首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cytochrome c oxidase (cytochrome aa3-type) [EC 1.9.3.1] was purified from Pseudomonas AM 1 to an electrophoretically homogeneous state and some of its properties were studied. The oxidase showed absorption peaks at 428 and 598 nm in the oxidized form, and at 442 and 604 nm in the reduced form. The CO compound of the reduced enzyme showed peaks at 432 and 602 nm. The enzyme molecule was composed of two kinds of subunits with molecular weights of 50,000 and 30,000 and it contained equimolar amounts of heme a and copper atom. The enzyme rapidly oxidized Candida krusei and horse ferrocytochromes c as well as Pseudomonas AM 1 ferrocytochrome c. The reactions catalyzed by the enzyme were strongly inhibited by KCN.  相似文献   

2.
Cytochrome c oxidase (cytochrome aa3-type) [EC 1.9.3.1] was purified from Erythrobacter longus to homogeneity as judged by polyacrylamide gel electrophoresis, and some of its properties were studied. The spectral properties of the oxidase closely resembled those of mitochondrial and other bacterial cytochromes aa3. The enzyme showed absorption peaks at 430 and 598 nm in the oxidized form, and at 444 and 603 nm in the reduced form. The CO compound of the reduced enzyme showed peaks at 432 and 600 nm. The enzyme oxidized eukaryotic ferrocytochromes C more rapidly than E. longus ferrocytochrome c. The reactions catalyzed by the enzyme were 50% inhibited by 0.7 microM KCN. The enzyme contained 1 g atom of copper and 1 g atom of magnesium per mol of heme a. The enzyme molecule seemed to be composed of two identical subunits, each with a molecular weight of 43,000.  相似文献   

3.
An a-type cytochrome was purified from Halobacterium halobium. The cytochrome showed an absorption spectrum similar to that of cytochrome aa3; it showed absorption peaks at 420 and 598 nm in the resting state, peaks at 441 and 602 nm in the reduced form, and its CO compound showed peaks at 430 and 600 nm. The cytochrome molecule was composed of only one kind of polypeptide with the molecular weight of 40,000. The cytochrome contained two heme a molecules in the molecule but no copper. The cytochrome did not show cytochrome c oxidase activity. Midpoint redox potential at pH 8.0 of the cytochrome was determined to be +0.31 V. The amino acid composition of the cytochrome resembled that of subunit I of mitochondrial cytochrome aa3. While two molecules of heme a were reduced with sodium dithionite, only one of two heme a molecules was reduced with ascorbate plus TMPD. The heme a reduced with ascorbate plus TMPD did not react with molecular oxygen or carbon monoxide, while one of two heme a molecules reduced with sodium dithionite was oxidized by molecular oxygen and combined with carbon monoxide.  相似文献   

4.
Cytochrome c oxidase from Thiobacillus ferrooxidans was purified to homogeneity and some of its properties were studied. The oxidase was solubilized with n-octyl-beta-D-thioglucoside (OTG) under acidic conditions (pH 4.0) and purified by one step of ion-exchange chromatography with a CM-Toyopearl column. The absorption spectrum of the oxidase showed peaks at 420 and 595 nm in the oxidized form and at 440 and 595 nm in the reduced form. Its CO compound showed a novel absorption spectrum; a double-peaked gamma band appeared at 429 and 438 nm. The oxidase seemed to have CuA-like copper atom from its ESR and near-infrared spectra. The oxidase molecule consisted of three polypeptides with molecular weights of 53,000, 22,000, and 17,000, respectively, as estimated by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. The molecular weight of the enzyme in a solution containing detergents was estimated to be 169,000 on the basis of the results obtained by gel filtration, while the molecular weight per heme alpha was estimated to be 83,700. The copper content of the oxidase was 1.01 g atom per mol of heme alpha. Therefore, the cytochrome seemed to contain one molecule of heme alpha and one atom of copper in the minimal structural unit consisting of one molecule each of the three subunits, and to occur as a dimer of the unit in the solution. The oxidase oxidized ferrocytochrome c-552 of the bacterium, and the optimal pH of the reaction was 3.5.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The minimal structural unit of cytochrome c oxidase purified from Thiobacillus novellus was composed of one molecule each of two subunits with molecular masses of 32 and 23 kDa, respectively, and the unit had one molecule of heme a and one atom of copper. In the presence of n-octyl-beta-D-thioglucoside, the oxidase existed as the monomeric form of the unit, while it occurred as the dimeric form of the unit in the presence of Tween 20. The monomeric form showed an active cytochrome c oxidizing activity and reduced molecular oxygen to water with ferrocytochrome c. Namely, it has been shown that the bacterial cytochrome c oxidase with one heme a molecule and one copper atom per molecule can catalyze oxidation of ferrocytochrome c with concomitant reduction of molecular oxygen to water.  相似文献   

