首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
UDP-N-acetylglucosaminyl transferase (OGT) is a key enzyme of a novel signal transduction pathway that regulates protein function through O-linked glycosylation. In the current study, we found that sodium vanadate potently inhibits OGT activity in brain cytosol (IC50 = 55 microM) and nucleosol (IC50 = 150 microM), but fails to alter activity of a related enzyme (UDP-galactosyltransferase). Vanadate also inhibits OGT activity in cytosol (IC50 of 2.3 microM) and nucleosol (IC50 of 130) derived from a stable HeLa cell line that overexpresses OGT. When HeLa cytosol was immunopurified to separate OGT from other cellular proteins, vanadate still inhibited OGT activity (IC50 = 2 microM). We conclude that OGT derived from cytosol exhibits greater vanadate sensitivity than nucleosol OGT and that a large difference exists (25-fold) in vanadate sensitivity when comparing OGT activity in different cell types (IC50 of 55 microM for brain cytosol vs. 2.3 microM for HeLa cytosol). Understanding the mechanism(s) by which a tyrosine phosphatase inhibitor differentially reduces OGT activity should lead to new insights into OGT function and regulation.  相似文献   

2.
An NAD(P)-dependent 3 alpha-hydroxysteroid dehydrogenase (EC 1.1.1.50) was purified to homogeneity from rat liver cytosol, where it is responsible for most if not all of the capacity for the oxidation of androsterone, 1-acenaphthenol and benzenedihydrodiol (trans-1,2-dihydroxycyclohexa-3,5-diene). The dehydrogenase has many properties (substrate specificity, pI, Mr, amino acid composition) in common with the dihydrodiol dehydrogenase (EC 1.3.1.20) purified from the same source [Vogel, Bentley, Platt & Oesch (1980) J. Biol. Chem. 255, 9621-9625]. Since 3 alpha-hydroxysteroids are by far the most efficient substrates, the enzyme is more appropriately designated a 3 alpha-hydroxysteroid dehydrogenase. It also promotes the NAD(P)H-dependent reductions of quinones (e.g. 9,10-phenanthrenequinone, 1,4-benzoquinone), aromatic aldehydes (4-nitrobenzaldehyde) and aromatic ketones (4-nitroacetophenone). The dehydrogenase is not inhibited by dicoumarol, disulfiram, hexobarbital or pyrazole. The mechanism of the powerful inhibition of this enzyme by both non-steroidal and steroidal anti-inflammatory drugs [Penning & Talalay (1983) Proc. Natl. Acad. Sci. U.S.A. 80, 4504-4508] was examined with several substrates. Most non-steroidal anti-inflammatory drugs are competitive inhibitors (e.g. Ki for indomethacin, 0.20 microM for 9,10-phenanthrenequinone reduction at pH 6.0, and 0.835 microM for androsterone oxidation at pH 7.0), except for salicylates, which act non-competitively (e.g. Ki for aspirin, 650 microM for androsterone oxidation). The inhibitory potency of these agents falls sharply as the pH is increased from 6 to 9. Most anti-inflammatory steroids are likewise competitive inhibitors, except for the most potent (betamethasone and dexamethasone), which act non-competitively. The enzyme is inhibited competitively by arachidonic acid and various prostaglandins.  相似文献   

3.
We have recently observed that cigarette smoking affects plasma androgen concentrations. The effects of nicotine and cotinine, two products of cigarette smoking, on testosterone metabolism were determined. The activity of delta 4 steroid 5 alpha-reductase, which converts testosterone to 5 alpha-dihydrotestosterone (DHT) was measured in isolated dog prostate nuclei using testosterone (0-200 nM) as substrate and NADPH as cofactor. Activity of 3 alpha-hydroxysteroid dehydrogenase (HSD), which converts DHT to 3 alpha-androstanediol (3 alpha-diol) and is a reversible enzyme, was measured in isolated dog prostate microsomes with DHT (0-20 microM) as substrate and NADPH as cofactor. When microsomal fractions were incubated for 1 hour with and without nicotine (0-50 microM) and cotinine (0-100 microM), enzyme activity of HSD was significantly suppressed (p less than 0.001). The Vmax was not affected significantly (p greater than 0.60) and Km increased with increasing concentrations of nicotine and cotinine (p less than 0.05). Both nicotine and cotinine are competitive inhibitors of HSD in dog prostate microsomes with Ki's of 61 and 89 microM, respectively. The apparent 5 alpha-reductase activity was unaffected by nicotine and cotinine. The inhibitors produced a marked effect on activity of HSD when used in concentrations achieved in humans who smoke cigarettes. The results suggest that nicotine and cotinine are competitive inhibitors of the HSD, an important enzyme involved in the metabolism of DHT and produce an accumulation of DHT. These products of cigarette smoking could alter androgen action in tissue such as skin and prostate.  相似文献   

