首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Borna disease virus (BDV) is a highly neurotropic RNA virus that causes neurological disorders in many vertebrate species. Although BDV readily establishes lasting persistence, persistently infected cells maintain an apparently normal cell phenotype in terms of morphology, viability, and proliferation. In this study, to understand the regulation of stress responses in BDV infection, we investigated the expression of heat shock proteins (HSPs) in glial cells persistently infected with BDV. Interestingly, we found that BDV persistence did not upregulate HSP70 expression even in cells treated with heat stress. Furthermore, BDV-infected glial cells exhibited rapid rounding and detachment from the culture plate under various stressful conditions. Immunofluorescence analysis demonstrated that heat stress rapidly disrupts the cell cytoskeleton only in persistently infected cells, suggesting a lack of thermotolerance. Intriguingly, we found that although persistently infected glial cells expressed HSP70 mRNA after heat stress, its expression rapidly disappeared during the recovery period. These observations indicated that persistent BDV infection may affect the stability of HSP70 mRNA. Finally, we found that the double-stranded RNA-dependent protein kinase (PKR) is expressed at a constant level in persistently infected cells with or without heat shock. Considering the interrelationship between HSP70 and PKR production, our data suggest that BDV infection disturbs the cellular stress responses to abolish antiviral activities and maintain persistence.  相似文献   

2.
3.
4.
Borna disease virus (BDV) can persistently infect the central nervous system (CNS) of mice. The infection remains nonsymptomatic as long as antiviral CD8 T cells do not infiltrate the infected brain. BDV mainly infects neurons which reportedly carry few, if any, major histocompatibility complex class I molecules on the surface. Therefore, it remains unclear whether T cells can recognize replicating virus in these cells or whether cross-presentation of viral antigen by other cell types is important for immune recognition of BDV. To distinguish between these possibilities, we used two lines of transgenic mice that strongly express the N protein of BDV in either neurons (Neuro-N) or astrocytes (Astro-N). Since these animals are tolerant to the neo-self-antigen, we adoptively transferred T cells with specificity for BDV N. In nontransgenic mice persistently infected with BDV, the transferred cells accumulated in the brain parenchyma along with immune cells of host origin and efficiently induced neurological disease. Neurological disease was also observed if antiviral T cells were injected into the brains of Astro-N or Neuro-N but not nontransgenic control mice. Our results demonstrate that CD8 T cells can recognize foreign antigen on neurons and astrocytes even in the absence of infection or inflammation, indicating that these CNS cell types are playing an active role in immune recognition of viruses.  相似文献   

5.
We have recently demonstrated that increased blood-CNS barrier permeability and CNS inflammation in a conventional mouse model of experimental allergic encephalomyelitis are dependent upon the production of peroxynitrite (ONOO(-)), a product of the free radicals NO* and superoxide (O2*(-)). To determine whether this is a reflection of the physiological contribution of ONOO(-) to an immune response against a neurotropic pathogen, we have assessed the effects on adult rats acutely infected with Borna disease virus (BDV) of administration of uric acid (UA), an inhibitor of select chemical reactions associated with ONOO(-). The pathogenesis of acute Borna disease in immunocompetent adult rats results from the immune response to the neurotropic BDV, rather than the direct effects of BDV infection of neurons. An important stage in the BDV-specific neuroimmune response is the invasion of inflammatory cells into the CNS. UA treatment inhibited the onset of clinical disease, and prevented the elevated blood-brain barrier permeability as well as CNS inflammation seen in control-treated BDV-infected rats. The replication and spread of BDV in the CNS were unchanged by the administration of UA, and only minimal effects on the immune response to BDV Ags were observed. These results indicate that the CNS inflammatory response to neurotropic virus infection is likely to be dependent upon the activity of ONOO(-) or its products on the blood-brain barrier.  相似文献   

