and was isolated after several years of adaptation to a Brazilian Cerrado soil, while CPAC 7 is a variant ofB. japonicum strain CB 1809, selected under laboratory conditions for higher nodulation and yield. The comparison between parental and variant strains, under greenhouse conditions, showed that both CPAC 15 and CPAC 7 increased N2 fixation rates in relation to the parental strains. The better performance of CPAC 15 was related to an increase in nodule efficiency (mg N2 fixed mg-1 nodule) while with CPAC 7 the higher N2 fixation rates were due to increased nodulation. Both CPAC 15 and CPAC 7 increased nodule occupancy, when co-inoculated at a ratio of 1:1 withB. elkanii 29w, in relation to their parental strains. Variant strains also differed from parental in their ability to increase numbers of root hairs (Hai phenotype) either when inoculated onto plants, or when supernatants of bacteria exposed to seed exudates were used as inoculants. This results lead to the hypothesis that a modification in some of the “common” nodulation genes had occurred. However, the increase in Hai phenotype with CPAC 7 was dependent on the soybean cultivar, indicating a possible alteration in some genotypic specific nodulation gene. Apparently, there were no differences in Nod metabolites produced by strains CPAC 15 and SEMIA 566, but a more detailed chemical analysis would be required to rule out subtle differences. On the contrary, significant differences were found between CPAC 7 and the parental strain CP 1809, in the profile of Nod metabolites. Consequently, it may be possible that diffusable molecules, responsible for Hai phenotype, would be related to nodulation ability, competiviveness, and N2 fixation, resulting in the higher yields that have been associated with CPAC 7 and CPAC 15. For the CPAC 7 strain, the increase in Hai phenotype could be atributed to the differences found in the Nod molecules. Consequently, a high degree of physiological and genetic variability can result from the adaptation of rhizobial strains to the soil. Also, this variability can be found under laboratory conditions, when searching single colonies with specific properties. ei]Section editor: R O D Dixon  相似文献   

20.
In a green-house experiment, five cultivars of Pisum sativum L. grown on soils from 10 different locations in Tunisia, showed significant differences in nodulation, shoot dry matter (shDM) yield and shoot nitrogen content (shNC). The effect of soil on biological nitrogen fixation, as evidenced by the number and weight of nodules, was mainly attributable to the available phosphorus content. Cate-Nelson ANOVA analysis established a critical value of soil test phosphorus (STP) of 20 mg P kg–1 soil for nodule weight and number for the majority of cultivars. Within cultivars, nodulation varied with maturation period and was correlated with shoot NC. Thus, the overall interaction of soil-P content and cultivar-maturation period were correlated positively with nodulation and to symbiotic effectiveness of strains of Rhizobium leguminosarum bv. viceae indigenous to these soils. Based on an antibiotic susceptibility test and main variable factor analysis of the data obtained, 70 isolates of Rhizobia that nodulate pea, obtained from soils from agricultural sites throughout Tunisia, were identified as belonging to 18 distinct strains. These classes were identified on the basis of symbiotic efficiency parameters (shoot DM yield and shoot NC) as: ineffective (33 isolates), moderately effective (27 isolates), and efficient strains (10 isolates). This study shows that the Mateur site, an agricultural area for millennia in the northern region of Tunisia, harbors rhizobial strains that are highly efficient in fixing N2 with peas. These results also indicate the importance of strain-cultivar interrelationships and specificity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号