首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The accessibility of sulfhydryl groups at the pyruvate dehydrogenase component of the pyruvate dehydrogenase multienzyme complex from Escherichia coli was reinvestigated. Hydrophobic interactions appear to control the reactivity of an essential cysteine residue at the active site with thiol reagents. This explains why the essential cysteine residue reacts only with thiol reagents of minor polarity, like p-hydroxymercuribenzoate or phenylmercuric nitrate, but not with Ellman's reagent or jodoacetamide. The pyruvate dehydrogenase component was modified with a nitroxide derivative of p-hydroxymercuribenzoate. The ESR spectrum of the spin-labelled enzyme changed dramatically upon addition of the cofactors thiamine diphosphate and Mg2+. Obviously spin-spin interaction occurs under these conditions caused by a transition of an inactive to an active state of the enzyme. The same conformational change is observed when the allosteric activator AMP instead of the cofactors was bound to the enzyme. The implications of these results for the allosteric regulation of the pyruvate dehydrogenase complex are discussed.  相似文献   

2.
丙酮酸脱羧酶及其应用研究   总被引:3,自引:0,他引:3  
朱碧云  李浩明 《生命科学》2010,(11):1184-1191
丙酮酸脱羧酶(pyruvate decarboxylase,PDC),EC4.1.1.1,是一种胞内酶,是焦磷酸硫胺素(thiamine pyrophosphate,ThPP)依赖性的非氧化酶,是由辅酶ThPP、Mg2+和蛋白质构成的全酶,在辅助因子焦磷酸硫胺素和Mg2+参与下作用于丙酮酸而产生乙醛和CO2。PDC是丙酮酸合成乙醇的关键酶。它广泛存在于酵母菌、霉菌、细菌和植物等多种生物体中,不同来源的丙酮酸脱羧酶的结构、相对分子质量、酶学性质等均不尽相同。该文综述了丙酮酸脱羧酶生物学性质及其应用前景。  相似文献   

3.
Phenylpyruvate decarboxylase (PPDC) of Azospirillum brasilense, involved in the biosynthesis of the plant hormone indole-3-acetic acid and the antimicrobial compound phenylacetic acid, is a thiamine diphosphate-dependent enzyme that catalyses the nonoxidative decarboxylation of indole- and phenylpyruvate. Analogous to yeast pyruvate decarboxylases, PPDC is subject to allosteric substrate activation, showing sigmoidal v versus [S] plots. The present paper reports the crystal structure of this enzyme determined at 1.5 A resolution. The subunit architecture of PPDC is characteristic for other members of the pyruvate oxidase family, with each subunit consisting of three domains with an open alpha/beta topology. An active site loop, bearing the catalytic residues His112 and His113, could not be modelled due to flexibility. The biological tetramer is best described as an asymmetric dimer of dimers. A cysteine residue that has been suggested as the site for regulatory substrate binding in yeast pyruvate decarboxylase is not conserved, requiring a different mechanism for allosteric substrate activation in PPDC. Only minor changes occur in the interactions with the cofactors, thiamine diphosphate and Mg2+, compared to pyruvate decarboxylase. A greater diversity is observed in the substrate binding pocket accounting for the difference in substrate specificity. Moreover, a catalytically important glutamate residue conserved in nearly all decarboxylases is replaced by a leucine in PPDC. The consequences of these differences in terms of the catalytic and regulatory mechanism of PPDC are discussed.  相似文献   

4.
DNA ligase was purified about 2,000-fold from blastulae of sea urchin, Hemicentrotus pulcherrimus, by means of 1 M KCl-extraction, phosphocellulose, DEAE-cellulose, Sepharose CL-6B, and double-stranded DNA cellulose column chromatography. The purified DNA ligase had a molecular weight of 80,000 (determined by Sephadex G-150) and a sedimentation coefficient of 4.1S (by glycerol gradient centrifugation). The purified enzyme required ATP and Mg2+ (or Mn2+) as cofactors for activity, and was inhibited by N-ethylmaleimide. Apparent Km values for ATP, Mg2+, and Mn2+ were 4 microM, 2.7 mM, and 0.3 mM, respectively.  相似文献   

