首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 403 毫秒
1.
It has been frequently reported that vertical impact force peaks during running change only minimally when changing the midsole hardness of running shoes. However, the underlying mechanism for these experimental observations is not well understood. An athlete has various possibilities to influence external and internal forces during ground contact (e.g. landing velocity, geometrical alignment, muscle tuning, etc.). The purpose of this study was to discuss one possible strategy to influence external impact forces acting on the athlete's body during running, the strategy to change muscle activity (muscle tuning). The human body was modeled as a simplified mass-spring-damper system. The model included masses of the upper and the lower bodies with each part of the body represented by a rigid and a non-rigid wobbling mass. The influence of mechanical properties of the human body on the vertical impact force peak was examined by varying the spring constants and damping coefficients of the spring-damper units that connected the various masses. Two types of shoe soles were modeled using a non-linear force deformation model with two sets of parameters based on the force-deformation curves of pendulum impact experiments. The simulated results showed that the regulation of the mechanical coupling of rigid and wobbling masses of the human body had an influence on the magnitude of the vertical impact force, but not on its loading rate. It was possible to produce the same impact force peaks altering specific mechanical properties of the system for a soft and a hard shoe sole. This regulation can be achieved through changes of joint angles, changes in joint angular velocities and/or changes in muscle activation levels in the lower extremity. Therefore, it has been concluded that changes in muscle activity (muscle tuning) can be used as a possible strategy to affect vertical impact force peaks during running.  相似文献   

2.
A new flooring system has been developed to reduce peak impact forces to the hips when humans fall. The new safety floor is designed to remain relatively rigid under normal walking conditions, but to deform elastically when impacted during a fall. Design objectives included minimizing peak force experienced by the femur during a fall-induced impact, while maintaining a maximum of 2 mm of floor deflection during walking. Finite Element Models (FEMs) were developed to capture the complex dynamics of impact response between two deformable bodies. Validation of the finite element models included analytical calculations of theoretical buckling column response, experimental quasi-static loading of full-scale flooring prototypes, and flooring response during walking trials. Finite Element Method results compared well with theoretical and experimental data. Both finite element and experimental data suggest that the proposed safety floor can effectively meet the design goal of 2 mm maximum deflection during walking, while effectively reducing impact forces during a fall.  相似文献   

3.
The aim of this study was to determine the effects that soft tissue motion has on ground reaction forces, joint torques and joint reaction forces in drop landings. To this end a four body-segment wobbling mass model was developed to reproduce the vertical ground reaction force curve for the first 100 ms of landing. Particular attention was paid to the passive impact phase, while selecting most model parameters a priori, thus permitting examination of the rigid body assumption on system kinetics. A two-dimensional wobbling mass model was developed in DADS (version 9.00, CADSI) to simulate landing from a drop of 43 cm. Subject-specific inertia parameters were calculated for both the rigid links and the wobbling masses. The magnitude and frequency response of the soft tissue of the subject to impulsive loading was measured and used as a criterion for assessing the wobbling mass motion. The model successfully reproduced the vertical ground reaction force for the first 100 ms of the landing with a peak vertical ground reaction force error of 1.2% and root mean square errors of 5% for the first 15 ms and 12% for the first 40 ms. The resultant joint forces and torques were lower for the wobbling mass model compared with a rigid body model, up to nearly 50% lower, indicating the important contribution of the wobbling masses on reducing system loading.  相似文献   

4.
The aim of this study was to use a subject-specific seven-link wobbling mass model of a gymnast, and a multi-layer model of a landing mat, to determine landing strategies that minimise ground reaction forces (GRF) and internal forces. Subject-specific strength parameters were determined that defined the maximum voluntary torque/angle/angular velocity relationship at each joint. These relationships were used to produce subject-specific ‘lumped’ linear muscle models for each joint. Muscle activation histories were optimised using a Simplex algorithm to minimise GRF or bone bending moments for forward and backward rotating vault landings. Optimising the landing strategy to minimise each of the GRF reduced the peak vertical and horizontal GRF by 9% for the backward rotating vault and by 8% and 48% for the forward rotating vault, compared to a matching simulation. However, most internal loading measures (bone bending moments, joint reaction forces and muscle forces) increased compared to the matching simulation. Optimising the landing strategy to minimise the peak bone bending moments resulted in reduced internal loading measures, and in most cases reduced GRF. Bone bending moments were reduced by 27% during the forward rotating vault and by 2% during the backward rotating vault landings when compared to the matching simulations. It is possible for a gymnast to modify their landing strategy in order to minimise internal forces and lower GRF. However, using a reduction in GRF, due to a change in landing strategy, as a basis for a reduction in injury potential in vaulting movements may not be appropriate since internal loading can increase.  相似文献   

