共查询到20条相似文献,搜索用时 0 毫秒
1.
Many high-elevation lakes in designated wilderness are stocked with native and nonnative fish by state fish and game agencies
to provide recreational fishing opportunities. In several areas, this practice has become controversial with state wildlife
managers who support historical recreational use of wilderness, federal wilderness managers who assert that stocking compromises
some of the ecological and social values of wilderness, and different public groups that support one or the other position.
Herein we examine this controversy from the perspective of the 1964 Wilderness Act, its judicial interpretation, the policies
of the federal agencies, and formal agreements between federal and state agencies. Although some state stocking programs restore
native fish populations, other programs may compromise some of the ecological and social values of wilderness areas. Further,
although current federal regulations recognize state authority for fish stocking, judicial interpretation gives federal agencies
the authority for direct involvement in decisions regarding fish stocking in wilderness. Where there are differences of opinion
between state and federal managers, this judicial interpretation strongly points to the need for improved cooperation, communication,
and coordination between state wildlife managers and federal wilderness managers to balance recreational fishing opportunities
and other wildlife management activities with wilderness values.
Received 28 March 2000; Accepted 16 August 2000. 相似文献
2.
Markéta Ondračková Maria Yu Tkachenko Veronika Bartáková Anna Bryjová Michal Janáč Grzegorz Zięba Kacper Pyrzanowski Yuriy Kvach 《Journal of fish biology》2023,102(2):426-442
In Poland, distribution of non-native pumpkinseed Lepomis gibbosus (Centrarchidae) is strictly limited to the Oder river basin, where it was introduced in the early 20th century. Recently, several populations have been found in waterbodies adjacent to the Oder, particularly in its lower reaches. In this study, we compare the genetic relatedness of populations in the Oder basin with other European populations using nuclear (microsatellite) and mitochondrial (partial cytochrome c oxidase subunit I; cox1) markers. Microsatellite analysis indicated that four populations in the lower Oder form a separate cluster, while one in the middle Oder clustered with Danubian populations, from where probably having been introduced. Microsatellite data suggested that the lower Oder populations differ from other non-native European populations, making it impossible to estimate the source of introduction. Nevertheless, analysis of cox1 indicated that Oder pumpkinseeds belong to the same haplotype as the vast majority of European populations. Parasitological examination confirmed the presence of two North American species, the monogenean Onchocleidus dispar and trematode Posthodiplostomum centrarchi, in the lower Oder, both previously unknown in the region. Fifteen other parasite species were acquired, including glochidia of invasive Sinanodonta woodiana. In the middle Oder, parasite infection was more limited. Fish from the Gryfino Canal, considered one of the most invasive populations in Europe, showed the highest parasite abundance and diversity, and the highest somatic condition and growth rate due to warm water released from the Dolna Odra power plant. Our results highlight significant differences in somatic condition and parasite infection in long-established non-native pumpkinseed populations in the same river system, reflecting mainly environmental conditions. 相似文献
3.
Doria R. Gordon Daphne A. Onderdonk Alison M. Fox Randall K. Stocker 《Diversity & distributions》2008,14(2):234-242
The ecological and economic advantages of preventing introduction of species likely to become invasive have increased interest in implementing effective screening tools. We compared the accuracy of the Australian Weed Risk Assessment (WRA) system with that across the six geographies in which it has been tested (New Zealand, Hawaii, Hawaii and Pacific Islands, Czech Republic, Bonin Islands and Florida). Inclusion in four of the tests of a secondary screening tool, developed to reduce the number of species requiring further evaluation, decreased the number of species with that outcome by over 60% on average. Averaging across all tests demonstrated that the WRA system accurately identified major invaders 90%, and non-invaders 70%, of the time. Examined differently, a species of unknown invasive potential is on average likely to be correctly accepted or rejected over 80% of the time for all of these geographies when minor invaders are categorized as invasive. Whereas increasing consistency in definitions and implementation would facilitate understanding of the general application of the WRA system, we believe that this tool functions similarly across islands and continents in tropical and temperate climates and has been sufficiently tested to be adopted as an initial screen for plant species proposed for introduction to a new geography. 相似文献
4.
