首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
While beta-propeller phytases (BPPs) from Gram-positive bacteria do not carry disulfide bonding, their counterparts from Gram-negative bacteria contain cysteine residues that may form disulfide bonds. By molecular modeling, two amino acid residues of B. subtilis 168 phytase (168PhyA), Ser-161 and Leu-212, were mutated to cysteine residues. Although the double cysteine mutant was secreted from B. subtilis at an expression level that was 3.5 times higher than that of the wild type, the biochemical and enzymatic properties were unaltered. In CD spectrometric analysis, both enzymes exhibited similar apparent melting temperatures and mid-points of transition under thermal and guanidine hydrochloride induced denaturation, respectively. In enzyme assays, the mutant phytase exhibited a poor refolding ability after thermal denaturation. We postulate that the disulfide bond in BPP sequences from Gram-negative bacteria is beneficial to their stability in the periplasmic compartment. In contrast, the lack of periplasmic space in Bacillus species and the fact that Bacillus BPPs are released extracellularly may render disulfide bonds unnecessary. This may explain why in evolution, BPPs in Bacillus species do not carry disulfide bonds.  相似文献   

2.
Disulfide bonds between the side chains of cysteine residues are the only common crosslinks in proteins. Bovine pancreatic ribonuclease A (RNase A) is a 124-residue enzyme that contains four interweaving disulfide bonds (Cys26-Cys84, Cys40-Cys95, Cys58-Cys110, and Cys65-Cys72) and catalyzes the cleavage of RNA. The contribution of each disulfide bond to the conformational stability and catalytic activity of RNase A has been determined by using variants in which each cystine is replaced independently with a pair of alanine residues. Thermal unfolding experiments monitored by ultraviolet spectroscopy and differential scanning calorimetry reveal that wild-type RNase A and each disulfide variant unfold in a two-state process and that each disulfide bond contributes substantially to conformational stability. The two terminal disulfide bonds in the amino-acid sequence (Cys26-Cys84 and Cys58-Cys110) enhance stability more than do the two embedded ones (Cys40-Cys95 and Cys65-Cys72). Removing either one of the terminal disulfide bonds liberates a similar number of residues and has a similar effect on conformational stability, decreasing the midpoint of the thermal transition by almost 40 degrees C. The disulfide variants catalyze the cleavage of poly(cytidylic acid) with values of kcat/Km that are 2- to 40-fold less than that of wild-type RNase A. The two embedded disulfide bonds, which are least important to conformational stability, are most important to catalytic activity. These embedded disulfide bonds likely contribute to the proper alignment of residues (such as Lys41 and Lys66) that are necessary for efficient catalysis of RNA cleavage.  相似文献   

3.
Human alpha defensins are a class of antimicrobial peptides with additional antiviral activity. Such antimicrobial peptides constitute a major part of mammalian innate immunity. Alpha defensins contain six cysteines, which form three well defined disulfide bridges under oxidizing conditions. Residues C3-C31, C5-C20, and C10-C30 form disulfide pairs in the native structure of the peptide. The major tissue in which HD5 is expressed is the crypt of the small intestine, an anaerobic niche that should allow for substantial pools of both oxidized and (partly) reduced HD5. We used ion mobility coupled to mass spectrometry to track the structural changes in HD5 upon disulfide bond reduction. We found evidence of stepwise unfolding of HD5 with sequential reduction of the three disulfide bonds. Alkylation of free cysteines followed by tandem mass spectrometry of the corresponding partially reduced states revealed a dominant pathway of reductive unfolding. The majority of HD5 unfolds by initial reduction of C5-C20, followed by C10-C30 and C3-C31. We find additional evidence for a minor pathway that starts with reduction of C3-C31, followed by C5-C20 and C10-C30. Our results provide insight into the pathway and conformational landscape of disulfide bond reduction in HD5.  相似文献   