6.
From Pseudomonas AM 1 grown in a medium deficient in Cu, aa3-type cytochrome c oxidase was purified which contained 2 molecules of haem a and one atom of Cu per molecule. The enzyme showed absorption peaks at 428 and 595 nm in the oxidized form and at 442 and 604 nm in the reduced form, and its CO complex showed peaks at 432 and 602 nm. The enzyme in the oxidized state showed an obscure absorption peak around 800 nm instead of a peak at 820 nm. One mol of the enzyme oxidized maximally 76, 75, and 98 mol of the ferrocytochromes c of Candida krusei, horse and Pseudomonas AM 1 per sec, respectively. These reactions were 50% inhibited by 7 microM KCN. The product of reduction of O2 catalyzed by the enzyme was concluded to be H2O on the basis of the ratio of ferrocytochrome c oxidized to O2 consumed.  相似文献   

7.
The terminal component of the electron transport chain, cytochrome c oxidase (ferrocytochrome c: oxygen oxidoreductase) was purified from Bacillus subtilis W23. The enzyme was solubilized with alkyglucosides and purified to homogeneity by cytochrome c affinity chromatography. The enzyme showed absorption maxima at 414 nm and 598 nm in the oxidized form and at 443 nm and 601 nm in the reduced form. Upon reaction with carbon monoxide of the reduced purified enzyme the absorption maxima shifted to 431 nm and 598 nm. Sodium dodecylsulfate polyacrylamide gel electrophoresis indicated that the purified enzyme is composed out of three subunits with apparent molecular weights of 57 000, 37 000 and 21 000. This is the first report on a bacterial aa3-type oxidase containing three subunits. The functional properties of the enzyme are comparable with those of the other bacterial cytochrome c oxidases. The reaction catalyzed by this oxidase was strongly inhibited by cyanide, azide and monovalent salts. Furthermore a strong dependence of cytochrome c oxidase activity on negatively charged phospholipids was observed. Crossed immunoelectrophoresis experiments strongly indicated a transmembranal localization of cytochrome c oxidase.  相似文献   

8.
A cytochrome cb-type enzyme with cytochrome c-oxidase activity was purified from an aerobic phototrophic bacterium Roseobacter denitrificans. The enzyme was solubilized with sucrose monodecanoate from the membranes of R. denitrificans grown aerobically under light conditions, and purified to electrophoretic homogeneity. Absorption spectra of the purified enzyme showed peaks at 410 nm and 530 nm in the oxidized state, and peaks at 420, 522, and 551 nm and a shoulder at around 560 nm in the reduced state. The enzyme is composed of two subunits with apparent molecular weights on SDS-PAGE of 37,000 and 18,000, the latter positive to heme staining. The protein contains heme c, heme b, and copper in a 1:2:1 stoichiometry. The spectral properties indicated that the heme c and one heme b are in low-spin states, while the other heme b is in a high-spin state. The base sequences of the genes and the deduced amino acid sequences are similar to those of known NorB and NorC subunits of nitric oxide reductases from other bacterial species. The enzyme is similar to nitric oxide reductase, but differs in that it contains copper. Virtually no nitric oxide reductase activity was detected in the purified enzyme.  相似文献   