5.
乙酰羟基酸合酶(acetohydroxyacid synthase,AHAS)是生物体内支链氨基酸合成通路中的第一个通用酶,它是目前市售多种除草剂的靶标.AHAS通常由分子质量较大的催化亚基和分子质量较小的调控亚基组成.催化亚基结合催化必需的辅基(FAD、ThDP和Mg2+);调控亚基可以结合终产物(缬氨酸、亮氨酸或异亮氨酸)作为负反馈信号调节全酶的活性.大肠杆菌中AHAS有3个同工酶,每种同工酶都由催化亚基和调控亚基组成.大肠杆菌ilvN基因编码了AHAS同工酶Ⅰ的调控亚基.ilvN基因克隆到pET28a表达载体中,在大肠杆菌BL21(DE3)菌株中得到可溶性的大量表达.表达的蛋白质通过镍离子亲和层析和分子筛层析得到纯化.为了对调控亚基的调节机理有深入了解,对IlvN蛋白进行结晶并对蛋白质与其配体缬氨酸进行共结晶.IlvN蛋白晶体衍射能力为2.6 Å,IlvN与缬氨酸共结晶的晶体衍射能力为3.0 Å.  相似文献   

6.
The crystal structure of Saccharomyces cerevisiae transketolase, a thiamine diphosphate dependent enzyme, has been determined to 2.5 A resolution. The enzyme is a dimer with the active sites located at the interface between the two identical subunits. The cofactor, vitamin B1 derived thiamine diphosphate, is bound at the interface between the two subunits. The enzyme subunit is built up of three domains of the alpha/beta type. The diphosphate moiety of thiamine diphosphate is bound to the enzyme at the carboxyl end of the parallel beta-sheet of the N-terminal domain and interacts with the protein through a Ca2+ ion. The thiazolium ring interacts with residues from both subunits, whereas the pyrimidine ring is buried in a hydrophobic pocket of the enzyme, formed by the loops at the carboxyl end of the beta-sheet in the middle domain in the second subunit. The structure analysis identifies amino acids critical for cofactor binding and provides mechanistic insights into thiamine catalysis.  相似文献   

7.
A geranyl diphosphate synthase (EC 2.5.1.1), which catalyzes the formation of geranyl diphosphate from dimethylallyl diphosphate and isopentenyl diphosphate, was isolated from Vitis vinifera L. cv Muscat de Frontignan cell cultures. Purification of the enzyme was achieved successively by ammonium sulfate precipitation and chromatography on DEAE-Sephacel, hydroxylapatite, Mono Q, Phenyl Superose, Superose 12, and preparative nondenaturing polyacrylamide gels. The enzyme formed only geranyl diphosphate as a product. In all cases, neither neryl diphosphate, the cis isomer, nor farnesyl diphosphate was detected. The enzyme showed a native molecular mass of 68 [plus or minus] 5 kD as determined by gel permeation. On sodium dodecyl sulfate polyacrylamide gels, geranyl diphosphate synthase purified to electrophoretic homogeneity migrated with a molecular mass of 66 [plus or minus] 2 kD. Michaelis constants for isopentenyl diphosphate and dimethylallyl diphosphate were 8.5 and 56.8 [mu]M, respectively. The enzyme required Mn2+ and Mg2+ as cofactors and its activity was enhanced by Triton X-100. Inorganic pyrophosphate, aminophenylethyl diphosphate, and geranyl diphosphate had inhibitory effects on the enzyme.  相似文献   

8.
Kinetic analysis of the combination of rat brain apotransketolase with thiamine diphosphate suggested that the enzyme exists in more than one form. One part of the apoenzyme reacted rapidly with thiamine diphosphate to reconstitute the holoenzyme, but another part appeared to combine only relatively slowly. In addition, an apparently irreversible further change took place, the apoenzyme being converted progressively to a form which apparently could not be activated by thiamine diphosphate. The relative proportions of the three forms i.e., that reacting rapidly, slowly, or not at all with thiamine diphosphate, were a function of the duration and conditions of storage, with the proportion of the apoenzyme form which reacted rapidly with thiamine diphosphate decreasing progressively. The findings reported here provide a possible explanation for problems various workers have encountered in attempting to evaluate Michaelis constants for the reaction of thiamine diphosphate with apotransketolase.  相似文献   

