首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The ultrastructure of the antipodals ofAconitum vulparia Rchb. was studied in mature embryo sacs. Antipodal cell wall thickness varies in different parts of the cells. The antipodals resemble transfer cells with distinctly marked wall ingrowths which are particularly well developed in the chalazal part and between the antipodals. A few plasmodesmata occur in the cell wall between the antipodals and the central cell. The cytoplasm is rich in ribosomes which occur free or bound to the membranes of the well developed endoplasmic reticulum. Only in the micropylar region of the cells are some larger vacuoles found. The antipodals contain numerous mitochondria, plastids and apparently active dictyosomes. Vesicles with electron dense contents, microbodies, multivesicular bodies as well as lipid droplets and small multiple concentric cisternae are also present in the cytoplasm. The giant endopolyploid nuclei have lobed outlines, especially at the chalazal side of the nuclei.Ultrastructural features, especially the occurrence of numerous free ribosomes and the development of extensive rough endoplasmic reticulum, suggest high metabolic activity in the growing and differentiating antipodals of this species.  相似文献   

2.
The antipodal cells have been the stepchildren in most investigations of the female gametophyte. In Hordeum vulgare cv. Bomi, three antipodal cells are originally developed chalazally but because of differential growth of the embryo sac they soon become laterally situated and their number increases to 35–50 cells and the shape, size and structure of the cells change in the time before as well as after fertilization. The cells persist until about 60–70 h after pollination. At that time, the embryo consists of about 12–15 cells and a cellularization of the nuclear endosperm has started peripherally. The size of nuclei, and especially nucleoli, in the antipodal cells increases tremendously in the investigated period and the amounts of organelles also change. The walls of antipodals are diversified depending on which cells they are separating, and wall invaginations are developed especially between antipodal cells and surrounding nucellar cells in the placental region. The mitochondria appear in various shapes in section view, very often as cups or dumbbells with a rim in the ends containing cristae and a thin cristae-free base. These bases are sometimes stretched out as thin parts and at last a simple parting occurs. Binary fissions of the plastids happen especially in the hours before and just after egg fertilization. ER is extraordinarily well developed in the whole period of investigation and many ribosomes are attached to the membranes. Dictyosomes form numerous vesicles, especially in the antipodals near the nucellar cells in the placental region. These ultrastructural details support the opinion that antipodal cells may play an important role in the embryo sac and are able to be responsible for the supply of nutrition for the whole gametophyte and take part in the supply of nutrition during embryo formation.  相似文献   

3.
花生胚乳细胞化的超微结构观察   总被引:4,自引:1,他引:3  
花生(ArachishypogeaeL.)心形胚期的胚乳游离核多瓣裂,或具长尾状结构。胚乳细胞质内有大量线粒体、质体、高尔基体、小泡及少量内质网。中央细胞壁有壁内突。球胚及心形胚期常见胚乳瘤。心形胚晚期,胚乳开始细胞化,胚乳细胞壁形成有3种方式,分别存在于不同的胚珠中:(1)从胚囊壁产生自由生长壁形成初始垂周壁,具有明显的电子密度深的中层,其生长主要靠末端的高尔基体小泡及内质网囊泡的融合。两相邻的自由生长壁末端或其分枝末端相连形成胚乳细胞。(2)核有丝分裂后产生细胞板,细胞板向外扩展并可分枝。间期的非姊妹核间也观察到形成了细胞板。小泡与微管参与细胞板的扩展,高尔基体和内质网是小泡的主要来源。细胞板的扩展末端相互连接,形成胚乳细胞的前身。小泡继续加入细胞板的组成,以后形成胚乳细胞壁。(3)胚乳细胞质中,出现一些比较大的不规则形的片段性泡状结构,它们可能来源于高尔基体小泡,这些片段性泡状结构随机相连形成细胞壁,未见微管参与。胚乳细胞外切向壁及经向壁上有壁内突。  相似文献   