9.
The aa3-type cytochrome c oxidases purified from Nitrobacter agilis, Thiobacillus novellus, Nitrosomonas europaea, and Pseudomonas AM 1 were compared. They have haem a and copper atom as the prosthertic groups and show alpha and gamma absorption peaks at around 600 and 440 nm, respectively. Each oxidase molecule is composed of two kinds of subunits. The N. agilis oxidase has 2 moles of haem a and 2 atoms of copper in the minimal structural unit composed of one molecule each of the two kinds of subunits, while the T. novellus enzyme seems to contain one molecule of the haem and one atom of the metal in the unit. The N. europaea oxidase shows very low affinity for carbon monoxide. Each oxidase reacts rapidly with some eukaryotic cytochromes c as well as with its native cytochrome c. The cytochrome c oxidase activity of the N. agilis oxidase is 50% inhibited by 1 microM KCN, while 50% inhibition of the activity requires 100 microM KCN in the case of the N. europaea enzyme.  相似文献   

10.
A novel type of cytochrome c oxidase was purified to homogeneity from Pseudomonas aeruginosa which was grown aerobically. The purified oxidase contained two molecules of heme a, two atoms of copper, and one molecule of protoheme per molecule. One of the two heme a molecules in the oxidase reacted with carbon monoxide, so that the enzyme was of baa3-type. The oxidase molecule was composed of three subunits with molecular weights of 38,000, 57,000, and 82,000. Although the oxidase oxidized ferrocytochrome c-550 obtained from the bacterial cells grown aerobically, the oxidizing activity was not high. The "resting form" and the "pulsed form" of the oxidase were observed clearly with this enzyme, and the transition from the resting form to the pulsed form was accompanied by a distinct change of the enzymatic activity. The difference in the kinetics of the catalytic reactions between the two forms is discussed.  相似文献   

11.
A novel aco-type cytochrome-c oxidase was highly purified from the facultative alkalophilic bacterium, Bacillus YN-2000, grown at pH 10. The enzyme contained 9.0 nmol heme a/mg protein. It contained 1.23 mol of protoheme, 1.06 mol of heme c, 2.0 g atoms of copper, 2.5 g atoms of iron, and 1.8 g atoms of magnesium per mol of heme a. The enzyme molecule seemed to be composed of two subunits with Mrs of 52,000 and 41,600. On the basis of these results, the enzyme seemed to contain one molecule each of heme a, protoheme, and heme c per minimal structural unit (Mr, 93,600). Only protoheme among the three kinds of hemes in the enzyme reacted with CO and CN-. Heme a did not react with CO; cytochrome a3 did not seem to be present in the enzyme. The enzyme oxidized 314 mol of horse ferrocytochrome c per heme a per sec at pH 6.5 and the catalytic activity was 50% inhibited by 7.65 microM KCN. The enzymatic activity was found to be optimal at pH 6.0.  相似文献   

12.
The cell membrane of Micrococcus luteus (lysodeikticus) contains a respiratory chain composed of hemes a, b, and c, which contain 171, 457, and 407 pmol/mg protein, respectively. Cytochrome c oxidase, the heme a containing component, has been purified after solubilization in Triton X-100, by gel filtration on Sepharose 4B-CL ammonium sulfate precipitation and ion-exchange and affinity chromatographies on a yeast cytochrome c-Sepharose 4B column. The purified complex, which contains three polypeptides of apparent Mr 47,000, 31,000, and 19,000, has CN-sensitive ferrocytochrome c oxidase activity (Ki = 0.35 microM) and a characteristic absorption spectrum with maxima in the oxidized form at 595 and 426 nm and in the reduced form at 601 and 444 nm. The purified enzyme contains 17.4 nmol/mg protein and its copper content is 23.2 nmol/mg protein. The enzyme was purified about 100-fold with respect to its content in crude membranes. The total heme a yield, also with respect to crude membranes content, was 6.8%.  相似文献   