Local and Landscape Effects of Introduced Trout on Amphibians in Historically Fishless Watersheds 总被引:2,自引:0,他引:2
Introduced trout have often been implicated in the decline of high-mountain amphibian populations, but few studies have attempted to understand whether fish stocking also influences the distribution and abundance of amphibians throughout entire mountain basins, including the remaining fishless lakes. We examined this relationship using the relative abundance of long-toed salamanders (Ambystoma macrodactylum) and Columbia spotted frogs (Rana luteiventris) in fish-containing and fishless lentic sites in basins with varying levels of historic fish stocking. All lentic waters were surveyed for fish and amphibians in 11 high-elevation basins in the Frank Church-River of No Return Wilderness, Idaho, between 1994 and 1999. We found introduced trout (Oncorhynchus clarki, O. mykiss, O. m. aguabonita) in 43 of the 101 sites, representing 90% of the total surface area of lentic water bodies available. At the scale of individual water bodies, after accounting for differences in habitat characteristics between fish-containing and fishless sites, the abundance of amphibians at all life stages was significantly lower in lakes with fish. At the basin scale, densities of overwintering life stages of amphibians were lower in the fishless sites of basins where more habitat was occupied by trout. Our results suggest that many of the remaining fishless habitats are too shallow to provide suitable breeding or overwintering sites for these amphibians and that current trout distributions may eventually result in the extirpation of amphibian populations from entire landscapes, including sites that remain in a fishless condition. Received 28 March 2000;Accepted 2 January 2001. 相似文献
5.
Alycia W. Crall Gregory J. Newman Thomas J. Stohlgren Catherine S. Jarnevich Paul Evangelista Deb Guenther 《Diversity & distributions》2006,12(2):195-204
Many studies have quantified plant invasions by determining patterns of non‐native species establishment (i.e. richness and absolute cover). Until recently, dominance has been largely overlooked as a significant component of invasion. Therefore, we re‐examined a 6‐year data set of 323 0.1 ha plots within 18 vegetation types collected in the Grand Staircase‐Escalante National Monument from 1998 to 2003, including dominance (i.e. relative cover) in our analyses. We specifically focused on the non‐native species Bromus tectorum, a notable dominant annual grass in this system. We found that non‐native species establishment and dominance are both occurring in species‐rich, mesic vegetation types. Therefore, non‐native species dominance may result despite many equally abundant native species rather than a dominant few, and competitive exclusion does not seem to be a primary control on either non‐native species establishment or dominance in this study. Unlike patterns observed for non‐native species establishment, relative non‐native species cover could not be predicted by native species richness across vegetation types (R2 < 0.001; P = 0.45). However, non‐native species richness was found to be positively correlated with relative non‐native species cover and relative B. tectorum cover (R2 = 0.46, P < 0.01; R2 = 0.17, P < 0.01). Analyses within vegetation types revealed predominantly positive relationships among these variables for the correlations that were significant. Regression tree analyses across vegetation types that included additional biotic and abiotic variables were a little better at predicting non‐native species dominance (PRE = 0.49) and B. tectorum dominance (PRE = 0.39) than at predicting establishment. Land managers will need to set priorities for control efforts on the more productive, species‐rich vegetation types that appear to be susceptible to both components of invasion. 相似文献
6.