9.
Indolepyruvate decarboxylase, a key enzyme for indole-3-acetic acid biosynthesis, was found in extracts of Enterobacter cloacae. The enzyme catalyzes the decarboxylation of indole-3-pyruvic acid to yield indole-3-acetaldehyde and carbon dioxide. The enzyme was purified to apparent homogeneity from Escherichia coli cells harboring the genetic locus for this enzyme obtained from E. cloacae. The results of gel filtration experiments showed that indolepyruvate decarboxylase is a tetramer with an M(r) of 240,000. In the absence of thiamine pyrophosphate and Mg2+, the active tetramers dissociate into inactive monomers and dimers. However, the addition of thiamine pyrophosphate and Mg2+ to the inactive monomers and dimers results in the formation of active tetramers. These results indicate that the thiamine pyrophosphate-Mg2+ complex functions in the formation of the tetramer, which is the enzymatically active holoenzyme. The enzyme exhibited decarboxylase activity with indole-3-pyruvic acid and pyruvic acid as substrates, but no decarboxylase activity was apparent with L-tryptophan, indole-3-lactic acid, beta-phenylpyruvic acid, oxalic acid, oxaloacetic acid, and acetoacetic acid. The Km values for indole-3-pyruvic acid and pyruvic acid were 15 microM and 2.5 mM, respectively. These results indicate that indole-3-acetic acid biosynthesis in E. cloacae is mediated by indolepyruvate decarboxylase, which has a high specificity and affinity for indole-3-pyruvic acid.  相似文献   

10.
Poly(A) polymerases (PAPs) from HeLa cell cytoplasmic and nuclear fractions were extensively purified by using a combination of fast protein liquid chromatography and standard chromatographic methods. Several forms of the enzyme were identified, two from the nuclear fraction (NE PAPs I and II) and one from the cytoplasmic fraction (S100 PAP). NE PAP I had chromatographic properties similar to those of S100 PAP, and both enzymes displayed higher activities in the presence of Mn2+ than in the presence of Mg2+, whereas NE PAP II was chromatographically distinct and had approximately equal levels of activity in the presence of Mn2+ and Mg2+. Each of the enzymes, when mixed with other nuclear fractions containing cleavage or specificity factors, was able to reconstitute efficient cleavage and polyadenylation of pre-mRNAs containing an AAUAAA sequence element. The PAPs alone, however, showed no preference for precursors containing an intact AAUAAA sequence over a mutated one, providing further evidence that the PAPs have no intrinsic ability to recognize poly(A) addition sites. Two additional properties of the three enzymes suggest that they are related: sedimentation in glycerol density gradients indicated that the native size of each enzyme is approximately 50 to 60 kilodaltons, and antibodies against a rat hepatoma PAP inhibited the ability of each enzyme to function in AAUAAA-dependent polyadenylation.  相似文献   

11.
Benzaldehyde lyase (BAL) catalyzes the reversible cleavage of ( R)-benzoin to benzaldehyde utilizing thiamin diphosphate and Mg (2+) as cofactors. The enzyme is important for the chemoenzymatic synthesis of a wide range of compounds via its carboligation reaction mechanism. In addition to its principal functions, BAL can slowly decarboxylate aromatic amino acids such as benzoylformic acid. It is also intriguing mechanistically due to the paucity of acid-base residues at the active center that can participate in proton transfer steps thought to be necessary for these types of reactions. Here methyl benzoylphosphonate, an excellent electrostatic analogue of benzoylformic acid, is used to probe the mechanism of benzaldehyde lyase. The structure of benzaldehyde lyase in its covalent complex with methyl benzoylphosphonate was determined to 2.49 A (Protein Data Bank entry 3D7K ) and represents the first structure of this enzyme with a compound bound in the active site. No large structural reorganization was detected compared to the complex of the enzyme with thiamin diphosphate. The configuration of the predecarboxylation thiamin-bound intermediate was clarified by the structure. Both spectroscopic and X-ray structural studies are consistent with inhibition resulting from the binding of MBP to the thiamin diphosphate in the active centers. We also delineated the role of His29 (the sole potential acid-base catalyst in the active site other than the highly conserved Glu50) and Trp163 in cofactor activation and catalysis by benzaldehyde lyase.  相似文献   