4.
Previous studies have predicted five disulfide bonds in Aspergillus niger phytase (phy A). To investigate the role of disulfide bonds, intrinsic fluorescence spectra, far-ultraviolet circular dichroism (CD) spectra, and an enzyme activity assay were used to compare the differences of catalytic activity and conformational stability of phytase during denaturation in urea in the presence and absence of dithiothreitol (DTT). In the presence of 2 mM DTT, the inactivation and unfolding were greatly enhanced at the same concentration of denaturant. The fluorescence emission maximum red shift and decreases of ellipticity at 222 nm were in accord with the changes of catalytic activity. The kinetics of the unfolding courses were a biphasic process consisting of two first-order reactions in the absence of DTT and a monophasic process of a first-order reaction in the presence of DTT. The results suggested that the loss of enzymatic activity was most likely because of a conformational change, and that disulfide bonds played an important role in three-dimensional structure and catalytic activity.  相似文献   

5.
Dendritic cells (DCs) respond to microbial infections by undergoing phenotypic maturation and by producing multiple cytokines. In the present study, we analyzed the ability of influenza A and Sendai viruses to induce DC maturation and activate tumor necrosis factor alpha (TNF-alpha), alpha/beta interferon (IFN-alpha/beta), and IFN-like interleukin-28A/B (IFN-lambda2/3) and IL-29 (IFN-lambda1) gene expression in human monocyte-derived myeloid DCs (mDC). The ability of influenza A virus to induce mDC maturation or enhance the expression of TNF-alpha, IFN-alpha/beta, interleukin-28 (IL-28), and IL-29 genes was limited, whereas Sendai virus efficiently induced mDC maturation and enhanced cytokine gene expression. Influenza A virus-induced expression of TNF-alpha, IFN-alpha, IFN-beta, IL-28, and IL-29 genes was, however, dramatically enhanced when cells were pretreated with IFN-alpha. IFN-alpha priming led to increased expression of Toll-like receptor 3 (TLR3), TLR7, TLR8, MyD88, TRIF, and IFN regulatory factor 7 (IRF7) genes and enhanced influenza-induced phosphorylation and DNA binding of IRF3. Influenza A virus also enhanced the binding of NF-kappaB to the respective NF-kappaB elements of the promoters of IFN-beta and IL-29 genes. In mDC IL-29 induced MxA protein expression and possessed antiviral activity against influenza A virus, although this activity was lower than that of IFN-alpha or IFN-beta. Our results show that in human mDCs viruses can readily induce the expression of IL-28 and IL-29 genes whose gene products are likely to contribute to the host antiviral response.  相似文献   

6.
Vertebrates have multiple genes encoding Type I interferons (IFN), for reasons that are not fully understood. The Type I IFN appear to bind to the same heterodimeric receptor and the subtypes have been shown to have different potencies in various experimental systems. To put this concept on a quantitative basis, we have determined the binding affinities and rate constants of 12 human Alpha-IFN subtypes to isolated interferon receptor chains 1 and 2. Alpha-IFNs bind IFNAR1 and IFNAR2 at affinities of 0.5–5 μM and 0.4–5 nM respectively (except for IFN-alpha1 – 220 nM). Additionally we have examined the biological activity of these molecules in several antiviral and antiproliferative models. Particularly for antiproliferative potency, the binding affinity and activity correlate. However, the EC50 values differ significantly (1.5 nM versus 0.1 nM for IFN-alpha2 in WISH versus OVCAR cells). For antiviral potency, there are several instances where the relationship appears to be more complicated than simple binding. These results will serve as a point of reference for further understanding of this multiple ligand/receptor system.  相似文献   

7.
S Chatterjee  P Burns    J Koga 《Journal of virology》1995,69(2):1315-1318
Pretreatment of human neuroblastoma cells with an inhibitor of protein kinase C (PKC), staurosporine or H-7, prior to the addition of human alpha interferon (HuIFN-alpha), recombinant HuIFN-alpha, or recombinant HuIFN-beta blocked the inhibitory effect of these IFNs on the release of infectious herpes simplex virus type 1 from treated cells. In addition, staurosporine blocked the inhibitory effect of HuIFNs on the expressions of herpes simplex type 1 glycoproteins B, C, and D in treated neuroblastoma cells. Furthermore, addition of HuIFNs resulted in an increased expression of PKC in treated neuroblastoma cells. These results suggest that inhibitors of PKC block the expression of HuIFN-induced genes in treated human neuroblastoma cells. Thus, the activation of PKC is an important step in the HuIFN-treated cells of neuronal origin.  相似文献   