6.
Borna disease virus (BDV) is a negative-strand RNA virus which produces persistent infection in a variety of experimental animals. In the rat, the presence or absence of clinical signs of Borna disease, a characteristic, biphasic neurobehavioral illness, depends on host-related factors. A window of opportunity exists after birth wherein inoculation with BDV produces a persistently infected rat without signs of Borna disease or encephalitis (persistent, tolerant infection-newborn [PTI-NB] rat). Although immunopathological destruction of the nervous system does not occur in the PTI-NB rat, significant alterations in the development of the nervous system were noted, including site-specific lysis of neurons. Unlike the case with other pharmacologically produced, persistent, tolerant BDV infections, adoptive transfer of spleen cells from BDV-infected rats did not produce disease in the PTI-NB rats. PTI-NB rats developed Borna disease after being connected by parabiosis to rats with Borna disease. Bone marrow transplantation experiments revealed that bone marrow cells from PTI-NB rats produced Borna disease in lethally irradiated, BDV-infected recipient rats. Bone marrow from PTI-NB rats contained a complement of inflammatory cells capable of inducing Borna disease. Thus, the loss of BDV-specific cellular immunity appeared to occur after the release of cells from the bone marrow.  相似文献   

7.
The Borna disease virus (BDV) p24 phosphoprotein is an abundant protein in BDV-infected cultured cells and animal brains. Therefore, there is a possibility that binding of the p24 protein to cellular factor(s) induces functional alterations of infected neural cells in the brain. To identify a cellular protein(s) that interacts with BDV p24 protein, we performed far-Western blotting with extracts from various cell lines. Using recombinant p24 protein as a probe, we detected a 30-kDa protein in all cell lines examined. Binding between the 30-kDa and BDV p24 proteins was also demonstrated using BDV p24 affinity and ion-exchange chromatography columns. Microsequence analysis of the purified 30-kDa protein revealed that its N terminus showed complete homology with rat amphoterin protein, which is a neurite outgrowth factor abundant in the brain during development. Mammalian two-hybrid and immunoprecipitation analyses also confirmed that amphoterin is a specific target for the p24 protein in vivo. Furthermore, we showed that infection by BDV, as well as purified p24 protein in the medium, significantly decreased cell process outgrowth of cells grown on laminin, indicating the functional inhibition of amphoterin by interaction with the p24 protein. Immunohistochemical analysis revealed decreased levels of amphoterin protein at the leading edges of BDV-infected cells. Moreover, the expression of the receptor for advanced glycation end products, of which the extracellular moiety is a receptor for amphoterin, was not significantly activated in BDV-infected cells during the process of extension, suggesting that the secretion of amphoterin from the cell surface is inhibited by the binding of the p24 protein. These results suggested that BDV infection may cause direct damage in the developing brain by inhibiting the function of amphoterin due to binding by the p24 phosphoprotein.  相似文献   

8.
9.
Neonatal Borna disease virus (BDV) infection of the rat brain is associated with microglial activation and damage to the certain neuronal populations. Since persistent BDV infection of neurons in vitro is noncytolytic and noncytopathic, activated microglia have been suggested to be responsible for neuronal cell death in vivo. However, the mechanisms of activation of microglia in neonatally BDV-infected rat brain have not been investigated. To address these issues, activation of primary rat microglial cells was studied following exposure to purified BDV or to persistently BDV-infected primary cortical neurons or after BDV infection of primary mixed neuron-glial cultures. Neither purified virus nor BDV-infected neurons alone activated primary microglia as assessed by the changes in cell shape or production of the proinflammatory cytokines. In contrast, in the BDV-infected primary mixed cultures, we observed proliferation of microglia cells that acquired the round morphology and expressed major histocompatibility complex molecules of classes I and II. These manifestations of microglia activation were observed in the absence of direct BDV infection of microglia or overt neuronal toxicity. In addition, compared to uninfected mixed cultures, activation of microglia in BDV-infected mixed cultures was associated with a significantly greater lipopolysaccharide-induced release of tumor necrosis factor alpha, interleukin 1beta, and interleukin 10. Taken together, the present data are the first in vitro evidence that persistent BDV infection of neurons and astrocytes rather than direct exposure to the virus or dying neurons is critical for activating microglia.  相似文献   