Milan Chytrý Petr Pyek Jan Wild Joan Pino Lindsay C. Maskell Montserrat Vilà 《Diversity & distributions》2009,15(1):98-107
Aim Recent studies using vegetation plots have demonstrated that habitat type is a good predictor of the level of plant invasion, expressed as the proportion of alien to all species. At local scale, habitat types explain the level of invasion much better than alien propagule pressure. Moreover, it has been shown that patterns of habitat invasion are consistent among European regions with contrasting climates, biogeography, history and socioeconomic background. Here we use these findings as a basis for mapping the level of plant invasion in Europe. Location European Union and some adjacent countries. Methods We used 52,480 vegetation plots from Catalonia (NE Spain), Czech Republic and Great Britain to quantify the levels of invasion by neophytes (alien plant species introduced after ad 1500) in 33 habitat types. Then we estimated the proportion of each of these habitat types in CORINE land‐cover classes and calculated the level of invasion for each class. We projected the levels of invasion on the CORINE land‐cover map of Europe, extrapolating Catalonian data to the Mediterranean bioregion, Czech data to the Continental bioregion, British data to the British Isles and combined Czech–British data to the Atlantic and Boreal bioregions. Results The highest levels of invasion were predicted for agricultural, urban and industrial land‐cover classes, low levels for natural and semi‐natural grasslands and most woodlands, and the lowest levels for sclerophyllous vegetation, heathlands and peatlands. The resulting map of the level of invasion reflected the distribution of these land‐cover classes across Europe. Main conclusions High level of invasion is predicted in lowland areas of the temperate zone of western and central Europe and low level in the boreal zone and mountain regions across the continent. Low level of invasion is also predicted in the Mediterranean region except its coastline, river corridors and areas with irrigated agricultural land. 相似文献
7.
P. Berrebi 《Journal of fish biology》2015,86(1):60-73
The brown trout Salmo trutta is represented by three lineages in Corsica: (1) an ancestral Corsican lineage, (2) a Mediterranean lineage and (3) a recently stocked domestic Atlantic S. trutta lineage (all are interfertile); the main focus of this study was the ancestral Corsican S. trutta, but the other lineages were also considered. A total of 38 samples captured between 1993 and 1998 were analysed, with nearly 1000 individuals considered overall. The Corsican ancestral lineage (Adriatic lineage according to the mitochondrial DNA control region nomenclature, AD) mostly inhabits streams in the southern half of the island; the Mediterranean lineage (ME) is present more in the north, especially in Golu River, but most populations are an admixture of these lineages and the domestic Atlantic S. trutta (AT). Locations where the Corsican ancestral S. trutta is dominant are now protected against stocking and sometimes fishing is also forbidden. The presence of the Corsican S. trutta is unique in France. 相似文献
8.
Michael P. Nobis Jochen A. G. Jaeger Niklaus E. Zimmermann 《Diversity & distributions》2009,15(6):928-939
Aim Land use and climate are two major components of global environmental change but our understanding of their simultaneous and interactive effects upon biodiversity is still limited. Here, we investigated the relationship between the species richness of neophytes, i.e. non‐native vascular plants introduced after 1500 AD, and environmental covariates to draw implications for future dynamics under land‐use and climate change. Location Switzerland, Central Europe. Methods The distribution of vascular plants was derived from a systematic national grid of 1 km2 quadrates (n = 456; Swiss Biodiversity Monitoring programme) including 1761 species, 122 of which were neophytes. Generalized linear models (GLMs) were used to correlate neophyte species richness with environmental covariates. The impact of land‐use and climate change was thereafter evaluated by projections for the years 2020 and 2050 using scenarios of moderate and strong changes for climate warming (IPCC) and urban sprawl (NRP 54). Results Mean annual temperature and the amount of urban areas explained neophyte species richness best, with a high predictive power of the corresponding model (cross‐validated D2 = 0.816). Climate warming had a stronger impact on the potential increase in the mean neophyte species richness (up to 191% increase by 2050) than ongoing urban sprawl (up to 10% increase) independently from variable interactions and model extrapolations to non‐analogue environments. Main conclusions In contrast to other vascular plants, the prediction of neophyte species richness at the landscape scale in Switzerland requires few variables only, and regions of highest species richness of the two groups do not coincide. The neophyte species richness is basically driven by climatic (temperature) conditions, and urban areas additionally modulate small‐scale differences upon this coarse‐scale pattern. According to the projections climate warming will contribute to the future increase in neophyte species richness much more than ongoing urbanization, but the gain in new neophyte species will be highest in urban regions. 相似文献
9.