5.
The objective of this study was to investigate the low-back loading during common patient-handling tasks. Ten female health care workers without formal training in patient handling performed nine patient-handling tasks including turning, lifting and repositioning a male stroke patient. The low-back loading was quantified by net moment, compression, and shear forces at the L4/L5 joint, measured muscle activity (EMG) in erector spinae muscles and rate of perceived exertion (RPE; Borg scale). The experiments were videotaped with a 50Hz video system using five cameras, and the ground and bedside reaction forces of the health care worker were recorded by means of force platforms and force transducers on the bed. The biomechanical load was calculated using a dynamic 3D seven-segment model of the lower part of the body, and the forces at the L4/L5 joint were estimated by a 14 muscles cross-sectional model of the low back (optimisation procedure). Compression force and torque showed high task dependency whereas the EMG data and the RPE values were more dependent on the subject. The peak compression during two tasks involving lifting the patient (4132/4433N) was significantly higher than all other tasks. Four tasks involving repositioning the patient in the bed (3179/3091/2932/3094N) did not differ, but showed higher peak compression than two tasks turning the patient in the bed (1618/2197N). Thus, in this study the patient-handling tasks could be classified into three groups-characterised by lifting, repositioning or turning-with different levels of peak net torque and compression at the L4/L5 joint.  相似文献   

6.
Simple spring-damper-mass models have been widely used to simulate human locomotion. However, most previous models have not accounted for the effect of non-rigid masses (wobbling masses) on impact forces. A simple mechanical model of the human body developed in this study included the upper and lower bodies with each part represented by a rigid and a wobbling mass. Spring-damper units connected different masses to represent the stiffness and damping between the upper and lower bodies, and between the rigid and wobbling masses. The simulated impact forces were comparable to experimentally measured impact forces. Trends in changes of the impact forces due to changes in touch-down velocity reported in previous studies could be reproduced with the model. Simulated results showed that the impact force peaks increased with increasing rigid or wobbling masses of the lower body. The ratio of mass distribution between the rigid and wobbling mass in the lower body was also shown to affect the impact force peak, for example, the impact force peak increased with increasing rigid contribution. The variation in the masses of upper body was shown to have a minimum effect on the impact force peak, but a great effect on the active force peak (the second peak in the ground reaction force). Future studies on the dynamics and neuro-muscular control of human running are required to take into consideration the influence of individual variation in lower body masses and mass distribution.  相似文献   

7.
BACKGROUND: The purpose of this study was to determine how a driver's foot and ankle forces during a frontal vehicle collision depend on initial lower extremity posture and brake pedal force. METHOD OF APPROACH: A 2D musculoskeletal model with seven segments and six right-side muscle groups was used. A simulation of a three-second braking task found 3647 sets of muscle activation levels that resulted in stable braking postures with realistic pedal force. These activation patterns were then used in impact simulations where vehicle deceleration was applied and driver movements and foot and ankle forces were simulated. Peak rearfoot ground reaction force (F(RF)), peak Achilles tendon force (FAT), peak calcaneal force (F(CF)) and peak ankle joint force (F(AJ)) were calculated. RESULTS: Peak forces during the impact simulation were 476 +/- 687 N (F(RF)), 2934 +/- 944 N (F(CF)) and 2449 +/- 918 N (F(AJ)). Many simulations resulted in force levels that could cause fractures. Multivariate quadratic regression determined that the pre-impact brake pedal force (PF), knee angle (KA) and heel distance (HD) explained 72% of the variance in peak FRF, 62% in peak F(CF) and 73% in peak F(AJ). CONCLUSIONS: Foot and ankle forces during a collision depend on initial posture and pedal force. Braking postures with increased knee flexion, while keeping the seat position fixed, are associated with higher foot and ankle forces during a collision.  相似文献   