4.
From the cytosol fraction (supernatant fluid at 105,000 g) of chicken liver, 3 alpha-hydroxysteroid dehydrogenase was purified to an apparently homogeneous state by differential precipitation with ammonium sulfate, followed by column chromatographies with DE 51, DEAE-Toyopearl, and Sephadex G-100. Finally the dehydrogenase was purified 103-fold on the basis of the cytosol fraction. Polyacrylamide gel electrophoretic analysis in the presence of sodium dodecyl sulfate (SDS) revealed that molecular weight of the purified enzyme was 66 kDa, while that of the native dehydrogenase in the absence of SDS was estimated as 660 kDa or more from the peak of the enzyme in elution profile from Sephacryl S-200 column chromatography. The dehydrogenase required NADPH specifically for reduction of 3-oxo group of 5 beta-androstanedione (Km = 1.6 microM). Optimal temperature for 3-oxo reduction was 50 C in incubation for 10 min.  相似文献   

5.
Antiinflammatory agents and estrogens have been tested as inhibitors of two isozymes of guinea pig liver testosterone 17 beta-dehydrogenase (NADP) 1.1.1.64) and rat liver 3 alpha-hydroxysteroid dehydrogenase (EC 1.1.1.50). Antiinflammatory steroids and estradiols were highly inhibitory to 3 alpha-hydroxysteroid dehydrogenase and one isozyme of testosterone 17 beta-dehydrogenase, respectively, but nonsteroidal antiinflammatory agents and nonsteroidal estrogens such as hexestrol, dienstrol, diethylstilbestrol and zearalenone showed potent inhibitions on all the enzymes. Although the inhibitory potency of indomethacin for one isozymes of testosterone 17 beta-dehydrogenase and 3 alpha-hydroxysteroid dehydrogenase decreased with changing pH from 9.7 to 7.0, that of the nonsteroidal estrogens for all the enzymes was little affected by pH. No additive effect in double inhibitor experiments with indomethacin and the nonsteroidal estrogens was observed, and the compounds were all competitive inhibitors with respect to steroidal substrate. The results suggest that there is a very similar region in substrate binding sites of the enzymes.  相似文献   

6.
The in vitro examination of adult male rat prostatic 3alpha-hydroxysteroid dehydrogenase (3alphaOHD) activity using 5alpha-dihydrotestosterone4 as substrate indicates that significant levels of enzyme activity are associated with purified nuclei as well as with the cytosol fractions. Both the purified nuclear and the cytosol fractions exhibited higher levels of 3alphaOHD activity with NADH than with NADPH. The pH activity curves for the NADH and NADPH catalyzed reactions were different for both the nuclear and cytosol fractions. The results suggest the presence of a number of 3alphaOHD enzymes in rat prostate.  相似文献   