Aim Biotic homogenization is a growing phenomenon and has recently attracted much attention. Here, we analyse a large dataset of native and alien plants in North America to examine whether biotic homogenization is related to several ecological and biological attributes. Location North America (north of Mexico). Methods We assembled species lists of native and alien vascular plants for each of the 64 state‐ and province‐level geographical units in North America. Each alien species was characterized with respect to habitat (wetland versus upland), invasiveness (invasive versus non‐invasive), life cycle (annual/biennial versus perennial) and habit (herbaceous versus woody). We calculated a Jaccard similarity index separately for native, for alien, and for native and alien species. We used the average of Jaccard dissimilarity index (1 ? Jaccard index) of all paired localities as a measure of the mean beta diversity of alien species for each set of localities examined in an analysis. We used a homogenization index to quantify the effect of homogenization or differentiation. Results We found that (1) wetland, invasive, annual/biennial and herbaceous alien plants markedly homogenized the state‐level floras whereas non‐invasive and woody alien plants tended to differentiate the floras; (2) beta diversity was significantly lower for wetland, invasive, annual/biennial and herbaceous alien plants than their counterparts (i.e. upland, non‐invasive, perennial and woody alien plants, respectively); and (3) upland and perennial alien plants each played an equal role in homogenizing and differentiating the state‐level floras. Main conclusions Our study shows that biotic homogenization is clearly related to habitat type (e.g. wetland versus uplands), species invasiveness and life‐history traits such as life cycle (e.g. annual/biennial and herbaceous versus woody species) at the spatial scale examined. These observations help to understand the process of biotic homogenization resulting from alien vascular plants in North America. 相似文献
10.
11.
Positive interactions among non‐native species could greatly exacerbate the problem of invasions, but are poorly studied and our knowledge of their occurrence is mostly limited to plant‐pollinator and dispersal interactions. We found that invasion of bullfrogs is facilitated by the presence of co‐evolved non‐native fish, which increase tadpole survival by reducing predatory macroinvertebrate densities. Native dragonfly nymphs in Oregon, USA caused zero survival of bullfrog tadpoles in a replicated field experiment unless a non‐native sunfish was present to reduce dragonfly density. This pattern was also evident in pond surveys where the best predictors of bullfrog abundance were the presence of non‐native fish and bathymetry. This is the first experimental evidence of facilitation between two non‐native vertebrates and supports the invasional meltdown hypothesis. Such positive interactions among non‐native species have the potential to disrupt ecosystems by amplifying invasions, and our study shows they can occur via indirect mechanisms. 相似文献
12.
Aim Increasing threats to freshwater biodiversity are rapidly changing the distinctiveness of regional species pools and local assemblages. Biotic homogenization/differentiation processes are threatening the integrity and persistence of native biodiversity patterns at a range of spatial scales and pose a challenge for effective conservation planning. Here, we evaluate the extent and determinants of fine‐scale alteration in native freshwater fish assemblages among stream reaches throughout a large river basin and consider the implications of these changes for the long‐term conservation of native fishes. Location Guadiana River basin (South‐Western Iberian Peninsula). Methods We quantified the magnitude of change in compositional similarity between observed and reference assemblages and its potential effect on natural patterns of compositional distinctiveness. Reference assemblages were defined as the native species expected to occur naturally (in absence of anthropogenic alterations) and were reconstructed using a multivariate adaptive regression splines predictive model. We also evaluated the role of habitat degradation and introduced species as determinants of biotic homogenization/differentiation. Results We found a significant trend towards homogenization for native fish assemblages. Changes in native fish distributions led to the loss of distinctiveness patterns along natural environmental gradients. Introduced species were the most important factor explaining the homogenization process. Homogenization of native assemblages was stronger in areas close to reservoirs and in lowland reaches where introduced species were more abundant. Main conclusions The implementation of efficient conservation for the maintenance of native fish diversity is seriously threatened by the homogenization processes. The identification of priority areas for conservation is hindered by the fact that the most diverse communities are vanishing, which would require the selection of broader areas to adequately protect all the species. Given the principal role that introduced species play in the homogenization process and their relation with reservoirs, special attention must be paid to mitigating or preventing these threats. 相似文献
13.
