首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Abstract— Nerve growth factor (NGF) plays an important role in the development of the nervous system, and there is considerable interest in understanding the molecular mechanisms underlying its effects on neuronal differentiation. To determine if the activity of proteins of the ras gene family is necessary for the NGF-mediated induction of sodium channel expression in pheochromocytoma (PC12) cells, sodium channel expression was analyzed in PC12 sublines stably overexpressing the dominant inhibitory mutant c-Ha-ras(Asn-17). Northern blot analysis, RNase protection assays, and whole-cell patch clamp recordings indicate that the NGF-mediated increase in type II sodium channel mRNA and sodium current density can occur independent of ras activity and by doing so provide strong evidence for the importance of ras-independent mechanisms in NGF-mediated neuronal differentiation.  相似文献   

2.
RNA blot analysis and non-isotopic in situ hybridization cytochemistry were used to study the expression of the mRNA for the glial sodium channel NaG, belonging to Na+ channel subfamily 2, in rat dorsal root ganglia (DRG). mRNA hybridizing at high stringency with an antisense riboprobe against the NaG sequence was observed in both Schwann cells and spinal sensory neurons in situ within DRG, but was expressed at higher levels in the latter. In contrast, hybridization was not detectable in neurons within hippocampus, cerebellum and spinal cord. The expression of the mRNA hybridizing with the NaG probe appears to be developmentally regulated in both Schwann cells and DRG neurons, with levels increasing as development proceeds. Thus, in addition to the mRNAs for types I and II/IIA α-subunits and β1-subunit in DRG neurons and types II/IIA and III α-subunits and β1-subunit in Schwann cells, the mRNA for an additional sodium channel belonging to subfamily 2 is expressed in these cells in situ. Special issue dedicated to Dr. Marion E. Smith.  相似文献   

3.
4.
The mechanisms governing neuronal differentiation, including the signals underlying the induction of voltage-dependent sodium (Na+) channel expression by neurotrophic factors, which occurs independent of Ras activity, are not well understood. Therefore, Na+ channel induction was analyzed in sublines of PC12 cells stably expressing platelet-derived growth factor (PDGF) beta receptors with mutations that eliminate activation of specific signalling molecules. Mutations eliminating activation of phosphatidylinositol 3-kinase (PI3K), phospholipase C gamma (PLC gamma), the GTPase-activating protein (GAP), and Syp phosphatase failed to diminish the induction of type II Na+ channel alpha-subunit mRNA and functional Na+ channel expression by PDGF, as determined by RNase protection assays and whole-cell patch clamp recording. However, mutation of juxtamembrane tyrosines that bind members of the Src family of kinases upon receptor activation inhibited the induction of functional Na+ channels while leaving the induction of type II alpha-subunit mRNA intact. Mutation of juxtamembrane tyrosines in combination with mutations eliminating activation of PI3K, PLC gamma, GAP, and Syp abolished the induction of type II alpha-subunit mRNA, suggesting that at least partially redundant signaling mechanisms mediate this induction. The differential effects of the receptor mutations on Na+ channel expression did not reflect global changes in receptor signaling capabilities, as in all of the mutant receptors analyzed, the induction of c-fos and transin mRNAs still occurred. The results reveal an important role for the Src family in the induction of Na+ channel expression and highlight the multiplicity and combinatorial nature of the signaling mechanisms governing neuronal differentiation.  相似文献   

5.
6.
In contrast to conventional signaling by growth factors that requires their continual presence, a 1-min pulse of nerve growth factor (NGF) is sufficient to induce electrical excitability in PC12 cells due to induction of the peripheral nerve type 1 (PN1) sodium channel gene. We have investigated the mechanism for this triggered signaling pathway by NGF in PC12 cells. Mutation of TrkA at key autophosphorylation sites indicates an essential role for the phospholipase C-gamma (PLC-gamma) binding site, but not the Shc binding site, for NGF-triggered induction of PN1. In concordance with results with Trk mutants, drug-mediated inhibition of PLC-gamma activity also blocks PN1 induction by NGF. Examination of the kinetics of TrkA autophosphorylation indicates that triggered signaling does not result from sustained activation and autophosphorylation of the TrkA receptor kinase, whose phosphorylation state declines rapidly after NGF removal. Rather, TrkA triggers an unexpectedly prolonged phosphorylation and activation of PLC-gamma signaling that is sustained for up to 2 h. Prevention of the elevation of intracellular Ca2+ levels using BAPTA-AM results in a block of PN1 induction by NGF. Sustained signaling by PLC-gamma provides a means for differential neuronal gene induction after transient exposure to NGF.  相似文献   