8.
Cys-59 and Cys-62, forming a disulfide bond in the four-residue loop of Shewanella violacea cytochrome c 5 (SV cytc 5), contribute to protein stability but not to redox function. These Cys residues were substituted with Ala in SV cytc 5, and the structural and functional properties of the resulting C59A/C62A variant were determined and compared with those of the wild-type. The variant had similar features to those of the wild-type in absorption, circular dichroic, and paramagnetic 1H NMR spectra. In addition, the redox potentials of the wild-type and variant were essentially the same, indicating that removal of the disulfide bond from SV cytc 5 does not affect the redox function generated in the vicinity of heme. However, calorimetric analysis of the wild-type and variant showed that the mutations caused a drastic decrease in the protein stability through enthalpy, but not entropy. Four residues are encompassed by the SV cytc 5 disulfide bond, which is the shortest one that has been proved to affect protein stability. The protein stability of SV cytc 5 can be controlled without changing the redox function, providing a new strategy for regulating the stability and function of cytochrome c.  相似文献   

9.
Antiviral activity of human lymphocytic interferon under conditions of increased oxygen levels in the cell culture was studied. It was found that oxygen had a capacity for increasing the antiviral effect of human interferon in homologous cells. When 20-80% air was replaced by oxygen the interferon titers on an average amounted to 1:113.4-1:124.8 against 1:29.1 in the control. This means that the average titer of interferon in the experiments with oxygen was 4 times higher than that in the control. On the basis of these data it is recommended using interferon in the form of aerosols in conjunction with oxygen for the treatment of viral respiratory infections.  相似文献   

10.
The introduction of a disulfide bond into the neutral protease from Bacillus stearothermophilus by the double mutation G8C/N60C had resulted in an extremely thermostable enzyme with a half-life of 35.9 min at 92.5 degrees C [Mansfeld, J., Vriend, G., Dijkstra, B.W., Veltman, O.R., van den Burg, B., Venema, G., Ulbrich-Hofmann, R. & Eijsink, V.G. (1997) J. Biol. Chem. 272, 11152-11156]. The study in guanidine hydrochloride of this enzyme and the respective wild-type enzyme allowed us to distinguish between the stability toward global unfolding and autoproteolysis. At low protease concentrations (20 microg.mL-1) and short periods of incubation with guanidine hydrochloride (5 min), transition curves without the interference by autoproteolysis could be derived from fluorescence emission measurements. The effect of the disulfide bond on the global unfolding of the protein proved to be smaller than expected. In contrast, the measurement of autoproteolysis at higher protein concentrations (100 microg.mL-1) by quantitative evaluation of the bands of intact protein on SDS/PAGE revealed a strong stabilization toward autoproteolytic degradation by the disulfide bond. The rate of autoproteolysis in guanidine hydrochloride was found to be much lower than that of thermal denaturation, which can be attributed to the inhibition of the proteases by this denaturant. The results suggest that the disulfide bond stabilizes the protease against autoproteolysis more than against global unfolding. Autoproteolysis starts as soon as the cleavage sites in flexible external structural regions become accessible. It is suggested that the stabilizing effect of the disulfide bond is caused by the fixation of the crucial loop region 56-69 or by hindrance of the primary cleavage in this region by the amino acid exchanges.  相似文献   

11.
Chloride-dependent alpha-amylases constitute a well conserved family of enzymes thereby allowing investigation of the characteristics of each member to understand, for example, relevant properties required for environmental adaptation. In this context, we have constructed a double mutant (Q58C/A99C) of the cold-active and heat-labile alpha-amylase from the Antarctic bacterium Pseudoalteromonas haloplanktis, defined on the basis of its strong similarity with the mesophilic enzyme from pig pancreas. This mutant was characterized to understand the role of an extra disulfide bond specific to warm-blooded animals and located near the entrance of the catalytic cleft. We show that the catalytic parameters of the mutant are drastically modified and similar to those of the mesophilic enzyme. Calorimetric studies demonstrated that the mutant is globally stabilized (DeltaDeltaG = 1.87 kcal/mol at 20 degrees C) when compared with the wild-type enzyme, although the melting point (T(m)) was not increased. Moreover, fluorescence quenching experiments indicate a more compact structure for the mutated alpha-amylase. However, the strain imposed on the active site architecture induces a 2-fold higher thermal inactivation rate at 45 degrees C as well as the appearance of a less stable calorimetric domain. It is concluded that stabilization by the extra disulfide bond arises from an enthalpy-entropy compensation effect favoring the enthalpic contribution.  相似文献   