Xing Chen;Thomas G. Evans;Jonathan M. Jeschke;Sonja C. Jähnig;Fengzhi He; 《Global Change Biology》2024,30(4):e17289
Freshwater megafish species, such as sturgeons, salmonids, carps, and catfishes, have a maximum reported weight ≥30 kg. Due to their charisma and economic value, they have been widely introduced outside of their native ranges. Here, we provide a comprehensive overview of the introduction of freshwater megafish and an assessment of their environmental impacts. Of the 134 extant freshwater megafish species, 46% have been introduced to new environments, and of these, 69% have established self-sustaining alien populations. These introductions affect 59% of the world's main basins, with the USA and western Europe being particular hotspots of megafish introductions. The common carp (Cyprinus carpio) is the most widely introduced species. Using the Environmental Impact Classification for Alien Taxa (EICAT and EICAT+) frameworks, we assessed the severity and type of negative and positive impacts posed by alien megafish on native species. Alien megafish caused negative impacts through nine different mechanisms, with predation being the most frequently reported mechanism, followed by herbivory and competition. Moreover, 58% of the alien megafish species with sufficient data to evaluate the severity of their impacts caused declining populations of native species, or worse, extirpations of native species populations. The positive environmental impacts of alien megafish were far less frequently documented. They include biotic interactions that benefit native species, and the provision of trophic resources or habitats. Widely introduced or extensively studied species are more likely to have documented severe impacts on native species. There is a clear trade-off between the economic benefits associated with megafish introductions and the severe adverse impacts they have on native biodiversity. Our study highlights the need for comprehensive risk assessments to evaluate the potential environmental impacts of megafish. More research and long-term monitoring schemes are required to inform management actions to protect biodiversity, particularly in the Global South. 相似文献
14.
Paul H. Evangelista Sunil Kumar Thomas J. Stohlgren Catherine S. Jarnevich Alycia W. Crall John B. Norman III David T. Barnett 《Diversity & distributions》2008,14(5):808-817
Predicting suitable habitat and the potential distribution of invasive species is a high priority for resource managers and systems ecologists. Most models are designed to identify habitat characteristics that define the ecological niche of a species with little consideration to individual species' traits. We tested five commonly used modelling methods on two invasive plant species, the habitat generalist Bromus tectorum and habitat specialist Tamarix chinensis , to compare model performances, evaluate predictability, and relate results to distribution traits associated with each species. Most of the tested models performed similarly for each species; however, the generalist species proved to be more difficult to predict than the specialist species. The highest area under the receiver-operating characteristic curve values with independent validation data sets of B. tectorum and T. chinensis was 0.503 and 0.885, respectively. Similarly, a confusion matrix for B. tectorum had the highest overall accuracy of 55%, while the overall accuracy for T. chinensis was 85%. Models for the generalist species had varying performances, poor evaluations, and inconsistent results. This may be a result of a generalist's capability to persist in a wide range of environmental conditions that are not easily defined by the data, independent variables or model design. Models for the specialist species had consistently strong performances, high evaluations, and similar results among different model applications. This is likely a consequence of the specialist's requirement for explicit environmental resources and ecological barriers that are easily defined by predictive models. Although defining new invaders as generalist or specialist species can be challenging, model performances and evaluations may provide valuable information on a species' potential invasiveness. 相似文献
15.