7.
The homogeneous 3 alpha-hydroxysteroid dehydrogenase of rat liver cytosol binds prostaglandins with low micromolar affinity at its active site and is competitively inhibited by the non-steroidal and steroidal anti-inflammatory drugs [Penning, Mukharji, Barrows & Talalay (1984) Biochem. J. 222, 601-611]. To examine the portion of this binding site that accommodates the glucocorticoid side chain, we have synthesized 17 beta-bromoacetoxy-5 alpha-dihydrotestosterone (BrDHT) and 21-bromoacetoxydesoxycorticosterone (BrDOC) as affinity-labelling agents. Both these agents promote rapid inactivation of the purified enzyme in a time- and concentration-dependent manner. Analyses of the inactivation progress curves gave estimates of Ki for the inactivators and half-life (t1/2) for the enzyme at saturation (tau) as follows: Ki = 33 microM and tau = 18 s for BrDHT, and Ki = 10 microM and tau = 203 s for BrDOC. Under initial-velocity conditions BrDHT and BrDOC act as competitive inhibitors, yielding Ki values identical with those measured in the inactivation experiments. Both indomethacin and prostaglandin E2 can protect the enzyme from inactivation, yielding Ki values for these ligands consistent with those measured independently by competitive-inhibition studies. These data confirm that the bromoacetoxysteroids label the active site, which is coincident with the prostaglandin- and anti-inflammatory-drug-binding site. Neither gel filtration nor extensive dialysis restores activity to the enzyme inactivated with either affinity-labelling agent. Use of radioactive BrDHT or BrDOC, in which either the steroid portion is labelled with 3H or the bromoacetate portion is labelled with 14C, indicates that inactivation is accompanied by a stoichiometric incorporation of 0.7-1.0 molecules of inhibitor per enzyme monomer. The linkage that forms between the dehydrogenase with either [14C]BrDHT or [14C]BrDOC is stable to acid and base treatment. Complete acid hydrolysis of the enzyme inactivated with [14C]BrDHT, followed by amino acid analyses, indicates that 87% of the radioactivity is eluted with carboxymethylcysteine. An almost identical result is obtained with [14C]BrDOC, where at least 75% of the radioactivity is eluted with this amino acid. Thus BrDHT and BrDOC alkylate at least one reactive cysteine residue at the active site that may be of functional importance in binding the glucocorticoid side chain.  相似文献   

8.
Seven multiforms of indanol dehydrogenase were isolated in a highly purified state from male rabbit liver cytosol. The enzymes were monomeric proteins with similar molecular weights of 30,000-37,000 but with distinct electrophoretic mobilities. All the enzymes oxidized alicyclic alcohols including benzene dihydrodiol and hydroxysteroids at different optimal pH, but showed clear differences in cofactor specificity, steroid specificity, and reversibility of the reaction. Two NADP+-dependent enzymes exhibited both 17 beta-hydroxysteroid dehydrogenase activity for 5 alpha-androstanes and 3 alpha-hydroxysteroid dehydrogenase activity for 5 beta-androstan-3 alpha-ol-17-one. Three of the other enzymes with dual cofactor specificity catalyzed predominantly 5 beta-androstane-3 alpha,17 beta-diol dehydrogenation. The reverse reaction rates of these five enzymes were low, whereas the other two enzymes, which had 3 alpha-hydroxysteroid dehydrogenase activity for 5 alpha-androstanes or 3(17)beta-hydroxysteroid dehydrogenase activity for 5 alpha-androstanes, highly reduced 3-ketosteroids and nonsteroidal aromatic carbonyl compounds with NADPH as a cofactor. All the enzymes exhibited Km values lower for the hydroxysteroids than for the alicyclic alcohols. The results of kinetic analyses with a mixture of 1-indanol and hydroxysteroids, pH and heat stability, and inhibitor sensitivity suggested strongly that, in the seven enzymes, both alicyclic alcohol dehydrogenase and hydroxysteroid dehydrogenase activities reside on a single enzyme protein. On the basis of these data, we suggest that indanol dehydrogenase exists in multiple forms in rabbit liver cytosol and may function in in vivo androgen metabolism.  相似文献   

9.
The effects of monovalent (Li+, Cs+) divalent (Cu2+, Ca2+, Sr2+, Ba2+, Zn2+, Cd2+, Hg2+, Pb2+, Mn2+, Fe2+, Co2+, Ni2+) and trivalent (Cr3+, Fe3+, Al3+) metals ions on hexokinase activity in rat brain cytosol were compared at 500 microM. The rank order of their potency as inhibitors of brain hexokinase was: Cr3+ (IC50 = 1.3 microM) greater than Hg2+ = Al3+ greater than Cu2+ greater than Pb2+ (IC50 = 80 microM) greater than Fe3+ (IC50 = 250 microM) greater than Cd2+ (IC50 = 540 microM) greater than Zn2+ (IC50 = 560 microM). However, at 500 microM Co2+ slightly stimulated brain hexokinase whereas the other metal ions were without effect. That inhibition of brain glucose metabolism may be an important mechanism in the neurotoxicity of metals is suggested.  相似文献   