7.
In previous studies, we have demonstrated that damaged neurons within a boundary area around necrosis fall into delayed cell death due to the cytotoxic effect of microglial nitric oxide (NO), and are finally eliminated by activated microglia. In contrast, neurons in a narrow surrounding region nearby this boundary area remain alive even though they may encounter cytotoxic NO. To investigate the mechanism by which neurons tolerate this oxidative stress, we examined the in vitro and in vivo expression levels of superoxide dismutase (SOD) under pathological conditions. Results from our in situ hybridization and immunohistochemical studies showed up-regulation of Cu/Zn-SOD only in neurons outside the boundary area, whereas up-regulation of Mn-SOD was detected in both neurons and glial cells in the same region. In vitro experiments using rat PC12 pheochromocytoma and C6 glioma cell lines showed that induction of both Cu/Zn- and Mn-SOD mRNA could only be detected in PC12 cells after treatment with NO donors, while a slight induction of Mn-SOD mRNA alone could be seen in C6 glioma cells. The mechanism of resistance toward oxidative stress therefore appears to be quite different between neuronal and glial cells. It is assumed that these two types of SOD might play a critical role in protecting neurons from NO cytotoxicity in vivo, and the inability of SOD induction in damaged neurons seems to cause their selective elimination after focal brain injury.  相似文献   

8.
9.
The expression of 34 transmitter-related genes has been examined in the cholinergic neurones of rat striatal brain slices, with the aim of correlating gene expression with functional activity. The mRNAs encoding types I, II/IIA, and III alpha subunits of the voltage-sensitive sodium channels were detected, suggesting the presence of these three types of sodium channel. Similarly, mRNAs encoding all four alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA)-type glutamate receptor subunits and the NR1 and NR2A, 2B, and 2D subunits of the NMDA-type glutamate receptors were detected, suggesting that various combinations of these subunits mediate the cellular response to synaptically released glutamate. Other mRNAs detected included the NK1 and NK3 tachykinin receptors, all four known adenosine receptors, and the GABA-synthesising enzyme glutamate decarboxylase. Subpopulations of these cholinergic neurones have been identified on the basis of the expression of the NK3 tachykinin receptor in 5% and the trkC neurotrophin receptor in 12% of the cells investigated.  相似文献   

10.
Neural-specific expression of a sodium channel mini-gene has been shown to be mediated by a 28 bp silencer element, RE1, located in the 5' flanking region of the gene. This element is active exclusively in cell lines that do not express the endogenous brain type II sodium channel gene, including fibroblast, skeletal muscle, and certain neuronal cell lines. All of these non-type II expressing cells contain RE1-binding complexes. On the basis of mutational analysis and in vivo "repressor trap" experiments, we propose that cell-specific RE1-binding proteins are responsible, at least in part, for restricting expression of the type II sodium channel gene to specific neurons in the vertebrate nervous system.  相似文献   

11.
12.
Adult mesenchymal stem cells (MSCs) are currently being investigated as an alternative to chondrocytes for repairing cartilage defects. As several collagen types participate in the formation of cartilage-specific extracellular matrix, we have investigated their gene expression levels during MSC chondrogenic induction. Bone marrow MSCs were cultured in pellet in the presence of BMP-2 and TGF-β3 for 24 days. After addition of FGF-2, at the fourth passage during MSC expansion, there was an enhancing effect on specific cartilage gene expression when compared to that without FGF-2 at day 12 in pellet culture. A switch in expression from the pre-chondrogenic type IIA form to the cartilage-specific type IIB form of the collagen type II gene was observed at day 24. A short-term addition of FGF-2 followed by a treatment with BMP-2/TGF-β3 appears sufficient to accelerate chondrogenesis with a particular effect on the main cartilage collagens.  相似文献   

13.
To date, the functions of most neural intermediate filament (IF) proteins have remained elusive. Peripherin is a type III intermediate filament (IF) protein that is expressed in developing and in differentiated neurons of the peripheral and enteric nervous systems. It is also the major IF protein expressed in PC12 cells, a widely used model for studies of peripheral neurons. Dramatic increases in peripherin expression have been shown to coincide with the initiation and outgrowth of axons during development and regeneration, suggesting that peripherin plays an important role in axon formation. Recently, small interfering RNAs (siRNA) have provided efficient ways to deplete specific proteins within mammalian cells. In this study, it has been found that peripherin-siRNA depletes peripherin and inhibits the initiation, extension, and maintenance of neurites in PC12 cells. Furthermore, the results of these experiments demonstrate that peripherin IF are critical determinants of the overall shape and architecture of neurons.  相似文献   