8.
Low back mechanics are important to quantify to study injury, pain and disability. As in vivo forces are difficult to measure directly, modeling approaches are commonly used to estimate these forces. Validation of model estimates is critical to gain confidence in modeling results across populations of interest, such as people with lower-limb amputation. Motion capture, ground reaction force and electromyographic data were collected from ten participants without an amputation (five male/five female) and five participants with a unilateral transtibial amputation (four male/one female) during trunk-pelvis range of motion trials in flexion/extension, lateral bending and axial rotation. A musculoskeletal model with a detailed lumbar spine and the legs including 294 muscles was used to predict L4-L5 loading and muscle activations using static optimization. Model estimates of L4-L5 intervertebral joint loading were compared to measured intradiscal pressures from the literature and muscle activations were compared to electromyographic signals. Model loading estimates were only significantly different from experimental measurements during trunk extension for males without an amputation and for people with an amputation, which may suggest a greater portion of L4-L5 axial load transfer through the facet joints, as facet loads are not captured by intradiscal pressure transducers. Pressure estimates between the model and previous work were not significantly different for flexion, lateral bending or axial rotation. Timing of model-estimated muscle activations compared well with electromyographic activity of the lumbar paraspinals and upper erector spinae. Validated estimates of low back loading can increase the applicability of musculoskeletal models to clinical diagnosis and treatment.  相似文献   

9.
Evaluating landing technique using a computer simulation model of a gymnast and landing mat could be a useful tool when attempting to assess injury risk. The aims of this study were: (1) to investigate whether a subject-specific torque-driven or a subject-specific muscle-driven model of a gymnast is better at matching experimental ground reaction forces and kinematics during gymnastics landings, (2) to calculate their respective simulation run times and (3) to determine what level of model complexity is required to assess injury risk. A subject-specific planar seven-link wobbling mass model of a gymnast and a multi-layer model of a landing mat were developed for this study. Subject-specific strength parameters were determined which defined the maximum voluntary torque/angle/angular velocity relationship about each joint. This relationship was also used to produce subject-specific 'lumped' muscle models for each joint. Kinetic and kinematic data were obtained during landings from backward and forward rotating gymnastics vaults. Both torque-driven and muscle-driven models were capable of producing simulated landings that matched the actual performances (with overall percentage differences between 10.1% and 18.2%). The torque-driven model underestimated the internal loading on joints and bones, resulting in joint reaction forces that were less than 50% of those calculated using the muscle-driven model. Simulation time increased from approximately 3 min (torque driven) to more than 10 min (muscle driven) as model complexity increased. The selection of a simulation model for assessing injury risk must consider the need for determining realistic internal forces as the priority despite increases in simulation run time.  相似文献   

10.
The force applied to the proximal femur during a fall, and thus hip fracture risk, is dependent on the effective stiffness of the body during impact. Accurate estimates of pelvis stiffness are required to predict fracture risk in a fall. However, the dynamic force–deflection properties of the human pelvis have never been measured in-vivo. Our objectives were to (1) measure the force–deflection properties of the pelvis during lateral impact to the hip, and (2) determine whether the accuracy of a mass-spring model of impact in predicting peak force depends on the characterization of non-linearities in stiffness. We used a sling and electromagnet to release the participant’s pelvis from heights up to 5 cm, simulating low-severity sideways falls. We measured applied loads with a force plate, and pelvis deformation with a motion capture system. In the 5 cm trials peak force averaged 1004 (SD 115) N and peak deflection averaged 26.3 (5.1) mm. We observed minimal non-linearities in pelvic force–deflection properties characterized by an 8% increase in the coefficient of determination for non-linear compared to linear regression equations fit to the data. Our model consistently overestimated peak force (by 49%) when using a non-linear stiffness equation, while a piece-wise non-linear fit (non-linear for low forces, linear for loads exceeding 300 N) predicted peak force to within 1% at our highest drop height. This study has important implications for mathematical and physical models of falls, including mechanical systems that assess the biomechanical effectiveness of protective devices aimed at reducing hip fracture risk.  相似文献   