10.
Homogeneous 3 alpha-hydroxysteroid/dihydrodiol dehydrogenase from rat liver cytosol catalyzes the NAD(P)+-dependent oxidation of non-K-region trans-dihydrodiols of polycyclic aromatic hydrocarbons, many of which are proximate carcinogens. These reactions proceed with Km values in the millimolar range to yield highly reactive o-quinones that can be trapped as thioether adducts [Smithgall, T. E., Harvey, R. G., & Penning, T. M. (1988) J. Biol. Chem. 263, 1814-1820]. The enzymatically generated o-quinones, e.g., naphthalene-1,2-dione and benzo[a]pyrene-7,8-dione are potent inhibitors of the dehydrogenase, yielding IC50 values of 5.0 and 10.0 microM, respectively. Naphthalene-1,2-dione was found to be an efficient irreversible inhibitor of the enzyme and can inactivate equimolar concentrations of the dehydrogenase, yielding a t 1/2 for the enzyme of 10 s or less. By contrast (+/-)-trans-1,2-dihydroxy-1,2-dihydronaphthalene promotes a slower inactivation of the dehydrogenase, yielding a Kd of 70 microM and a limiting rate constant that corresponds to a t 1/2 at saturation of 23.2 min. Inactivation by this dihydrodiol has an obligatory requirement for NADP+. Examination of the kcat for the oxidation of (+/-)-trans-1,2-dihydroxy-1,2-dihydronaphthalene yields a partition ratio for the dihydrodiol of 200,000, suggesting that alkylation from the parent dihydrodiol is a rare occurrence. Benzo[a]pyrene-7,8-dione, which is the product of the enzymatic oxidation of (+/-)-trans-7,8-dihydroxy-7,8-dihydrobenzo[a]pyrene, also promotes a time- and concentration-dependent inactivation of the dehydrogenase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
1. Androgen responsiveness of esteropeptidase of the murine submandibular gland developed rapidly in normal males compared with in normal females and castrated males. 2. Repeated treatments of infant mice of both sexes with testosterone (T), 5 alpha-dihydrotestosterone (DHT) or 5 alpha-androstane-3 alpha, 17 beta-diol increased androgen responsiveness of this enzyme, but did not affect those of 5 alpha-reductase and 3 alpha-hydroxysteroid dehydrogenase (3 alpha-HSDase; androgen metabolizing enzymes) of the gland. 3. Exchange assay of nuclear androgen receptor using 3H-DHT showed that in both sexes, amounts of binding in animals pretreated with T were higher than those in animals pretreated with sesame oil. 4. These results suggest that there is parallelism between the androgen responses and amounts of nuclear androgen binding, not androgen responses of 5 alpha-reductase and 3 alpha-HSDase.  相似文献   

12.
We have purified a steroid-inducible 20 alpha-hydroxysteroid dehydrogenase from Clostridium scindens to apparent homogeneity. The final enzyme preparation was purified 252-fold, with a recovery of 14%. Denaturing and nondenaturing polyacrylamide gradient gel electrophoresis showed that the native enzyme (Mr, 162,000) was a tetramer composed of subunits with a molecular weight of 40,000. The isoelectric point was approximately pH 6.1. The purified enzyme was highly specific for adrenocorticosteroid substrates possessing 17 alpha, 21-dihydroxy groups. The purified enzyme had high specific activity for the reduction of cortisone (Vmax, 280 nmol/min per mg of protein; Km, 22 microM) but was less reactive with cortisol (Vmax, 120 nmol/min per mg of protein; Km, 32 microM) at pH 6.3. The apparent Km for NADH was 8.1 microM with cortisone (50 microM) as the cosubstrate. Substrate inhibition was observed with concentrations of NADH greater than 0.1 mM. The purified enzyme also catalyzed the oxidation of 20 alpha-dihydrocortisol (Vmax, 200 nmol/min per mg of protein; Km, 41 microM) at pH 7.9. The apparent Km for NAD+ was 526 microM. The initial reaction velocities with NADPH were less than 50% of those with NADH. The amino-terminal sequence was determined to be Ala-Val-Lys-Val-Ala-Ile-Asn-Gly-Phe-Gly-Arg. These results indicate that this enzyme is a novel form of 20 alpha-hydroxysteroid dehydrogenase.  相似文献   