10.
11.
We developed the antigen capture enzyme-linked immunosorbent assay (ELISA) systems for quantification of Borna disease virus (BDV) major antigens, p40 and p24. Using these ELISAs, we quantified the two proteins in various BDV-infected materials, including the cell lysates and culture supernatants as well as the homogenates of experimental animal brains. The ELISAs were also applied to measure the infectious titer of BDV in persistently infected cell lines. Quantitative analysis with these ELISAs allowed us to measure the molecular ratio between the p40 and p24 in infected samples. Interestingly, the ratio of p24 to p40 in persistently infected cells was much higher than that observed in acutely infected cells although the ratios in the supernatants from both cell lines were quite similar. BDV-inoculated gerbil brain cells showed a relatively high ratio of p24 to p40 as compared with acutely infected cells. These observations suggested that the molecular ratio between the proteins strongly depended on the infectious status of BDV in the host cells. The ELISA system developed here could be a convenient method for the quantification of BDV infection and may also be beneficial for understanding viral replication and infectious status in the host cells.  相似文献   

12.
The neurotropic Borna disease virus (BDV) is unusual in that it can persistently infect neurons of the central nervous system (CNS) without causing general cell death, reflecting its favourable adaptation to the brain. The activity-dependent enhancement of neuronal network activity is however disturbed after BDV infection, possibly by its effect on the protein kinase C signalling pathway. The best model for studying BDV, which has a non-cytolytic replication strategy in primary neurons, is the rat. Infection of adult rats results in a fatal immune-mediated disease, whereas BDV establishes persistent infection of the brain in newborn rats resulting in progressive neuronal cell loss in defined regions of the CNS. Our recently developed system of BDV-infected hippocampal slice cultures has clearly shown that the onset of granule cell loss begins after the formation of the mossy fibre projection. Quantitative analysis has revealed a significant increase in synaptic density on identified remaining granule cell dendrites at 6?weeks after infection, followed by a decline. Granule cells are the major target of entorhinal afferents. However, despite an almost complete loss of dentate granule cells during BDV infection, entorhinal axons persist in their correct layer, both in vivo and in slice cultures, possibly exploiting rewiring capabilities and thereby allowing new synapse formation with available targets. These morphological observations, together with electrophysiological and biochemical data, indicate that BDV is a suitable model virus for studying virus-induced morphological and functional changes of neurons and connectivity patterns.  相似文献   

13.
Following infection of the central nervous system (CNS), the immune system is faced with the challenge of eliminating the pathogen without causing significant damage to neurons, which have limited capacities of renewal. In particular, it was thought that neurons were protected from direct attack by cytotoxic T lymphocytes (CTL) because they do not express major histocompatibility class I (MHC I) molecules, at least at steady state. To date, most of our current knowledge on the specifics of neuron-CTL interaction is based on studies artificially inducing MHC I expression on neurons, loading them with exogenous peptide and applying CTL clones or lines often differentiated in culture. Thus, much remains to be uncovered regarding the modalities of the interaction between infected neurons and antiviral CD8 T cells in the course of a natural disease. Here, we used the model of neuroinflammation caused by neurotropic Borna disease virus (BDV), in which virus-specific CTL have been demonstrated as the main immune effectors triggering disease. We tested the pathogenic properties of brain-isolated CD8 T cells against pure neuronal cultures infected with BDV. We observed that BDV infection of cortical neurons triggered a significant up regulation of MHC I molecules, rendering them susceptible to recognition by antiviral CTL, freshly isolated from the brains of acutely infected rats. Using real-time imaging, we analyzed the spatio-temporal relationships between neurons and CTL. Brain-isolated CTL exhibited a reduced mobility and established stable contacts with BDV-infected neurons, in an antigen- and MHC-dependent manner. This interaction induced rapid morphological changes of the neurons, without immediate killing or impairment of electrical activity. Early signs of neuronal apoptosis were detected only hours after this initial contact. Thus, our results show that infected neurons can be recognized efficiently by brain-isolated antiviral CD8 T cells and uncover the unusual modalities of CTL-induced neuronal damage.  相似文献   