12.
Many normal human nasal secretions contain an inhibitor of human fibroblast IF. This inhibitor had no effect on human leukocyte IF. The amount of inhibition of fibroblast IF increased with increasing quantities of nasal secretions. Also, the inhibition could be overcome with increasing concentrations of IF.  相似文献   

13.
Human leukocyte and tritium-labeled fibroblast interferons, prepared by induction with Sendai virus and with double-stranded polyinosinic acid.polycytidylic acid respectively, have been studied in relation to the carbohydrate moieties attached to them. These interferons were partially purified by immunoabsorbance and by gel filtration. On treatment with glycosidases, about 80% of the 3H-labeled sugar moieties in this glycoprotein-containing fraction was removed without detectable alteration of the antiviral activity or antibody-binding properties characteristic of interferon. The molecular weight of leukocyte interferon was reduced by about 4000. As others have reported, the heterogeneous character of interferon revealed by isoelectric focusing was greatly reduced by the enzyme treatment.  相似文献   

14.
There are two hydrogen bonding interactions (N138ND2-Q106O and Y54OH-S141OG) between the C-terminal region and the main body of staphylococcal nuclease (SNase). To examine the role of these hydrogen bonds, SNase(141) and its three mutants, SNase(141)N138D, SNase(141)S141A, and SNase(141)N138D/S141A, were created. The N138D mutation has the N138ND2-Q106O interaction deleted and the S141A mutation has the Y54OH-S141OG and S141OG-N138O interactions deleted. The conformational features, stability, and activity of the proteins have been compared by using circular dichroism, intrinsic and ANS-binding fluorescence, GdnHCl-induced denaturation, and activity assay. The results clearly show that the N138D mutation significantly alters the secondary and tertiary structures of the protein, producing a partially unfolding state; in contrast, the S141A mutation has no such effect on structure. These results strongly suggest that the specific hydrogen bond, N138ND2-Q106O, plays an important role in maintaining the conformational integrity and stability of the nuclease.  相似文献   

15.
Two peptides, IFN-(125-129) (RITLY-I) and [Arg7]IFN-(125-131) (RITLYLR-II), belonging to the putative immunologically active region of interferon alpha A (IFN) were synthesised by the solid-phase method. Both peptides suppress the delayed-type hypersensitivity reaction in vivo as assayed in mice. The peptide (II) either suppresses (0.01-0.1 mg/kg) or stimulates (approximately 1.0 mg/kg) antibody production in mice in response to sheep red blood cells.  相似文献   

16.
Ovalbumin, which contains one intrachain disulfide bond and four cysteine sulfhydryls, was reduced with dithiothreitol under non-denaturing conditions, and its conformation and stability were compared with those of the disulfide-bonded form. The CD spectrum in the far-UV region revealed that the overall conformation of the reduced form is similar to that of the disulfide-bonded one. Likewise, the inaccessibility to trypsin and the non-reactivity of the four cysteine sulfhydryls, exhibited by the native disulfide-bonded ovalbumin, were still retained in the disulfide-reduced form. Thus, the reduced ovalbumin appeared to substantially take the native-like conformation. However, the near-UV CD spectrum slightly differed between the native and disulfide-reduced forms. Protein alkylation with a fluorescent dye and subsequent sequence analysis showed that the two sulfhydryls (Cys73 and Cys120) originating from the disulfide bond are highly reactive in the reduced form. Furthermore, upon proteolysis with subtilisin, the N-terminal side of Cys73 was cleaved in the reduced form, but not in the disulfide-bonded one. Upon heat denaturation, the transition temperature of the reduced form was lower, by 6.8 degrees C, than that of the disulfide-bonded one. Thus, we concluded that ovalbumin has a native-like conformation in its disulfide-reduced form, but that the local conformation of the reduced form fluctuates more than that of the disulfide-bonded one. Such local destabilization may be related to the decreased stability against heat denaturation.  相似文献   