4.
During the early developmental stage of wheat caryopsis the antipodal complex (composed of 20 or more cells) located on the chalazal part of embryo sac gradually turns to degeneration and degradation from its outer part to the innermost, undergoing apparent structural changes of protoplasm. The senescent tissue (antipodals) exports its cell contents continually to support the proliferation and enlargement of the adjacent free-nuclear endosperm and accommodate the dual function of both material transport and nurture supply. The lacking of callose deposition on the boundary wails between antipodals and endosperm is much benefit to the solute transport, but not all cell contents in antipodals undergo thorough degradation until exporting, at least, part of the protoplasm only undergoes limited structural disintegration. The disassembled protoplasmic constituents actively migrate through symplast route in the form of macromolecule. This shows another mode of material transport in feeding endosperm. The occurrence of wide cytoplasmic channel in part of boundary wal ls berween antipodals and endosperm shows a special structural transformation of intercellular connection. Therefore, disassembled nuclear materials, cisternae of endoplasmic reticulum and plastids, mitochondria, etc. could migrate from antipodals into the developing endosperm. It is deduced that this mode of material transport may play an important role in supporting rapid proliferation and enlargement of free-nuclear endosperm in the developing caryopsis.  相似文献   

5.
采用透射电镜技术对大车前(Plantago major L.)胚乳发育的超微结构进行了研究。结果表明:(1)大车前为细胞型胚乳;初生胚乳核经一次横分裂产生1个珠孔室细胞和1个合点室细胞;珠孔室两次纵向分裂一次横向分裂形成2层8个细胞,位于上层的4个细胞发育为4个珠孔吸器,位于下层的4个细胞发育为胚乳本体;合点室细胞进行一次核分裂,发育为两核的合点吸器。(2)珠孔吸器呈管状插入珠被组织,珠孔端细胞壁加厚呈现少量分支并具有壁内突,壁内突周围细胞质里分布着大量线粒体、粗面内质网、高尔基体、质体等,细胞核与核仁明显,细胞质浓厚,代谢活动旺盛;球胚期,珠孔吸器的体积呈现最大值,珠孔吸器周围的珠被组织均被水解,形成明显的空腔。珠孔吸器从珠被组织吸收并转运营养物质至胚乳本体,参与胚乳的构建与营养物质的贮藏。球胚后期,珠孔吸器逐渐退化。(3)4个胚乳本体原始细胞具旺盛的分生能力,经不断的平周与垂周分裂增加胚乳细胞数目,使胚乳本体呈现圆球体状,并将胚包围其中;珠孔吸器、合点吸器以及珠被绒毡层吸收转运的营养物质贮存在胚乳本体;球胚后期,随着胚柄的退化,胚体周围的胚乳细胞被水解,为发育的胚所利用。(4)合点吸器的2个细胞核与核仁巨大,线粒体、质体、高尔基体、内质网主要绕核分布,液泡化明显;胚体与胚乳本体的体积增大,逐渐将合点吸器向胚珠合点部位挤压,合点吸器周围的合点组织逐渐被水解,形成巨大空腔。合点吸器自珠心组织吸收并转运营养物质至胚乳本体,参与胚乳的结构构建与营养物质的贮藏。球胚后期,合点吸器逐渐失去功能,呈现退化状态。  相似文献   

6.
Ultrastructure of the embryo sac lacking antipodals in prefertilization stages in Arabidopsis thaliana has been examined 2 hr before and 5 hr after manual cross pollination. The cytoplasm of both synergids before fertilization is rich in ribosomes, mitochondria, and rough endoplasmic reticulum, and also contains several microbodies and spherosomes. The filiform apparatus includes electron-dense material and a fibrous part. Many cortical microtubules appear in the filiform apparatus area. One of the two synergids degenerates before fertilization. The synergids, the egg cell, and central cell have a rich cytoskeleton of microtubules; only the synergids appear to contain microfilaments. At the chalazal end, the antipodals are initially present but degenerate by the time of pollination in most embryo sacs in the starchless line studied. The embryo sac is completely surrounded by a wall containing an electron-dense layer, separating it from the nucellus, including the chalazal end. When the antipodals have degenerated, the electron-dense layer disappears at the chalazal end only, and the wall between the central cell and the nucellus is homogeneous. Between the central cell and nucellar cells no plasmodesmata are found. The membranes of both antipodal cells at the chalazal end of the embryo sac appear sinuous, like those of transfer cells. The central cell has plastids preferentially distributed around the nucleus, but the other organelles are randomly distributed. The central cell in the embryo sac and the adjacent chalazal nucellar cells show a transfer-cell function in the embryo sac after the antipodals degenerate.  相似文献   