14.
The synthesis and expression of voltage-dependent sodium (Na) channels is a crucial aspect of neuronal differentiation because of the central role these ion channels play in the generation of action potentials and the transfer of information in the nervous system. We have used rat pheochromocytoma (PC12) cell lines deficient in cAMP-dependent protein kinase (PKA) activity to examine the role of PKA in the induction of Na channel expression by nerve growth factor (NGF) and basic FGF (bFGF). In the parental PC12 cell line both NGF and bFGF elicit an increase in the density of functional Na channels, as determined from whole-cell patch clamp recordings. This increase does not occur in two PC12 cell lines deficient in both isozymes of PKA (PKAI and PKAII), and is strongly reduced in a third line deficient in PKAII, but not PKAI. Despite the inability of the neurotrophic factors to induce functional Na channel expression in the PKA-deficient cells, Northern blot hybridization studies and saxitoxin binding assays of intact cells indicate that NGF and bFGF are still capable of eliciting increases in both Na channel mRNA and Na channel protein in the membrane. Thus, PKA activity appears to be necessary at a posttranslational step in the synthesis and expression of functional Na channels, and thereby plays an important role in determining neuronal excitability.  相似文献   

15.
In previous studies, we have demonstrated that damaged neurons within a boundary area around necrosis fall into delayed cell death due to the cytotoxic effect of microglial nitric oxide (NO), and are finally eliminated by activated microglia. In contrast, neurons in a narrow surrounding region nearby this boundary area remain alive even though they may encounter cytotoxic NO. To investigate the mechanism by which neurons tolerate this oxidative stress, we examined the in vitro and in vivo expression levels of superoxide dismutase (SOD) under pathological conditions. Results from our in situ hybridization and immunohistochemical studies showed up‐regulation of Cu/Zn‐SOD only in neurons outside the boundary area, whereas up‐regulation of Mn‐SOD was detected in both neurons and glial cells in the same region. In vitro experiments using rat PC12 pheochromocytoma and C6 glioma cell lines showed that induction of both Cu/Zn‐ and Mn‐SOD mRNA could only be detected in PC12 cells after treatment with NO donors, while a slight induction of Mn‐SOD mRNA alone could be seen in C6 glioma cells. The mechanism of resistance toward oxidative stress therefore appears to be quite different between neuronal and glial cells. It is assumed that these two types of SOD might play a critical role in protecting neurons from NO cytotoxicity in vivo, and the inability of SOD induction in damaged neurons seems to cause their selective elimination after focal brain injury. © 2000 John Wiley & Sons, Inc. J Neurobiol 45: 39–46, 2000  相似文献   

16.
Auxiliary beta1 subunits of voltage-gated sodium channels have been shown to be cell adhesion molecules of the Ig superfamily. Co-expression of alpha and beta1 subunits modulates channel gating as well as plasma membrane expression levels. We have cloned, sequenced, and expressed a splice variant of beta1, termed beta1A, that results from an apparent intron retention event. beta1 and beta1A are structurally homologous proteins with type I membrane topology; however, they contain little to no amino acid homology beyond the shared Ig loop region. beta1A mRNA expression is developmentally regulated in rat brain such that it is complementary to beta1. beta1A mRNA is expressed during embryonic development, and then its expression becomes undetectable after birth, concomitant with the onset of beta1 expression. In contrast, beta1A mRNA is expressed in adult adrenal gland and heart. Western blot analysis revealed beta1A protein expression in heart, skeletal muscle, and adrenal gland but not in adult brain or spinal cord. Immunocytochemical analysis of beta1A expression revealed selective expression in brain and spinal cord neurons, with high expression in heart and all dorsal root ganglia neurons. Co-expression of alphaIIA and beta1A subunits in Chinese hamster lung 1610 cells results in a 2.5-fold increase in sodium current density compared with cells expressing alphaIIA alone. This increase in current density reflected two effects of beta1A: 1) an increase in the proportion of cells expressing detectable sodium currents and 2) an increase in the level of functional sodium channels in expressing cells. [(3)H]Saxitoxin binding analysis revealed a 4-fold increase in B(max) with no change in K(D) in cells coexpressing alphaIIA and beta1A compared with cells expressing alphaIIA alone. beta1A-expressing cell lines also revealed subtle differences in sodium channel activation and inactivation. These effects of beta1A subunits on sodium channel function may be physiologically important events in the development of excitable cells.  相似文献   

17.
Astroglial cells and various types of non-neuronal cells in the peripheral nervous system, such as epithelial, Schwann and fibroblast cells synthesize and secrete nerve growth factor (NGF) in culture. NGFmRNA contents are well-correlated with the density of axonal projection from NGF-sensitive neurons, suggesting that NGF synthesis in vivo tissues is regulated by neuronal environments. We investigated neuronal regulations of NGF synthesis using cultured mouse astroglial cells and rat pheochromocytoma PC12 cells. It was found that astroglial NGF synthesis was enhanced by the addition of catecholamine into the cultured medium or the co-culture with differentiated PC12 cells. These results suggest that NGF synthesis in the in vivo tissues is increased by the release of catecholamine as neurotransmitters and/or the contact of NGF-producing cells with differentiated cell bodies and neurites of NGF-sensitive neurons.  相似文献   