12.
The first step in branched-chain amino acid biosynthesis is catalyzed by acetohydroxyacid synthase (EC 2.2.1.6). This reaction involves decarboxylation of pyruvate followed by condensation with either an additional pyruvate molecule or with 2-oxobutyrate. The enzyme requires three cofactors, thiamine diphosphate (ThDP), a divalent ion, and flavin adenine dinucleotide (FAD). Escherichia coli contains three active isoenzymes, and acetohydroxyacid synthase I (AHAS I) large subunit is encoded by the ilvB gene. In this study, the ilvB gene from E. coli K-12 was cloned into expression vector pETDuet-1, and was expressed in E. coli BL21 (DH3). The purified protein was identified on a 12% SDS-PAGE gel as a single band with a mass of 65 kDa. The optimum temperature, buffer, and pH for E. coli K-12 AHAS I were 37 °C, potassium phosphate buffer, and 7.5. Km values for E. coli K-12 AHAS I binding to pyruvate, Mg(+2), ThDP, and FAD were 4.15, 1.26, 0.2 mM, and 0.61 μM respectively. Inhibition of purified AHAS I protein was determined with herbicides and new compounds.  相似文献   

13.
Beef heart mitochondrial ATPase (F1) contained 2 mol of ADP and 1 mol of ATP/mol of enzyme, which resisted removal by Sephadex chromatography with dilute buffers or repeated precipitation with ammonium sulfate. The native enzyme also contained two apparently equivalent binding sites, which participated in readily reversible binding of adenyl-5'-ylimidodiphosphate (AMP-P(NH)P), with a Kd of 1.3 mum. The failure of AMP-P(NH)P to compete effectively with ADP for binding sites on F1 may be related to the failure of the analog to inhibit oxidative phosphorylation. Virtually complete removal of all adenine nucleotides from F1 occurred when the enzyme was chromatographed on columns of Sephadex equilibrated with 50% glycerol. No loss in ATPase activity was observed following removal of nucleotides from the enzyme, which was then capable of binding more than 4 mol of ADP and almost 5 mol of AMP-P(NH)P/mol of protein. Subsequent chromatography on columns of Sephadex equilibrated with dilute buffers containing Mg2+ removed only 1.5 mol of ADP and no AMP-P(NH)P from the enzyme. Reconstitution of F1 with ADP or with almost 5 mol of AMP-P(NH)P resulted in preparations that exhibited an undiminished capacity to restore oxidative phosphorylation in F1-deficient submitochondrial particles.  相似文献   

14.
Isopentenyl diphosphate (IPP):dimethylallyl diphosphate isomerase catalyzes the interconversion of the fundamental five-carbon homoallylic and allylic diphosphate building blocks required for biosynthesis of isoprenoid compounds. Two different isomerases have been reported. The type I enzyme, first characterized in the late 1950s, is widely distributed in eukaryota and eubacteria. The type II enzyme was recently discovered in Streptomyces sp. strain CL190. Open reading frame 48 (ORF48) in the archaeon Methanothermobacter thermautotrophicus encodes a putative type II IPP isomerase. A plasmid-encoded copy of the ORF complemented IPP isomerase activity in vivo in Salmonella enterica serovar Typhimurium strain RMC29, which contains chromosomal knockouts in the genes for type I IPP isomerase (idi) and 1-deoxy-D-xylulose 5-phosphate (dxs). The dxs gene was interrupted with a synthetic operon containing the Saccharomyces cerevisiae genes erg8, erg12, and erg19 allowing for the conversion of mevalonic acid to IPP by the mevalonate pathway. His6-tagged M. thermautotrophicus type II IPP isomerase was produced in Escherichia coli and purified by Ni2+ chromatography. The purified protein was characterized by matrix-assisted laser desorption ionization mass spectrometry. The enzyme has optimal activity at 70 degrees C and pH 6.5. NADPH, flavin mononucleotide, and Mg2+ are required cofactors. The steady-state kinetic constants for the archaeal type II IPP isomerase from M. thermautotrophicus are as follows: K(m), 64 microM; specific activity, 0.476 micromol mg(-1) min(-1); and k(cat), 1.6 s(-1).  相似文献   