7.
Excised, unfertilized cotton (Gossypium hirsutum L.) ovules were cultured for 1–5 days postanthesis and embryo-sac development was studied with the electron microscope. In some ovules the two polar nuclei fuse and the diploid endosperm nucleus goes through a limited number of free nuclear divisions after 2–3 days in culture. Each nucleus has two nucleoli, in contrast to nuclei of fertilized triploid endosperm which have three nucleoli. Precocious cell walls form between the endosperm nuclei on the 3rd day in culture. The morphology of the plastids, mitochondria, rough endoplasmic reticulum (RER), dictyosomes and microbodies, and the amount of starch and lipid in the diploid cellular endosperm are similar to those of the central cell. A few large helical polysomes appear close to plastids and mitochondria. After 2 days in culture, one of the two synergids in the unfertilized cultured ovules shows degenerative changes which in fertilized ovules are associated with the presence of the pollen tube, i.e., increase in electron density, collapse of vacuoles, irregular darkening and thickening of mitochondrial and plastid membranes, disappearance of the plasmalemma and the membranes of the plasmalemma and the membranes of the RER. The second synergid remains unchanged in appearance. The egg cell does not shrink or divide or show structural changes characteristic of the cotton zygote. Embryo-sac development is arrested on the 4th and 5th days in culture. The nucellus continues growth and at 14 days crushes the degenerate embryo sac.  相似文献   

8.
An electron microscope study was made of the central cell and the development of the free nuclear endosperm surrounding the zygote and synergids during the first three days after pollination. The cytoplasm of the central cell, concentrated around the partially-fused polar nuclei, contains many ribosomes, mitochondria and large, dense, starch-containing plastids, some dictyosomes and lipid bodies, and long, single cisternae of rough endoplasmic reticulum (RER) that frequently terminate in whorls. Dense, core-containing microbodies are closely associated with the RER. After fertilization the cytoplasm of the 2-and 4-nucleate endosperm shows an increase in number of dictyosomes, and in amount of RER which becomes stacked in arrays of parallel cisternae. Cup-shaped plastids are associated with many long, helical polysomes. Perinuclear aggregates of dense, granular material also appear after fertilization. Granular aggregates and helical polysomes disappear after the first few divisions of the primary endosperm nucleus. During the second and third days of development there is an increase in dictyosome number and RER proliferation, and endosperm nuclei become deeply lobed. Concurrently, there is a sharp decline in the starch and lipid reserves of the central cell and elaborate transfer walls are formed at the micropylar end of the embryo sac and on the outer surface of the degenerating synergid. The transfer walls contain groups of small, membrane-bound vesicles, and are associated with large numbers of mitochondria and with the smooth endoplasmic reticulum.  相似文献   

9.
Stem tissue of Lycopodium lucidulum Michx. was fixed in glutaraldehyde and postfixed in osmium tetroxide for electron microscopy. Although their protoplasts contain similar components, immature sieve elements can be distinguished from parenchymatous elements of the phloem at an early stage by their thick walls and correspondingly high population of dictyosomes and dictyosome vesicles. Late in maturation the sieve-element walls undergo a reduction in thickness, apparently due to an “erosion” or hydrolysis of wall material. At maturity, the plasmalemma-lined sieve elements contain plastids with a system of much convoluted inner membranes, mitochondria, and remnants of nuclei. Although the endoplasmic reticulum (ER) in most mature sieve elements was vesiculate, in the better preserved ones the ER formed a tubular network closely appressed to the plasmalemma. The sieve elements lack refractive spherules and P-protein. The protoplasts of contiguous sieve elements are connected with one another by pores of variable diameter, aggregated in sieve areas. As there is no consistent difference between pore size in end and lateral walls these elements are considered as sieve cells.  相似文献   

10.
Megasporogenesis and embryo sac development in Stellaria media were investigated using cytochemical methods for the demonstration of nucleic acids, proteins, and polysaccharides. RNA concentrations were high in the archesporial cells, low in the megaspore mother cell, and increased again to high concentrations with the formation of the megaspore and 2-, 4-, and early 8-nucleate embryo sac. RNA levels were also high in the egg and primary endosperm nucleus but low in the synergid and antipodal cells. Nucleolar size and vacuolation were indicative of RNA synthetic activity. Protein concentrations were parallel in concentration and distribution to those observed for RNA. Polysaccharides were conspicuously absent from all stages except the synergids and nucellar cells. Feulgen-stained DNA was demonstrable in the antipodal cells, megaspore mother cell, and megaspore cell, but was not visible in the 2-, 4-, or early 8-nucleate embryo sac. Feulgen staining was also absent from the egg and primary endosperm nucleus but was visible in the synergids and antipodals. Histones were difficult to visualize anywhere except in the egg cytoplasm and the nuclei of the antipodals.  相似文献   