11.
Sideways falls onto the hip are a major cause of femoral fractures in the elderly. Martial arts (MA) fall techniques decrease hip impact forces in sideways falls. The femoral fracture risk, however, also depends on the femoral loading configuration (direction and point of application of the force). The purpose of this study was to determine the effect of fall techniques, landing surface and fall height on the impact force and the loading configuration in sideways falls. Twelve experienced judokas performed sideways MA and Block ('natural') falls on a force plate, both with and without a judo mat on top. Kinematic and force data were analysed to determine the hip impact force and the loading configuration. In falls from a kneeling position, the MA technique reduced the impact force by 27%, but did not change the loading configuration. The use of the mat did not change the loading configuration. Falling from a standing changed the force direction. In all conditions, the point of application was distal and posterior to the greater trochanter, but it was less distal and more posterior in falls from standing than from kneeling position. The present decrease in hip impact force with an unchanged loading configuration indicates the potential protective effect of the MA technique on the femoral fracture risk. The change in loading configuration with an increased fall height warrant further studies to examine the effect of MA techniques on fall severity under more natural fall circumstances.  相似文献   

12.
Impact forces and shock deceleration during jumping and running have been associated with various knee injury etiologies. This study investigates the influence of jump height and knee contact angle on peak ground reaction force and segment axial accelerations. Ground reaction force, segment axial acceleration, and knee angles were measured for 6 male subjects during vertical jumping. A simple spring-mass model is used to predict the landing stiffness at impact as a function of (1) jump height, (2) peak impact force, (3) peak tibial axial acceleration, (4) peak thigh axial acceleration, and (5) peak trunk axial acceleration. Using a nonlinear least square fit, a strong (r = 0.86) and significant (p < or = 0.05) correlation was found between knee contact angle and stiffness calculated using the peak impact force and jump height. The same model also showed that the correlation was strong (r = 0.81) and significant (p < or = 0.05) between knee contact angle and stiffness calculated from the peak trunk axial accelerations. The correlation was weaker for the peak thigh (r = 0.71) and tibial (r = 0.45) axial accelerations. Using the peak force but neglecting jump height in the model, produces significantly worse correlation (r = 0.58). It was concluded that knee contact angle significantly influences both peak ground reaction forces and segment accelerations. However, owing to the nonlinear relationship, peak forces and segment accelerations change more rapidly at smaller knee flexion angles (i.e., close to full extension) than at greater knee flexion angles.  相似文献   

13.
It is not presently clear whether mathematical models used to estimate leg stiffness during human running are valid. Therefore, leg stiffness during the braking phase of ground contact of running was calculated directly using synchronous kinematic (high-speed motion analysis) and kinetic (force platform) analysis, and compared to stiffness calculated using four previously published kinetic models. Nineteen well-trained male middle distance runners (age=21.1±4.1yr; VO(2max)=69.5±7.5mlO(2)kg(-1)min(-1)) completed a series of runs of increasing speed from 2.5 to 6.5ms(-1). Leg stiffness was calculated directly from kinetic-kinematic analysis using both vertical and horizontal forces to obtain the resultant force in the line of leg compression (Model 1). Values were also estimated using four previously published mathematical models where only force platform derived and anthropometric measures were required (Models 2-5; Morin et al., 2005, Morin et al., 2011, Blum et al., 2009, Farley et al., 1993, respectively). The greatest statistical similarity between leg stiffness values occurred with Models 1 and 2. The poorest similarity occurred when values from Model 4 were compared with Model 1. Analyses suggest that the poor correlation between Model 1 other models may have resulted from errors in the estimation in change in leg length during the braking phase. Previously published mathematical models did not provide accurate leg stiffness estimates, although Model 2, used by Morin et al. (2005), provided reasonable estimates that could be further improved by the removal of systematic error using a correction factor (K=1.0496K(Model2)).  相似文献   