13.
Catalase was purified to an electrophoretically homogeneous state from the facultative alkalophilic bacterium, Bacillus YN-2000, and some of its properties were studied. Its molecular weight was 282,000 and its molecule was composed of four identical subunits. The enzyme contained two protoheme molecules per tetramer. The enzyme showed an absorption spectrum of typical high-spin ferric heme with a peak at 406 nm in the oxidized form and peaks at 440, 559, and 592 nm in the reduced form. In contrast to the typical catalases, the enzyme was reduced with sodium dithionite, like peroxidases. The enzyme showed an appreciable peroxidase activity in addition to high catalase activity. The amino acid composition of Bacillus YN-2000 catalase was very similar to those of catalase from Neurospora crassa and peroxidase from Halobacterium halobium. The catalase content in the soluble fraction from the bacterium was higher with the cells grown at pH 10 than with the cells grown at lower pHs (pH 7-9).  相似文献   

14.
Abstract A cytochrome aa3 terminal oxidase was isolated from protoplast membrane vesicles of Micrococcus luteus grown under aerobic conditions. The purified complex showed similarities to cytochrome c oxidase (EC 1.9.3.1) of the electron transport chain of mitochondria and many prokaryotes. The enzyme was solubilized by subsequent treatment with the detergents CHAPS and n-dodecyl-β-d-maltoside and purified by ion-exchange chromatography using poly-L-lysine agarose and TMAE-fractogel-650 (S) columns, followed by hydroxyapatite chromatography. The purified complex is composed of two major subunits with apparent molecular masses of 54 and 32 kDa. After purification the isolated enzyme contains 12.1 nmol of heme A (mg protein)−1 and exhibits absorption maxima at 424 nm and 598 nm in the oxidized state and at 442 nm and 599 nm in the reduced state. The CO-difference spectrum shows peaks at 428 and 590 nm which is indicative of heme a 3, furthermore oxygen consumption was found to be sensitive to cyanide.  相似文献   

15.
In stopped-flow experiments in which oxidized cytochrome c oxidase was mixed with ferrocytochrome c in the presence of a range of oxygen concentrations and in the absence and presence of cyanide, a fast phase, reflecting a rapid approach to an equilibrium, was observed. Within this phase, one or two molecules of ferrocytochrome were oxidized per haem group of cytochrome a, depending on the concentration of ferrocytochrome c used. The reasons for this are discussed in terms of a mechanism in which all electrons enter through cytochrome a, which, in turn, is in rapid equilibrium with a second site, identified with 'visible' copper (830 nm-absorbing) Cud (Beinert et al., 1971). The value of the bimolecular rate constant for the reaction between cytochromes c2+ and a3+ was between 10(6) and 10(7) M(-1)-S(-1); some variability from preparation to preparation was observed. At high ferrocytochrome c concentrations, the initial reaction of cytochrome c2+ with cytochrome a3+ could be isolated from the reaction involving the 'visible' copper and the stoicheiometry was found to approach one molecule of cytochrome c2+ oxidized for each molecule of cytochrome a3+ reduced. At low ferrocytochrome c concentrations, however, both sites (i.e. cytochrome a and Cud) were reduced simultaneously and the stoicheiometry of the initial reaction was closer to two molecules of cytochrome c2+ oxidized per molecule of cytochrome a reduced. The bleaching of the 830 nm band lagged behind or was simultaneous with the formation of the 605 nm band and does not depend on the cytochrome c concentration, whereas the extinction at the steady-state does. The time-course of the return of the 830 nm-absorbing species is much faster than the bleaching of the 605 nm-absorbing component, and parallels that of the turnover phase of cytochrome c2+ oxidation. Additions of cyanide to the oxidase preparations had no effect on the observed stoicheiometry or kinetics of the reduction of cytochrome a and 'visible' copper, but inhibited electron transfer to the other two sites, cytochrome a3 and the undetectable copper, Cuu.  相似文献   

16.
Cytochrome oxidase of Thiobacillus ferrooxidans was partially purified. The oxidase preparation had haems a and c, and oxidized ferrocytochrome c-552 of the bacterium. The optimal pH of the reaction was 3.5. The enzyme also oxidized the reduced form of rusticyanin, a copper protein of the bacterium. Our results indicate that the reduction of molecular oxygen by this enzyme may occur in the periplasm.  相似文献   