17.
Arai M  Hamel P  Kanaya E  Inaka K  Miki K  Kikuchi M  Kuwajima K 《Biochemistry》2000,39(12):3472-3479
Human lysozyme has four disulfide bonds, one of which, Cys65-Cys81, is included in a long loop of the beta-domain. A cysteine-scanning mutagenesis in which the position of Cys65 was shifted within a continuous segment from positions 61 to 67, with fixed Cys81, has previously shown that only the mutant W64CC65A, which has a nonnative Cys64-Cys81 disulfide, can be correctly folded and secreted by yeast. Here, using the W64CC65A mutant, we investigated the effects of an alternative disulfide bond on the structure, stability, and folding of human lysozyme using circular dichroism (CD) and fluorescence spectroscopy combined with a stopped-flow technique. Although the mutant is expected to have a different main-chain structure from that of the wild-type protein around the loop region, far- and near-UV CD spectra show that the native state of the mutant has tightly packed side chains and secondary structure similar to that of the wild-type. Guanidine hydrochloride-induced equilibrium unfolding transition of the mutant is reversible, showing high stability and cooperativity of folding. In the kinetic folding reaction, both proteins accumulate a similar burst-phase intermediate having pronounced secondary structure within the dead time of the measurement and fold into the native structure by means of a similar folding mechanism. Both the kinetic refolding and unfolding reactions of the mutant protein are faster than those of the wild-type, but the increase in the unfolding rate is larger than that of the refolding rate. The Gibbs' free-energy diagrams obtained from the kinetic analysis suggest that the structure around the loop region in the beta-domain of human lysozyme is formed after the transition state of folding, and thus, the effect of the alternative disulfide bond on the structure, stability, and folding of human lysozyme appears mainly in the native state.  相似文献   

18.
The role of a S-S cross-link in the conformational stability of xylanase fromHumicola lanuginosa has been investigated using CD, UV absorption spectroscopy, and RIA displacement studies. Our studies show that reduction and carboxymethylation of the S-S cross-link in xylanase results in a gross conformational perturbation of the protein. The secondary structure analysis of the CD spectra indicates that the xylanase with an intact S-S contains 66% -sheet structure and remaining random coil. Cleavage of the S-S bond results in a loss of 25% -sheet structure. Thermal denaturation studies using CD spectroscopy andpH-dependent tyrosine ionization studies using UV spectroscopy show that the presence of disulfide cross-link offers resistance against unfolding by extremes of temperature andpH. Further, we demonstrate that the heat-induced changes in xylanase with intact S-S bond are almost totally reversible, while those in the S-S cleaved enzyme fail to show any significant reversal. Our studies support the present theory that S-S cross-links exert their stabilizing effect in proteins by destabilizing the unfolded state of the protein and forcing it back to a more folded state.  相似文献   

19.
20.
Chicken cystatin (cC) mutant I66Q is located in the hydrophobic core of the protein and increases the propensity for amyloid formation. Here, we demonstrate that under physiological conditions, the replacement of Ile with the Gln in the I66Q mutant increases the susceptibility for the disulfide bond Cys71–Cys81 to be reduced when compared to the wild type (WT) cC. Molecular dynamics (MD) simulations under conditions favoring cC amyloid fibril formation are in agreement with the experimental results. MD simulations were also performed to investigate the impact of disrupting the Cys71–Cys81 disulfide bond on the conformational stability of cC at the atomic level, and highlighted major disruption to the cC appendant structure. Domain swapping and extensive unfolding has been proposed as one of the possible mechanisms initiating amyloid fibril formation by cystatin. Our in silico studies suggest that disulfide bond formation between residues Cys95 and Cys115 is necessary to maintain conformational stability of the I66Q mutant following breakage of the Cys71–Cys81 disulfide bridge. Subsequent breakage of disulfide bond Cys95–Cys115 resulted in large structural destabilization of the I66Q mutant, which increased the α–β interface distance and expanded the hydrophobic core. These experimental and computational studies provide molecular-level insight into the relationship between disulfide bond formation and progressive unfolding of amyloidogenic cC mutant I66Q.

An animated Interactive 3D Complement (I3DC) is available in Proteopedia at http://proteopedia.org/w/Journal:JBSD:23  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号