13.
Homogeneous 3 alpha-hydroxysteroid dehydrogenase (3 alpha-HSD) from rat liver cytosol displays 9, 11, and 15-hydroxyprostaglandin dehydrogenase activity. Using [14C]-PGF2 alpha as substrate the products of this reaction were separated by TLC and identified by autoradiography as PGE2 and PGB2. The purified enzyme catalyzes this reaction at a rate 200 times faster than cytosol. This corresponds to the rate enhancement observed when the enzyme is purified from cytosol using androsterone (a 3 alpha-hydroxysteroid) as substrate and suggests that it may represent a major 9-hydroxyprostaglandin dehydrogenase in this tissue. Although the 3 alpha-HSD has many properties in common with the 9-hydroxyprostaglandin dehydrogenase of rat kidney, rat kidney contains no protein that is immunodetectable with polyclonal antibody raised against the purified 3 alpha-HSD.  相似文献   

14.
L J Askonas  T M Penning 《Biochemistry》1991,30(49):11553-11560
Nonsteroidal anti-inflammatory drugs (NSAIDs) exert their effect by inhibiting the target enzyme cyclooxygenase (prostaglandin H2 synthase); however, little is known about the peptides comprising its NSAID binding site. Hydroxyprostaglandin dehydrogenases also bind NSAIDs, but their NSAID binding sites have not been well characterized. Using existing synthetic strategies, we have incorporated the bromoacetoxy affinity labeling moiety around the perimeter of two potent NSAIDs, indomethacin and mefenamate, a N-phenylanthranilate. The compounds synthesized were 1-(4-(bromoacetamido)benzyl)-5-methoxy-2-methylindole-3-acetic acid (1), 3-(2-(2-bromoacetoxy)ethyl)-1-(4-chlorobenzyl)-5-methoxy-2-methylindole (2), 4-(bromoacetamido)-N-(2,3-dimethylphenyl)anthranilic acid (3), N-(3-(bromoacetamido)phenyl)-anthranilic acid (4), and N-(4-(bromoacetamido)phenyl)anthranilic acid (5). To access whether these compounds have general utility in labeling NSAID binding sites, the compounds were evaluated as affinity labeling agents for 3 alpha-hydroxysteroid dehydrogenase (3 alpha-HSD) from rat liver cytosol. This enzyme displays 9-, 11-, and 15-hydroxyprostaglandin dehydrogenase activity, is inhibited potently by NSAIDs, and is homologous to bovine lung prostaglandin F synthase. Compounds 1-5 were shown to affinity label the NSAID binding site of 3 alpha-HSD. They inactivated 3 alpha-HSD through an E.I complex in a time- and concentration-dependent manner with t1/2 values ranging from seconds to hours. Ligands that compete for the active site of 3 alpha-HSD (NAD+ and indomethacin) afforded protection against inactivation, and the inactivators could demonstrate competitive kinetics against 3 alpha-hydroxysteroid substrates by forming an E.NAD+.I complex.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
A monomeric 3 alpha-hydroxysteroid dehydrogenase with a molecular weight of 34,000 was purified to apparent homogeneity from mouse liver cytosol. The enzyme catalyzed the reversible oxidation of the 3 alpha-hydroxy group of C19-, C21-, and C24-steroids, reduced a variety of carbonyl compounds, and was inhibited by SH-reagents, synthetic estrogens, anti-inflammatory drugs, prostaglandins, and delta 4-3-ketosteroids. Although these properties are similar to those of the enzyme from rat liver cytosol, the mouse enzyme exhibited low dehydrogenase activity toward benzene dihydrodiol and some alicyclic alcohols, it showed a strict cofactor specificity for NADP(H), and high substrate inhibition was observed in the reverse reaction. In addition, dexamethasone, deoxycorticosterone, and medroxyprogesterone acetate inhibited the mouse enzyme competitively at low concentrations and noncompetitively at high concentrations, whereas hexestrol, indomethacin, and prostaglandin A1 were competitive inhibitors. Steady-state kinetic measurements in both directions indicated that the reaction proceeds through an ordered bi bi mechanism with the cofactors binding to the free enzyme. The 3-ketosteroid substrates inhibited the enzyme uncompetitively at elevated concentrations, suggesting that the substrates bind to the enzyme.NADPH complex and to the enzyme NADP+ complex.  相似文献   