18.
Repair of injured peripheral nerve is thought to play important roles in tissue homeostasis and regeneration. Recent experiments have demonstrated enhanced functional recovery of damaged neurons by some types of somatic stem cells. It remains unclear, however, if periodontal ligament (PDL) stem cells possess such functions. We recently developed a multipotent clonal human PDL cell line, termed cell line 1-17. Here, we investigated the effects of this cell line on neurocytic differentiation, migration, and survival. This cell line expressed the neural crest cell marker genes Slug, SOX10, Nestin, p75NTR, and CD49d and mesenchymal stem cell-related markers CD13, CD29, CD44, CD71, CD90, CD105, and CD166. Rat adrenal pheochromocytoma cells (PC12 cells) underwent neurocytic differentiation when co-cultured with cell line 1-17 or in conditioned medium from cell line 1-17 (1-17CM). ELISA analysis revealed that 1-17CM contained approximately 50 pg/ml nerve growth factor (NGF). Cell line 1-17-induced migration of PC12 cells, which was inhibited by a neutralizing antibody against NGF. Furthermore, 1-17CM exerted antiapoptotic effects on differentiated PC12 cells as evidenced by inhibition of neurite retraction, reduction in annexin V and caspase-3/7 staining, and induction of Bcl-2 and Bcl-xL mRNA expression. Thus, cell line 1-17 promoted neurocytic differentiation, migration, and survival through secretion of NGF and possibly synergistic factors. PDL stem cells may play a role in peripheral nerve reinnervation during PDL regeneration.  相似文献   

19.
Although peroxynitrite stimulates apoptosis in many cell types, whether peroxynitrite acts directly as an oxidant or the induction of apoptosis is because of the radicals derived from peroxynitrite decomposition remains unknown. Before undergoing apoptosis because of trophic factor deprivation, primary motor neuron cultures become immunoreactive for nitrotyrosine. We show here using tyrosine-containing peptides that free radical processes mediated by peroxynitrite decomposition products were required for triggering apoptosis in primary motor neurons and in PC12 cells cultures. The same concentrations of tyrosine-containing peptides required to prevent the nitration and apoptosis of motor neurons induced by trophic factor deprivation and of PC12 cells induced by peroxynitrite also prevented peroxynitrite-mediated nitration of motor neurons, brain homogenates, and PC12 cells. The heat shock protein 90 chaperone was nitrated in both trophic factor-deprived motor neurons and PC12 cells incubated with peroxynitrite. Tyrosine-containing peptides did not affect the induction of PC12 cell death by hydrogen peroxide. Tyrosine-containing peptides should protect by scavenging peroxynitrite-derived radicals and not by direct reactions with peroxynitrite as they neither increase the rate of peroxynitrite decomposition nor decrease the bimolecular peroxynitrite-mediated oxidation of thiols. These results reveal an important role for free radical-mediated nitration of tyrosine residues, in apoptosis induced by endogenously produced and exogenously added peroxynitrite; moreover, tyrosine-containing peptides may offer a novel strategy to neutralize the toxic effects of peroxynitrite.  相似文献   

20.
We previously described that recombinant interleukin-1beta (IL-1beta) induced the significant release of substance P (SP) via a cyclooxygenase (COX) pathway in primary cultured rat dorsal root ganglion (DRG) cells. In the present study, we examined the involvement of two types of phospholipase A2 (PLA2) enzymes, which lie upstream of COX in the prostanoid-generating pathway, in the IL-1beta-induced release of SP from DRG cells. The expression of type IIA secretory PLA2 (sPLA2 -IIA) mRNA was undetectable by ribonuclease protection assay in non-treated DRG cells, while in DRG cells incubated with 1 ng/mL of IL-1beta, the expression was induced in a time-dependent manner. On the other hand, type IV cytosolic PLA2 (cPLA2 ) mRNA was constitutively expressed in the non-treated DRG cells, and treatment with 1 ng/mL of IL-1beta for 3 h significantly increased the levels of cPLA2 mRNA. The IL-1beta-induced SP release was significantly inhibited by the sPLA2 inhibitor, thioetheramide phosphorylcholine (TEA-PC), and the cPLA2 inhibitor, arachidonyl trifluoromethyl ketone (AACOCF3 ). Furthermore AACOCF3 suppressed the induction of sPLA2 -IIA mRNA expression induced by IL-1beta. These observations suggested that two types of PLA2, sPLA2 -IIA and cPLA2, were involved in the IL-1beta-induced release of SP from DRG cells, and that the functional cross-talk between the two enzymes might help to control their activity in the prostanoid-generating system in DRG cells. These events might be key steps in the inflammation-induced hyperactivity in primary afferent neurons of spinal cord.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号