14.
Anterior cruciate ligament (ACL) injury commonly occurs during single limb landing or stopping from a run, yet the conditions that influence ACL strain are not well understood. The purpose of this study was to develop, test and apply a 3D specimen-specific dynamic simulation model of the knee designed to evaluate the influence of deceleration forces during running to a stop (single-leg landing) on ACL strain. This work tested the conceptual development of the model by simulating a physical experiment that provided direct measurements of ACL strain during vertical impact loading (peak value 1294N) with the leg near full extension. The properties of the soft tissue structures were estimated by simulating previous experiments described in the literature. A key element of the model was obtaining precise anatomy from segmented MR images of the soft tissue structures and articular geometry for the tibiofemoral and patellofemoral joints of the knee used in the cadaver experiment. The model predictions were correlated (Pearson correlation coefficient 0.889) to the temporal and amplitude characteristic of the experimental strains. The simulation model was then used to test the balance between ACL strain produced by quadriceps contraction and the reductions in ACL strain associated with the posterior braking force. When posterior forces that replicated in vivo conditions were applied, the peak ACL strain was reduced. These results suggest that the typical deceleration force that occurs during running to a single limb landing can substantially reduce the strain in the ACL relative to conditions associated with an isolated single limb landing from a vertical jump.  相似文献   

15.
When the foot impacts the ground in running, large forces and loading rates can arise that may contribute to the development of overuse injuries. Investigating which biomechanical factors contribute to these impact loads and loading rates in running could assist clinicians in developing strategies to reduce these loads. Therefore, the goals of our work were to determine variables that predict the magnitude of the impact peak and loading rate during running, as well as to investigate how modulation of knee and hip muscle activity affects these variables. Instrumented gait analysis was conducted on 48 healthy subjects running at 3.3 m/s on a treadmill. The top four predictors of loading rate and impact peak were determined using a stepwise multiple linear regression model. Forward dynamics was performed using a whole body musculoskeletal model to determine how increased muscle activity of the knee flexors, knee extensors, hip flexors, and hip extensors during swing altered the predictors of loading rate and impact peak. A smaller impact peak was associated with a larger downward acceleration of the foot, a higher positioned foot, and a decreased downward velocity of the shank at mid-swing while a lower loading rate was associated with a higher positioned thigh at mid-swing. Our results suggest that an alternative to forefoot striking may be increased hip flexor activity during swing to alter these mid-swing kinematics and ultimately decrease the leg's velocity at landing. The decreased velocity would decrease the downward momentum of the leg and hence require a smaller force at impact.  相似文献   

16.
The evaluation of three-dimensional occlusal loading during biting and chewing may assist in development of new dental materials, in designing effective and long-lasting restorations such as crowns and bridges, and for evaluating functional performance of prosthodontic components such as dental and/or maxillofacial implants. At present, little is known about the dynamic force and pressure distributions at the occlusal surface during mastication, as these quantities cannot be measured directly. The aim of this study was to evaluate subject-specific occlusal loading forces during mastication using accurate jaw motion measurements. Motion data was obtained from experiments in which an individual performed maximal effort dynamic chewing cycles on a rubber sample with known mechanical properties. A finite element model simulation of one recorded chewing cycle was then performed to evaluate the deformation of the rubber. This was achieved by imposing the measured jaw motions on a three-dimensional geometric surface model of the subject’s dental impressions. Based on the rubber’s deformation and its material behaviour, the simulation was used to compute the resulting stresses within the rubber as well as the contact pressures and forces on the occlusal surfaces. An advantage of this novel modelling approach is that dynamic occlusal pressure maps and biting forces may be predicted with high accuracy and resolution at each time step throughout the chewing cycle. Depending on the motion capture technique and the speed of simulation, the methodology may be automated in such a way that it can be performed chair-side. The present study demonstrates a novel modelling methodology for evaluating dynamic occlusal loading during biting or chewing.  相似文献   

17.
Wrist loading patterns during pommel horse exercises   总被引:1,自引:0,他引:1  
Gymnastics is a sport which involves substantial periods of upper extremity support as well as frequent impacts to the wrist. Not surprisingly, wrist pain is a common finding in gymnasts. Of all events, the pommel horse is the most painful. In order to study the forces of wrist impact, a standard pommel horse was instrumented with a specially designed load cell to record the resultant force of the hand on the pommel during a series of basic skills performed by a group of seventeen elite male gymnasts. The highest mean peak forces were recorded during the front scissors and flair exercises (1.5 BW) with peaks of up to 2.0 BW for some gymnasts. The mean peak force for hip circles at the center or end of the horse was 1.1 BW. The mean overall loading rate (initial contact to first loading peak) ranged from 5.2 BWs-1 (hip circles) to 10.6 BW s-1 (flairs). However, many recordings displayed localized initial loading spikes which occurred during 'hard' landings on the pommel. When front scissors were performed in an aggressive manner, the initial loading spikes averaged 1.0 BW in magnitude (maximum 1.8 BW) with an average rise time of 8.2 ms; calculated localized loading rates averaged 129 BW s-1 (maximum 219 BW s-1). These loading parameters are comparable to those encountered at heel strike during running. These impact forces and loading rates are remarkably high for an upper extremity joint not normally exposed to weight-bearing loads, and may contribute to the pathogenesis of wrist injuries in gymnastics.  相似文献   