16.
In male sex accessory organs the active androgen 5 alpha-dihydrotestosterone (DHT) is metabolized to 5 alpha-androstane-3 alpha, 17 beta-diol (3 alpha-diol) and 5 alpha-androstane-3 beta, 17 beta-diol (3 beta-diol) by the reductase activities of 3 alpha-hydroxysteroid oxidoreductase (3 alpha-HSOR; EC 1.1.1.50) and 3 beta-hydroxysteroid oxidoreductase (3 beta-HSOR; EC 1.1.1.51). After separation of radiosubstrate and products by HPLC, these enzymes activities in subcellular preparations of rat ventral and dorsolateral prostate were determined from the conversion of [3H]DHT to the radiometabolites 3 alpha-diol and 3 beta-diol and 3 beta-triols (5 alpha-androstane-3 beta, 6 alpha, 17 beta-triol plus 5 alpha-androstane-3 beta, 7 alpha, 17 beta-triol). Whereas both enzymes were found in the dorsolateral prostate, 3 beta-HSOR reductase activity was near the limit of detection in ventral prostate. Unlike the equal distribution of 3 alpha-HSOR reductase between the microsomal and cytosol fractions of the ventral prostate, both 3 alpha- and 3 beta-HSOR reductase activities of the dorsolateral prostate are mainly confined to its cytosol fraction. Km and Vmax of the 3 alpha- and 3 beta-HSOR reductases in dorsolateral prostate cytosol were 1.8 microM, 24.6 pmol.mg-1 min-1 and 25.4 microM, 45.7 pmol.mg-1 min-1, respectively. We surmise from these and earlier studies that 3 beta-HSOR reductase is the rate-limiting prostatic enzyme in the catabolic disposition of intracellular DHT.  相似文献   

17.
This investigation was undertaken to elucidate the amount of oestradiol and duration of its administration necessary to cause complete feminization of the activities of cytoplasmic 3 alpha- and 17 beta-hydroxysteroid dehydrogenase, microsomal 3 alpha- and 3 beta-hydroxysteroid dehydrogenase and microsomal 5 alpha-reductase in male rat liver. With the exception of cytoplasmic 3 alpha-hydroxysteroid dehydrogenase, 5 microgram oestradiol/d for 8 days and less was sufficient to cause complete feminization. The order of oestrogen sensitivity was cytoplasmic 3 alpha-hydroxysteroid dehydrogenase greater than microsomal 3 beta-hydroxysteroid dehydrogenase greater than microsomal 3 alpha-hydroxysteroid dehydrogenase greater than microsomal 5 alpha-reductase greater than cytoplasmic 17 beta-hydroxysteroid dehydrogenase. Although the changes occurring after oestradiol administration are qualitatively the same as after testectomy, they occur more rapidly. This rules out the possibility that oestradiol exerts its effect via androgen deprivation. Diethylstilboestrol administration causes the same changes in cytoplasmic 17 beta- and microsomal 3 beta-hydroxysteroid dehydrogenase activity as oestradiol, although the dosage must be increased 100 fold. The effect of diethylstilboestrol on 5 alpha-reductase activity changes with the dose applied. Doses up to 100 microgram/d partially feminize the activity, but at higher doses the enzyme activity is repressed.  相似文献   

18.
The substrate 16-methylene estra-1,3,5(10)-triene-3,17 beta-diol (16-methylene estradiol-17 beta) and its enzyme-generated alkylating product, 3-hydroxy-16-methylene estra-1,3,5(10)-triene-17-one (16-methylene estrone), were synthesized to study the 17 beta- and 20 alpha-hydroxysteroid dehydrogenase activities which coexist in homogeneous enzyme purified from human placental cytosol. 16-Methylene estradiol, an excellent substrate (Km = 8.0 microM; Vmax = 2.8 mumol/mg/min) when enzymatically oxidized to 16-methylene estrone in the presence of NAD+ (256 microM), inactivates simultaneously the 17 beta- and 20 alpha-activities in a time-dependent and irreversible manner following pseudo-first order kinetics (t1/2 = 1.0 h, 100 microM, pH 9.2). 16-Methylene estradiol does not inactivate the enzyme in the absence of NAD+. 16-Methylene estrone (Km = 2.7 microM; Vmax = 2.9 mumol/mg/min) is an affinity alkylator (biomolecular rate constant k'3 = 63.3 liters/mol-s, pH 9.2; KI = 261 microM; k3 = 8.0 X 10(-4) S-1, pH 7.0) which also simultaneously inhibits both activities in an irreversible time-dependent manner (at 25 microM; t1/2 = 7.2 min, pH 9.2; t1/2 = 2.7 h, pH 7.0). Substrates (estradiol-17 beta, estrone, and progesterone) protect against inhibition of enzyme activity by 16-methylene estrone and 16-methylene estradiol. Affinity radioalkylation studies using 16-methylene [6,7-3H]estrone demonstrate that 1 mol of alkylator binds per mol of inactivated enzyme dimer. Thus, 16-methylene estradiol functions as a unique substrate for the enzymatic generation of a powerful affinity alkylator of 17 beta,20 alpha-hydroxysteroid dehydrogenase and should be a useful pharmacological tool.  相似文献   