17.
Cytochrome a-type terminal oxidases derived from Thiobacillus novellus and Nitrobacter agilis have been purified to a homogeneous state as judged from their electrophoretic behavior and their subunit structures studied by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. The T. novellus enzyme is composed of two kinds of subunits of 32,000 and 23,000 daltons and its minimum molecular weight is 55,000 on the basis of heme content and amino acid composition. The N. agilis enzyme also has two kinds of subunits of 40,000 and 27,000 daltons and its minimum molecular weight is 66,000 on the basis of heme content and amino acid composition. Therefore, the molecule of each enzyme is composed of two kinds of subunits which resemble the subunits of the eukaryotic cytochrome oxidase biosynthesized in the mitochondrion at least with respect to molecular weight.  相似文献   

18.
A peroxidase was purified from Halobacterium halobium L-33 to an electrophoretically homogeneous state and some of its properties were studied. The enzyme showed an absorption peak at 406 nm in the oxidized form and peaks at 440, 558, and 591 nm in the reduced form. The difference spectrum, reduced + CO minus reduced, of the enzyme showed peaks at 425, 538, and 577 nm and troughs at 444, 562, and 596 nm. These spectral properties were apparently similar to those of "cytochrome a1" except for the occurrence of the peak at 558 nm in the reduced form. The molecular weight of the enzyme was 110,000 and the enzyme possessed one unit of protoheme in the molecule. The activity to oxidize guaiacol in the presence of H2O2 of the peroxidase was about one-twentieth of that of horseradish peroxidase. The enzyme also showed a catalase-activity one-fourth as active as that of liver catalase. The reactions catalyzed by the enzyme were strongly inhibited by KCN.  相似文献   

19.
There was approximately five times more hemoprotein (amine dehydrogenase) in crude extracts obtained from Pseudomonas putida grown on benzylamine than present in extracts from succinate-grown cells. The difference (reduced minus oxidized) spectrum of the purified enzyme possessed alpha,beta, and gamma bands at 550, 523, and 416 nm, respectively. The difference spectrum of the pyridine hemochrome derivative had absorption maxima at 416, 520, and 550 nm. These results, together with the fact that the heme group was covalently bound to the enzyme, indicated that the amine dehydrogenase from P. putida was a hemoprotein which contained heme c. The heme content was calculated at 2.01 mol/mol of enzyme. The enzyme was composed of two nonidentical subunits, but heme was present solely in the heavier unit. Carbon monoxide did not inhibit enzymatic activity, nor would it combine with the reduced or oxidized form of the enzyme. Amine dehydrogenase activity was inhibited by carbonyl agents with semicarbazide and cuprizone acting noncompetitively, whereas KCN and isoniazid inhibited by competitive and uncompetitive mechanisms, respectively. Spectral observations suggested that inhibition by these reagents was not due to an interaction with the heme moiety.  相似文献   

20.
A highly active nitric oxide reductase was purified from Paracoccus denitrificans ATCC 35512, formerly named Thiosphaera pantotropha, which was anaerobically cultivated in the presence of nitrate. The enzyme was composed of two subunits with molecular masses of 34 and 15 kDa and contained two hemes b and one heme c per molecule. Copper was not found in the enzyme. The spectral properties suggested that one of the two hemes b and heme c were in six-coordinated low-spin states and another heme b was in a five-coordinated high-spin state and reacted with carbon monoxide. The enzyme showed high cytochrome c-nitric oxide oxidoreductase activity and formed nitrous oxide from nitric oxide with the expected stoichiometry when P. denitrificans ATCC 35512 ferrocytochrome c-550 was used as the electron donor. The V max and Km values for nitric oxide were 84 micromol of nitric oxide per min/mg of protein and 0.25 microM, respectively. Furthermore, the enzyme showed ferrocytochrome c-550-O2 oxidoreductase activity with a V max of 8.4 micromol of O2 per min/mg of protein and a Km value of 0.9 mM. Both activities were 50% inhibited by about 0.3 mM KCN.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号