11.
Summary Brassica napus cv. Topas microspores isolated and cultured near the first pollen mitosis and subjected to a heat treatment develop into haploid embryos at a frequency of about 20%. In order to obtain a greater understanding of the induction process and embryogenesis, transmission electron microscopy was used to study the development of pollen from the mid-uninucleate to the bicellular microspore stage. The effect of 24 h of high temperature (32.5 °C) on microspore development was examined by heat treating microspore cultures or entire plants. Mid-uninucleate microspores contained small vacuoles. Late-uninucleate vacuolate microspores contained a large vacuole. The large vacuole of the vacuolate stage was fragmented into numerous small vacuoles in the late-uninucleate stage. The late-uninucleate stage contained an increased number of ribosomes, a pollen coat covering the exine and a laterally positioned nucleus. Prior to the first pollen mitosis the nucleus of the lateuninucleate microspore appeared to be appressed to the plasma membrane; numerous perinuclear microtubules were observed. Microspores developing into pollen divided asymmetrically to form a large vegetative cell with amyloplasts and a small generative cell without plastids. The cells were separated by a lens-shaped cell wall which later diminished. At the late-bicellular stage the generative cell was observed within the vegetative cell. Starch and lipid reserves were present in the vegetative cell and the rough endoplasmic reticulum and Golgi were abundant. The microspore isolation procedure removed the pollen coat, but did not redistribute or alter the morphology of the organelles. Microspores cultured at 25 °C for 24 h resembled late-bicellular microspores except more starch and a thicker intine were present. A more equal division of microspores occurred during the 24 h heat treatment (32.5 °C) of the entire plant or of cultures. A planar wall separated the cells of the bicellular microspores. Both daughter cells contained plastids and the nuclei were of similar size. Cultured embryogenie microspores contained electron-dense deposits at the plasma membrane/cell wall interface, vesicle-like structures in the cell walls and organelle-free regions in the cytoplasm. The results are related to embryogenesis and a possible mechanism of induction is discussed.Abbreviations B binucleate - LU late uninucleate - LUV late uninucleate vacuolate - M mitotic - MU mid-uninucleate - RER rough endoplasmic reticulum - TEM transmission electron micrograph  相似文献   

12.
Summary Cells ofChlamydomyxa montana Lankester photosynthesize within a cyst under bright light and ingest diatoms in an excysted amoeboid form during periods of low light intensity. Cyst cell walls are partially comprised of cellulose and vary in thickness. The cells are multinucleate and intracellular bacteria are closely associated with the nuclei. A pair of centrioles is also present adjacent to individual nuclei. Chloroplasts are numerous and thylakoids are generally organized into bands of three. No endoplasmic reticulum was found surrounding the plastids, nor was a complete girdling lamella ever observed within.C. montana chloroplasts appear to be its own but this protist does not precisely fit into an algal class.  相似文献   

13.
竹节参雌配子体发育的研究   总被引:2,自引:0,他引:2  
本文报道了竹节参(Panax japonicus C.A.Mey)雌配子体(胚囊)的发育过程。竹节参大孢子母细胞减数分裂产生线形排列的大孢子四分体。胚囊发育属蓼型,由合点端大孢子发育而成。游离核胚囊时期,胚囊珠孔端的细胞器种类和数量都较胚囊合点端多;胚囊合点端相邻的珠被细胞中有含淀粉粒的小质体,与胚囊珠孔端相邻的退化中的非功能大孢子中则有含淀粉粒的大质体和大类脂体。成熟胚囊中,反足细胞较早退化;极核融合成次生核;卵细胞高度液泡化,细胞器数量较少;助细胞则有丰富的细胞器和发达的丝状器。PAS反应表明,受精前的成熟胚囊中积累淀粉粒。次生核受精后,很快分裂产生胚乳游离核,到几十至数百个核时形成胚乳细胞。卵细胞受精后则要经过较长的休眠期。  相似文献   