15.
Thiamine-dependent changes in alcoholic brain were studied using a rat model. Brain thiamine and its mono- and diphosphates were not reduced after 20 weeks of alcohol exposure. However, alcoholism increased both synaptosomal thiamine uptake and thiamine diphosphate synthesis in brain, pointing to mechanisms preserving thiamine diphosphate in the alcoholic brain. In spite of the unchanged level of the coenzyme thiamine diphosphate, activities of the mitochondrial 2-oxoglutarate and pyruvate dehydrogenase complexes decreased in alcoholic brain. The inactivation of pyruvate dehydrogenase complex was caused by its increased phosphorylation. The inactivation of 2-oxoglutarate dehydrogenase complex (OGDHC) correlated with a decrease in free thiols resulting from an elevation of reactive oxygen species. Abstinence from alcohol following exposure to alcohol reactivated OGDHC along with restoration of the free thiol content. However, restoration of enzyme activity occurred before normalization of reactive oxygen species levels. Hence, the redox status of cellular thiols mediates the action of oxidative stress on OGDHC in alcoholic brain. As a result, upon chronic alcohol consumption, physiological mechanisms to counteract the thiamine deficiency and silence pyruvate dehydrogenase are activated in rat brain, whereas OGDHC is inactivated due to impaired antioxidant ability.  相似文献   

16.
An enzyme system catalyzing the synthesis of thiamin triphosphate consists of an enzyme (protein-bound thiamin diphosphate:ATP phosphoryltransferase), thiamin diphosphate bound to a macromolecule as substrate, ATP, Mg2+, and a low molecular weight cofactor. This system was established by combining a purified enzyme and an essentially pure, macromolecule-bound substrate prepared from rat livers. This macromolecule was found to be a protein, and the transphosphorylation of thiamin diphosphate to thiamin triphosphate with ATP and enzyme was shown to occur on this macromolecule which binds thiamin diphosphate. Free thiamin, thiamin monophosphate, thiamin diphosphate, and thiamin triphosphate have no effect on this reaction. Thus, the overall reaction is: thiamin diphosphate-protein + ATP in equilibrium thiamin triphosphate-protein + ADP. So-called thiamin diphosphate:ATP phosphoryltransferase (EC 2.7.4.15) activity was not detected in rat brain or liver. The enzyme was extracted from acetone powder of a crude mitochondrial fraction of bovine brain cortex and purified to homogeneity with a 0.6% yield after DEAE-cellulose chromatography, a first gel filtration, hydroxylapatite chromatography, chromatofocusing, and a second gel filtration. The purified enzyme showed a single protein band on polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. Its molecular weight was estimated to be 103,000. The pH optimum was 7.5, and the Km was determined to be 6 X 10(-4) M for ATP. ATP was found to be the most effective phosphate donor among the nucleoside triphosphates. Amino acid analysis of the purified enzyme revealed an abundance of glutaminyl, glutamyl, and aspartyl residues. Sulfhydryl reagents inhibited the enzyme reaction. Metals such as Fe2+, Zn2+, Pb2+, and Cu2+ strongly inhibited the activity. The enzyme was unstable, and glycerol (20%) and dithiothreitol (1.0 mM) were found to preserve the enzyme activity.  相似文献   