Catherine S. Jarnevich Thomas J. Stohlgren David Barnett John Kartesz 《Diversity & distributions》2006,12(5):511-520
Detailed knowledge of patterns of native species richness, an important component of biodiversity, and non-native species invasions is often lacking even though this knowledge is essential to conservation efforts. However, we cannot afford to wait for complete information on the distribution and abundance of native and harmful invasive species. Using information from counties well surveyed for plants across the USA, we developed models to fill data gaps in poorly surveyed areas by estimating the density (number of species km−2 ) of native and non-native plant species. Here, we show that native plant species density is non-random, predictable, and is the best predictor of non-native plant species density. We found that eastern agricultural sites and coastal areas are among the most invaded in terms of non-native plant species densities, and that the central USA appears to have the greatest ratio of non-native to native species. These large-scale models could also be applied to smaller spatial scales or other taxa to set priorities for conservation and invasion mitigation, prevention, and control efforts. 相似文献
16.
David S. Pilliod Blake R. Hossack Peter F. Bahls Evelyn L. Bull Paul Stephen Corn Grant Hokit Bryce A. Maxell James C. Munger Aimee Wyrick 《Diversity & distributions》2010,16(6):959-974
Aim The introduction of non‐native species into aquatic environments has been linked with local extinctions and altered distributions of native species. We investigated the effect of non‐native salmonids on the occupancy of two native amphibians, the long‐toed salamander (Ambystoma macrodactylum) and Columbia spotted frog (Rana luteiventris), across three spatial scales: water bodies, small catchments and large catchments. Location Mountain lakes at ≥ 1500 m elevation were surveyed across the northern Rocky Mountains, USA. Methods We surveyed 2267 water bodies for amphibian occupancy (based on evidence of reproduction) and fish presence between 1986 and 2002 and modelled the probability of amphibian occupancy at each spatial scale in relation to habitat availability and quality and fish presence. Results After accounting for habitat features, we estimated that A. macrodactylum was 2.3 times more likely to breed in fishless water bodies than in water bodies with fish. Ambystoma macrodactylum also was more likely to occupy small catchments where none of the water bodies contained fish than in catchments where at least one water body contained fish. However, the probability of salamander occupancy in small catchments was also influenced by habitat availability (i.e. the number of water bodies within a catchment) and suitability of remaining fishless water bodies. We found no relationship between fish presence and salamander occupancy at the large‐catchment scale, probably because of increased habitat availability. In contrast to A. macrodactylum, we found no relationship between fish presence and R. luteiventris occupancy at any scale. Main conclusions Our results suggest that the negative effects of non‐native salmonids can extend beyond the boundaries of individual water bodies and increase A. macrodactylum extinction risk at landscape scales. We suspect that niche overlap between non‐native fish and A. macrodactylum at higher elevations in the northern Rocky Mountains may lead to extinction in catchments with limited suitable habitat. 相似文献
17.
Heiko Hinneberg Thomas Bamann Julia C. Geue Katharina Foerster Henri A. Thomassen Alexander Kupfer 《Conservation Science and Practice》2022,4(8):e12752
Introductions of non-native species can pose serious threats to native populations and ecosystems. However, the impact of introduced species depends on intrinsic characteristics, local habitat conditions, and the interaction with native species. Case-specific management strategies may therefore be required. Using phenotypic characters and molecular markers for species identification, we provide insights into an artificial hybrid zone between two closely related newt species, the native Triturus cristatus and the introduced T. carnifex, near Tübingen, south-west Germany. Our analyses revealed a central Italian origin of the non-native T. carnifex and suggested their sustained presence in the study area for at least six years, probably much longer. In some ponds, extensive hybridization with native T. cristatus was detected. However, we found no evidence for a displacement of the native species by its non-native congener. The gradient from pure T. carnifex to pure T. cristatus currently extends over 7 km. A future expansion of the hybrid zone and swamping of a neighboring T. cristatus meta-population appears unlikely under the local configuration of breeding ponds. We propose to monitor the hybrid zone using genetic markers for evaluating the direction and speed of gene flow, complemented by capture-recapture studies to reveal trends in species-specific population sizes. To protect the native T. cristatus, we recommend practitioners to maintain their habitats, for example, by preventing illegal release of gold fish, by counteracting early drying of the breeding ponds, and by regularly cutting back trees and shrubs along the shoreline. 相似文献
18.