14.
Borna disease virus (BDV)-induced immunopathology in mice is most prominent in strains carrying the major histocompatibility complex H-2k allele and is mediated by CD8(+) T cells that are directed against the viral nucleoprotein p40. We now identified the highly conserved octamer peptide TELEISSI, located between amino acid residues 129 and 136 of BDV p40, as a potent H-2K(k)-restricted cytotoxic T-cell (CTL) epitope. When added to the culture medium of L929 target cells, TELEISSI conferred sensitivity to lysis by CTLs isolated from brains of BDV-infected MRL mice with acute neurological disease. Vaccinia virus-mediated expression of a p40 variant with mutations in the two K(k)-specific anchor residues of the TELEISSI peptide (p40(E130K,I136T)) did not sensitize L929 target cells for lysis by BDV-specific CTLs, whereas expression of wild-type p40 did. Furthermore, unlike vaccination with wild-type p40, vaccination of persistently infected symptomless B10.BR mice with p40(E130K,I136T) did not result in central nervous system inflammation and neurological disease. These results demonstrate that TELEISSI is the immunodominant CTL epitope of BDV p40 in H-2k mice.  相似文献   

15.
Borna disease virus (BDV) is a neurotropic nonsegmented negative-stranded RNA virus that persistently infects warm-blooded animals. In horses and other natural animal hosts, infections with BDV cause meningoencephalitis and behavioral disturbances. Experimental infection of adult mice takes a nonsymptomatic course, an observation previously believed to indicate that this animal species is not suitable for pathogenesis studies. We now demonstrate that BDV frequently induces severe neurological disease in infected newborn mice. Signs of neurological disease were first observed 4 to 6 weeks after intracerebral infection. They included a characteristic nonphysiological position of the hind limbs at an early stage of the disease and paraparesis at a later stage. Histological examination revealed large numbers of perivascular and meningeal inflammatory cells in brains of diseased mice and, unexpectedly, no increase in immunoreactivity to glial fibrillar acidic protein. The incidence and severity of BDV-induced disease varied dramatically among mouse strains. While only 13% of the infected C57BL/6 mice showed disease symptoms, which were mostly transient, more than 80% of the infected MRL mice developed severe neurological disorder. In spite of these differences in susceptibility to disease, BDV replicated to comparable levels in the brains of mice of the various strains used. Intracerebral infections of newborn β2-microglobulin-deficient C57BL/6 and MRL mice, which both lack CD8+ T cells, did not result in meningoencephalitis or neurological disease, indicating that the BDV-induced neurological disorder in mice is a cytotoxic T-cell-mediated immunopathological process. With this new animal model it should now be possible to characterize the disease-inducing immune response to BDV in more detail.  相似文献   

16.
The migration of activated antigen-specific immune cells to the target tissues of virus replication is controlled by the expression of adhesion molecules on the vascular endothelium that bind to ligands on circulating lymphocytes. Here, we demonstrate that the adhesion pathway mediated by vascular cell adhesion molecule 1 (VCAM-1) plays a role in regulating T-cell-mediated inflammation and pathology in nonlymphoid tissues, including the central nervous system (CNS) during viral infection. The ablation of VCAM-1 expression from endothelial and hematopoietic cells using a loxP-Cre recombination strategy had no major effect on the induction or overall tissue distribution of antigen-specific T cells during a systemic infection with lymphocytic choriomeningitis virus (LCMV), except in the case of lung tissue. However, enhanced resistance to lethal LCM and the significantly reduced magnitude and duration of footpad swelling observed in VCAM-1 mutant mice compared to B6 controls suggest a significant role for VCAM-1 in promoting successful local inflammatory reactions associated with efficient viral clearance and even life-threatening immunopathology under particular infection conditions. Interestingly, analysis of the infiltrating populations in the brains of intracerebrally infected mice revealed that VCAM-1 deletion significantly delayed migration into the CNS of antigen-presenting cells (macrophages and dendritic cells), which are critical for optimal stimulation of migrating virus-specific CD8+ T cells initiating a pathological cascade. We propose that the impaired migration of these accessory cells in the brain may explain the improved clinical outcome of infection in VCAM-1 mutant mice. Thus, these results underscore the potential role of VCAM-1 in regulating the immune response and inflammatory reactions against viral infections.  相似文献   