17.
Pig brain thiamine pyrophosphokinase (ATP: thiamine pyrophosphotransferase, EC 2.7.6.2) was purified 260-fold over extracts of brain acetone powder. A direct, radiometric assay was used to follow the purification. By isoelectric focusing, the purified enzyme appeared to have an isoionic point of approx. pH 4.2, but these preparations were still not homogeneous by disc-gel electrophoresis nor by analytical ultracentrifugation. The purified enzyme has a broad pH optimum extending from pH 8.3 to 9.3 in 0.028 M phosphate/glycylglycine buffers. For optimal enzymatic activity, the ratio of magnesium to ATP must be fixed at 0.6, which suggests that for this ATP-pyrophosphoryl transfer reaction, the enzymatically preferred reactant may be Mg(ATP)6-/2. A preliminary study of the kinetics of the reaction reveals that the enzyme may function via a partial "ping-pong" mechanism; on this basis, dissociation constants for ATPt and for thiamine were evaluated. Pyrithiamine, butylthiamine, ethylthiamine, and oxythiamine appeared to be competitive inhibitors with respect to thiamine as the variable substrate, and their inhibitor dissociation constants were calculated. The relatively poor affinity of oxythiamine to the enzyme emphasizes the 4-amino group in the pyrimidine ring as one of the specificity requirements for thiamine pyrophosphokinase. Preliminary values for the apparent equilibrium coefficient of the thiamine pyrophosphokinase-catalyzed reaction, in terms of total species, has been approximated at several initial concentrations of reactants: e.g. K'eq,app = (see article) 9.66 - 10(-3) M; and [Th]initial - 1 - 10(-6) and 2 - 10(-6) M, respectively, where TDP, Th, t and eq represent thiamine diphosphate, thiamine, total concentration and equilibrium concentration, respectively.  相似文献   

18.
A particulate fraction obtained from Alcaligenes faecalis could desaturate palmitic acid to palmitoleic acid. NADPH, ATP, CoA, Fe2+ and Mg2+ were essential cofactors for the reaction. The desaturation showed an absolute requirement for O2. Metal ions like Mn2+, Mo6+ and Cu2+ did not affect the desaturation, while Zn2+ was inhibitory. Sulfhydryl agents such as cysteine, glutathione and beta-mercaptoethanol had no effect, but SH-blocking agents like HgCl2 and p-hydroxymercuribenzoate inhibited the reaction. Azide and cyanide strongly inhibited the reaction while CO had no effect. The presence of a b-type cytochrome in the enzyme preparation was confirmed by the spectral studies on the reaction of enzyme with NADPH. Involvement of b-type cytochrome in the desaturation reaction was demonstrated by the reoxidation of b-type cytochrome initially reduced with NADPH, by the addition of palmitic acid and other cofactors. The pH optimum for the enzyme activity was 7.4. The optimum temperature for enzyme activity was 25 degrees C and maximum activity was obtained at the end of 45 min.  相似文献   

19.
The effect of ascorbic acid on microsomal thiamine diphosphate activity in rat brain was examined. Ascorbic acid at 0.02–0.1 mM increased the thiamine diphosphate activity by 20–600% and produced a significant amount of lipid peroxide, which was measured with thiobarbiturate under the same conditions as the enzyme. A lag period of about 10 min was observed in the process of stimulation of enzyme activity by ascorbic acid. The stimulation of enzyme activity and the lipid peroxidation induced by ascorbic acid were blocked by metal-binding compounds (EDTA, α,α′-dipyridyl, o-phenanthroline) and an antioxidant (N,N′-diphenyl p-phenylenediamine). GSH significantly enhanced the stimulation of enzyme activity and formation of lipid peroxide by 0.02–0.05 mM ascorbic acid. The effect of GSH was due in part to maintenance of the concentration of ascorbic acid in the medium, since GSH could convert dehydroascorbic acid, an oxidized form of ascorbic acid, to ascorbic acid.  相似文献   

20.
A deoxyribonucleic acid (DNA)-dependent DNA polymerase (DNA nucleotidyltransferase) was purified 3,000-fold from the marine Pseuodomonas sp. BAL-31. The molecular weight of the native enzyme was estimated by glycerol gradient sedimentation to be 110,000. The enzyme migrated in sodium dodecyl sulfate-acrylamide gels as a single polypeptide with a molecular weight of 105,000. An absolute requirement for divalent cation was satisfied by Mg2+ or Mn2+ at concentrations of 1 mM. Monovalent cations at concentrations higher than 50 mM showed an inhibitory effect. The polymerase activity was resistant to N-ethylmaleimide and showed a wide pH optimum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号