14.
Ultrastructural changes during zygotic and somatic embryogenesis in pearl millet (Pennisetum glaucum [L.] R. Br.) were quantified using morphometric techniques. The total area per cell profile and the cell volume percentage of the whole cell, endoplasmic reticulum (ER), Golgi bodies, mitochondria, nuclei, lipids, plastids, starch grains and vacuoles were measured and comparisons made between three zygotic and three somatic embryo developmental stages. All measurements were taken from scutellar or scutellar-derived cells. Zygotic embryogenesis was characterized by increases in cell size, lipids, plastids, starch, Golgi bodies, mitochondria and ER. Somatic embryogenesis was characterized by two phases of cell development: (1) the dedifferentiation of scutellar cells involving a reduction in cell and vacuole size and an increase in cell activity during somatic proembryoid formation and (2) the development of somatic embryos in which most cell organelle quantities returned to values found in late coleoptile or mature predesiccation zygotic stages. In summary, although their developmental pathways differed, the scutella of somatic embryos displayed cellular variations which were within the ranges observed for later stages of zygotic embryogenesis.  相似文献   

15.
An electron microscopic study of the mature megagametophyte in Zea mays   总被引:4,自引:0,他引:4  
With light microscopy maize megagametophytes stained with Alcian blue-periodic acid-Schiff (AB-PAS) reveal acid or neutral polysaccharides in various cell walls. Comparative fine structural studies were made of permanganate- or OsO4-fixed material. Organelle distribution is random in the vacuolate and multinucleate antipodal cells; organelles are abundant; starch is scarce. Antipodal cell walls have large openings forming several syncytia. Some walls are papillate. In the central cell (primary endosperm cell) a thin peripheral layer of cytoplasm surrounds the large vacuole; organelle number is moderate; starch is abundant. The central cell wall is also papillate adjacent to the antipodals and around the egg apparatus. In the synergids organelle distribution is non-random; nuclei and numerous organelles occupy the micropylar cytoplasm of each synergid; vacuoles dominate the chalazal cytoplasm of these cells. The filiform apparatus stains with AB-PAS and is composed of both lightly and darkly stained amorphous material. In the egg, organelle distribution is perinuclear with vacuoles proximal to the micropyle; mitochondria are large, abundant and polymorphic; starch is abundant. Nucleolar diameter is five times greater in the central cell and egg than in the antipodal cells and ten times greater than in the synergids. Plasmodesmata occur in all cell walls within the gametophyte, but none appear in the gametophyte wall itself. It is suggested that the antipodals and synergids might be secretory, the latter probably being involved in pollen tube attraction, and that stored metabolites in the central cell and egg cytoplasm support rapid increase in metabolism following fertilization.  相似文献   

16.
Distribution of nucleolar argentophylic proteins, fibrillarin and 53 kDa protein, in highly polyploid nuclei of antipodal cells of Triticum aestivum L. was studied at different stages of the embryo sac development. The main results are as follows. 1. Ag-NOR proteins and fibrillarin form clusters are distributed in the giant nucleoli, whereas 53 kDa protein is mainly localized on the nucleolar periphery. Ag-NOR proteins and fibrillarin are accumulated as globular nucleolar-like particles--micronucleoli. 2. Dynamics of Ag-NOR proteins, fibrillarin and 53 kDa protein depends on the proliferative activity of endosperm cells. In embryo sacs with non-dividing endosperm cells at interphase stages, Ag-NOR proteins and fibrillarin were observed only within nucleoli and micronucleoli. In embryo sacs with dividing endosperm cells, fibrillarin and 53 kDa protein formed heterogeneous globular bodies varying in size. Simultaneously, some argentophylic material was observed in giant chromosomes. This may be due, presumably, to a partial or complete disappearance of the nucleoli of antipods and transition of some nucleolar components into the peripheral material of giant polytene chromosomes. We suggest that giant nuclei of antipodal cells may undergo cyclic transformation similar to those in the nuclei of dividing cells.  相似文献   