17.
We observed diminished lymphoproliferation to multiple stimuli in older women with persistent cervical human papillomavirus (HPV) infection. Adipokines are a class of inflammatory cytokines that are altered in some persistent infections. The objective was to compare the level of adipokines and inflammatory cytokines in heparinized plasma from women with persistent HPV cervical infection (Cases, N=50, oversampled for their weak lymphoproliferation responses) with women with no evidence of persistent HPV cervical infection (Controls, N=50, oversampled for their strong lymphoproliferation responses). Plasma samples were analyzed with multiplex assays for adipokines and inflammatory cytokines. Cases had significantly elevated plasma levels of resistin (p<0.0001) and sFas (p=0.0038) as compared to controls. Risk of persistent HPV infection increased significantly with increasing levels of resistin and 8Fas. This is the first study to demonstrate elevated levels of resistin and sFas in HPV persistently infected, older women with decreased immune function expanding the understanding of the systemic inflammation and immune alterations in individuals persistently infected with HPV. Further studies within a larger cohort are needed to define the generalities of these findings and any role adipokines have in persistent HPV infection.  相似文献   

18.
The putative role of nitric oxide in the neuropathogenesis of Borna disease was investigated by determining changes in the expression of inducible nitric oxide synthase (iNOS) mRNA and constitutively expressed NOS (cNOS) mRNA in brains of Borna disease virus (BDV)-infected rats. iNOS mRNA was not detected in normal rat brain but was identified in BDV-infected brain at 14 days postinfection (p.i.), reaching maximum levels at 21 days p.i., when neurological signs and inflammatory reactions in the brain were also at a peak. cNOS mRNA was expressed in both normal brain and infected brain, increasing markedly at 17 days p.i. and reaching a peak at 21 days p.i. In situ hybridization analysis revealed iNOS mRNA in some, but not all, BDV-infected regions of the brain, particularly in the basolateral cortex and the hippocampus. iNOS-positive cells, as identified immunohistologically, were preferentially localized in perivascular areas of the hippocampus and in outer cortical layers. These iNOS-positive cells resembled monocytes/macrophages in morphology and distribution pattern but were significantly fewer. The correlation of iNOS and cNOS mRNA expression with the development of neurological disease, as well as the enhanced expression of iNOS within brain regions with inflammatory lesions, strongly suggests that NO may contribute to pathogenesis of Borna disease.  相似文献   

19.
Transition from G(2) to M phase, a cell cycle checkpoint, is regulated by the Cdc2-cyclin B1 complex. Here, we report that persistent infection with Borna disease virus (BDV), a noncytolytic RNA virus infecting the central nervous system, results in decelerated proliferation of infected host cells due to a delayed G(2)-to-M transition. Persistent BDV-infected rat fibroblast cells showed reduced proliferation compared to uninfected cells. In pull-down assays we observed an interaction of the viral nucleoprotein with the Cdc2-cyclin B1 complex. Transfection of the viral nucleoprotein but not of the phosphoprotein also results in decelerated proliferation. This phenomenon was found in BDV-susceptible primary rat fibroblast cells and also in primary mouse cells, which are not susceptible to BDV infection. This is the first evidence that the noncytolytic Borna disease virus can manipulate host cell functions via interaction of the viral nucleoprotein with mitotic entry regulators. BDV preferentially infects and persists in nondividing neurons. The present report could give an explanation for this selective choice of host cell by BDV.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号