19.
The non-steroidal allylic and acetylenic alcohols 1-(4'-nitrophenyl)prop-2-en-1-ol (I) and 1-(4'-nitrophenyl)prop-2-yn-1-ol (II) are oxidized by homogeneous 3 alpha-hydroxysteroid dehydrogenase to the corresponding alpha beta-unsaturated ketones 1-(4'-nitrophenyl)prop-2-en-1-one (III) and 1-(4'-nitrophenyl)prop-2-yn-1-one (IV), which then inactivate the enzyme selectively with high affinity; low effective partition ratios are observed for the parent alcohols [Ricigliano & Penning (1989) Biochem. J. 262, 139-149]. Inactivation of 3 alpha-hydroxysteroid dehydrogenase by compound (I) displays an NAD+ concentration optimum. Scavenging experiments indicate that the enzyme-generated inactivators (III) and (IV) alkylate the enzyme via a release-and-return mechanism. Several lines of evidence suggest that compounds (III) and (IV) covalently modify the NAD(P)(+)-binding site. First, micromolar concentrations of NAD(P)H offer substantial protection against enzyme inactivation mediated by Michael acceptors (III) and (IV). In these protection studies Kd measurements for NAD(P)H approached those measured by fluorescence titration of free enzyme. Secondly, under initial-velocity conditions compounds (III) and (IV) act essentially as competitive inhibitors of NAD+ binding, and as mixed competitive or non-competitive inhibitors against androsterone binding. Thirdly, enzyme inactivated with either compound (III) or compound (IV) fails to bind to NAD+ affinity columns (e.g. Affi-gel Blue). Under the same conditions of chromatography native enzyme and enzyme affinity-labelled at the steroid-binding site with 17 beta-bromoacetoxy-5 alpha-dihydrotestosterone is retained on the affinity column. A kinetic scheme that represents the inactivation of the homogeneous dehydrogenase by the enzyme-generated alkylators (III) and (IV) is presented.  相似文献   

20.
3 alpha-Hydroxysteroid dehydrogenase (3 alpha-HSD) was purified greater than 500-fold from human liver cytosol. The purification was monitored using 5 beta-[3H]dihydrocortisol (5 beta-DHF) as substrate. Electrophoretically homogeneous enzyme was obtained using a procedure that involved ammonium sulfate precipitation and three successive column chromatography steps: DEAE-cellulose, hydroxylapatite and Blue-Sepharose. The enzyme is a monomer since the native molecular weight was found to be 37,000, using a calibrated Sephadex G-75 column, and the denatured subunit molecular weight was determined to be 38,500, by polyacrylamide gel electrophoresis in sodium dodecyl sulfate. The enzyme had a pI of 5.6-5.9. The 3-ketosteroids: cortisol, testosterone, progesterone and androstenedione, were not substrates for 3 alpha-HSD indicating that a saturated 4,5 double bond was required for substrate activity. The conformation at the 5 position, however, did not influence substrate activity since 5 alpha- and 5 beta-DHF and 5 alpha-dihydrotestosterone were all reduced at similar rates. The purified enzyme preferred NADPH to NADH as a cofactor and showed a broad peak of activity in the pH range of 6.8-7.4. The apparent Km for 5 beta-DHF was 18 microM. The enzyme was markedly stabilized by 50 mM phosphate buffer containing 10 to 20% glycerol at 4 degrees C. Freezing and thawing of the enzyme resulted in a large loss of activity during early stages of the purification. This is the first report of the purification to homogeneity of 3 alpha-HSD from human tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号