17.
牡丹苗端由营养生长转向生殖生长过程中超微结构研究   总被引:2,自引:0,他引:2  
电镜观察了营养生长和生殖生长两个发育埋藏的牡丹(Paenia suffruticosa.)苗端。结果如下:(1)营养生长期,原套和原体的细胞壁厚薄不均,多有胞间连丝分布。两者细胞核内均在较多异染色质。细胞质内含许多质体、嗜锇细胞主少量的线粒体,内质网和高尔基体。质体无片层结构,部分质体有淀粉粒和脂滴。原体细胞的液泡化过程比原套细胞略高。原体下方扁平细胞的大部分空间被大量的淀粉质体和液泡占据,淀粉粒  相似文献   

18.
The sporophyte-gametophyte junction in Acaulon muticum is composed of the sporophyte foot, the surrounding gametophyte vaginula, and an intervening placental space. At an early stage of development the foot has a large basal cell, characterized by extensive wall ingrowths beginning at the lowermost tip of the basal cell and extending along its tangential walls. Sporophyte cells in contact with the basal cell develop ingrowths on their outer tangential walls and on radial walls in contact with the basal cell. All sporophyte cells at this stage are characterized by numerous mitochondria, strands of endoplasmic reticulum, and dictyosomes, particularly in the cytoplasm adjacent to areas of extensive wall development. Plastids typically contain abundant starch reserves. As development proceeds, wall ingrowths become more extensive on all walls in the sporophyte foot but are never found on the upper wall of the basal cell in contact with the remainder of the sporophyte. Plastids in the foot contain fewer starch reserves later in development. Wall ingrowths are not visible in the cells of the gametophyte vaginula until well after extensive development has occurred in the sporophyte foot. Stacks or layers of endoplasmic reticulum are characteristic of the cells of the gametophyte vaginula, along with numerous mitochondria, dictyosomes, and well-developed plastids. Starch reserves typically are less abundant in cells of the gametophyte. The early development of extensive wall elaborations in the cells of the sporophyte foot, and particularly in the basal cell, may favor the rapid movement of water and nutrients from the gametophyte into the sporophyte at a time when rapid development in this minute, ephemeral moss is critical.  相似文献   

19.
Summary The process of microsporogenesis and microgametogenesis was studied at the ultrastructural level in wild-typeArabidopsis thaliana ecotype Wassilewskija to provide a basis for comparison with nuclear male-sterile mutants of the same ecotype. From the earliest stage studied to mature pollen just prior to anther dehiscence, microsporocyte/microspore/pollen development follows the general pattern seen in most angiosperms. The tapetum is of the secretory type with loss of the tapetal cell walls beginning at about the time of microsporocyte meiosis. Wall loss exhibits polarity with the tapetal protoplasts becoming located at a distance from the inner tangential walls first, followed by an increase in distance from the radial walls beginning at the interior edge and progressing outward. The inner tangential and radial tapetal walls are completely degenerated by the microspore tetrad stage. Unlike other members of the Brassicaceae that have been studied, the tapetal cells ofA. thaliana Wassilewskija also lose their outer tangential walls, and secretion occurs from all sides of the cells. Exine wall precursors are secreted from the tapetal cells in a process that appears to involve dilation of individual endoplasmic reticulum cisternae that fuse with the tapetal cell membrane and release their contents into the locule. Following completion of the exine, the tapetal cell plastids develop membranebound inclusions with osmiophilic and electron-transparent regions. The plastids undergo ultrastructural changes that suggest breakdown of the inclusion membranes followed by release of their contents into the locule prior to the complete degeneration of the tapetal cells.  相似文献   

20.
白刺胚乳早期发育的超微结构研究   总被引:2,自引:0,他引:2  
白刺(Nitraria sibirica)胚乳发育经历游离核阶段、细胞化阶段和被吸收解体阶段。游离核胚乳沿胚囊壁均匀排列为一层,胞质浓厚,其中有丰富的质体、线粒体、高尔基体、内质网和各种小泡等细胞器。珠孔区域的胚囊壁具发达的分枝状壁内突,而周缘区域的胚囊壁具间隔的钉状内突,内突周围的细胞质中具多数线粒体和小泡。胚乳细胞化时,初始垂周壁源于核有丝分裂产生的细胞板。在细胞板两端开始壁的游离生长,一端与胚囊壁相连接,另一端向心自由延伸。壁的游离生长依赖于小泡的融合。早期胚乳细胞具大液泡,具核或无核,细胞质中有大量的线粒体,质体缺乏,其壁仍由多层膜结构组成。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号