18.
Many research groups have studied fall impact mechanics to understand how fall severity can be reduced to prevent hip fractures. Yet, direct impact force measurements with force plates are restricted to a very limited repertoire of experimental falls. The purpose of this study was to develop a generic model for estimating hip impact forces (i.e. fall severity) in in vivo sideways falls without the use of force plates.Twelve experienced judokas performed sideways Martial Arts (MA) and Block (‘natural’) falls on a force plate, both with and without a mat on top. Data were analyzed to determine the hip impact force and to derive 11 selected (subject-specific and kinematic) variables. Falls from kneeling height were used to perform a stepwise regression procedure to assess the effects of these input variables and build the model.The final model includes four input variables, involving one subject-specific measure and three kinematic variables: maximum upper body deceleration, body mass, shoulder angle at the instant of ‘maximum impact’ and maximum hip deceleration. The results showed that estimated and measured hip impact forces were linearly related (explained variances ranging from 46 to 63%). Hip impact forces of MA falls onto the mat from a standing position (3650 ± 916 N) estimated by the final model were comparable with measured values (3698 ± 689 N), even though these data were not used for training the model. In conclusion, a generic linear regression model was developed that enables the assessment of fall severity through kinematic measures of sideways falls, without using force plates.  相似文献   

19.
Rotator cuff tear (RCT) in older adults may cause decreased muscle forces and disrupt the force balance at the glenohumeral joint, compromising joint stability. Our objective was to identify how increased RCT severity affects glenohumeral joint loading and muscle activation patterns using a computational model. Muscle volume measurements were used to scale a nominal upper limb model’s peak isometric muscle forces to represent force-generating characteristics of an average older adult male. Increased RCT severity was represented by systematically decreasing peak isometric muscle forces of supraspinatus, infraspinatus, and subscapularis. Five static postures in both scapular and frontal planes were evaluated. Results revealed that in both scapular and frontal planes, the peak glenohumeral joint contact force magnitude remained relatively consistent across increased RCT severity (average 1.5% and −4.2% change, respectively), and a relative balance of the transverse force couple is maintained even in massive RCT models. Predicted muscle activations of intact muscles, like teres minor, increased (average 5–30% and 4–17% in scapular and frontal planes, respectively) with greater RCT severity. This suggests that the system is prioritizing glenohumeral joint stability, even with severe RCT, and that unaffected muscles play a compensatory role to help stabilize the joint.  相似文献   

20.
The purpose of this study was to predict and explain the pattern of shear force and ligament loading in the ACL-deficient knee during walking, and to compare these results to similar calculations for the healthy knee. Musculoskeletal modeling and computer simulation were combined to calculate ligament forces in the ACL-deficient knee during walking. Joint angles, ground-reaction forces, and the corresponding lower-extremity muscle forces obtained from a whole-body dynamic optimization simulation of walking were input into a second three-dimensional model of the lower extremity that represented the knee as a six degree-of-freedom spatial joint. Anterior tibial translation (ATT) increased throughout the stance phase of gait when the model ACL was removed. The medial collateral ligament (MCL) was the primary restraint to ATT in the ACL-deficient knee. Peak force in the MCL was three times greater in the ACL-deficient knee than in the ACL-intact knee; however, peak force sustained by the MCL in the ACL-deficient knee was limited by the magnitude of the total anterior shear force applied to the tibia. A decrease in anterior tibial shear force was brought about by a decrease in the patellar tendon angle resulting from the increase in ATT. These results suggest that while the MCL acts as the primary restraint to ATT in the ACL-deficient knee, changes in patellar tendon angle reduce total anterior shear force at the knee.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号