Aim Rainbow trout (Oncorhynchus mykiss, Walbaum 1792) is an exotic salmonid invading eastern Canada. First introduced for recreational fishing in Ontario, Quebec and the Maritime provinces, the species is now spreading in salmon rivers located in Eastern Quebec, where its stocking is strictly forbidden. Newly established populations have been found along the St Lawrence Estuary. To effectively mitigate the potential threat the invasion poses to native salmonids, we aimed to document the invasion’s origin and progress in the St Lawrence River and estuary. We first determined genetic origins among several potential wild and cultured source populations, found at the upstream and downstream extremities of the St Lawrence system. Thereafter, we studied the range expansion, predicting that the invasion process conforms to a one‐dimensional stepping‐stone dispersion model. Location Recently invaded salmon rivers that flow into the Estuary and Gulf of St Lawrence in Quebec, and watercourses supporting naturalized populations (Lake Ontario, Lake Memphremagog and Prince‐Edward‐Island rivers). Methods Rainbow trout from 10 potential source populations (wild and domestic strains) and 243 specimens captured in salmon rivers were genotyped at 10 microsatellite loci. Genetic origins of specimens and relationship between colonies were assessed using assignment analyses based on individuals and clusters. Results Invasion of rainbow trout in Eastern Quebec is directed downstream, driven by migrants from upstream naturalized populations, found in the Ganaraska River (Lake Ontario), and, to a lesser extent, in Lake Memphremagog. Populations from the Maritime provinces and domestic strains do not contribute to the colonisation process. A recently established population in Charlevoix (Eastern Quebec) supplies other downstream colonies. Main conclusions Rainbow trout is spreading from Lake Ontario downstream to Eastern Quebec using the St Lawrence River system as an invasion corridor. Range expansion in a downstream direction is driven by a more complex stepping‐stone dispersion model than predicted. Management options to protect native salmonids include reducing the effective size of the Charlevoix population, impeding reproduction in recently colonized rivers, halting the upstream migration of anadromous spawners, and curtailing stocking events inside the stocking area. 相似文献
19.
Edwin P. Pister 《Ecosystems》2001,4(4):279-286
The stocking of trout in wilderness lakes of the western United States began in the 1800s. This practice was followed for nearly a century with the singular goal of creating and enhancing sport fishing and without any consideration of its ecological ramifications. Following the advent of a new environmental awareness in the 1960s, and thanks to new research that revealed negative impacts on the biota attributable to introduced fishes, traditional fish-stocking practices came under question first at federal land management agencies and later at their counterparts within the states. The highly utilitarian ethic that drove resource management until well into the 1960s was gradually replaced by one that acknowledges the value of all life forms and their ecological complexity, a view currently supported even by many anglers. The necessity for wilderness fish stocking is now the subject of widespread debate, especially in view of changing social values and priorities. Options for future generations cannot be preserved if introductions continue to erode the biodiversity of mountain lake ecosystems. Received 28 March 2000; accepted 30 May 2000. 相似文献
20.
Investigations on non-native organisms have become an important task of modern ecology throughout the world. The major objective of this study was to identify the characteristics and habitats of non-native plant species in Korean cities in order to derive conclusions on the success of biological invaders. The city of Chonju in southwest Korea was selected as a representative investigation area. All wild-growing vascular plants were recorded in the city on a total of 106 sample plots located in representative land-use types and within various distances of the city center. Frequency, origin, life forms, and plant families of non-native species were analyzed. Additionally, the percentage of non-native species along a gradient from the city center to the outskirts was investigated. We found that most common non-native species of the flora of Chonju are: (i) native to the Northern hemisphere; (ii) belong to the annuals; (iii) belong to the plant families of the Compositae or Leguminosae; and (iv) they perform best on sites that are continuously disturbed by human impact. In conclusion, non-native species play a significant role in enhancing biological diversity in urban areas. 相似文献