首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Dopamine inhibits angiotensin II-stimulated aldosterone production by an effect on the late phase of biosynthesis. This study was undertaken to investigate the effect of dopamine on potassium-stimulated aldosterone biosynthesis in adrenal glomerulosa cells in vitro. As potassium concentrations were increased from 0 to 12 mM, aldosterone production increased up to 6 mM potassium, but not beyond this concentration. Dopamine (10(-5)M) inhibited the aldosterone response to potassium. The effect of potassium on pregnenolone accumulation (the early phase of aldosterone biosynthesis) was assessed in cells treated with trilostane which inhibits the conversion of pregnenolone onward to aldosterone. Increasing potassium concentrations up to 12 mM gave increasing pregnenolone accumulation; however dopamine did not influence this effect. The potassium stimulated conversion of corticosterone to aldosterone, an index of activity in the late phase of aldosterone biosynthesis, was assessed using aminoglutethimide to prevent cholesterol side-chain cleavage. Significantly more corticosterone was converted to aldosterone at 6 mM potassium than at 0 or 12 mM; dopamine inhibited the conversion of corticosterone to aldosterone at 6 mM potassium. These data indicate that dopamine inhibits potassium-stimulated aldosterone production by an effect restricted to the late phase of the aldosterone biosynthetic pathway similar to its previously established effect on angiotensin II-stimulated aldosterone biosynthesis.  相似文献   

2.
The relationship between aldosterone production and prosta-glandin E2 synthesis was evaluated using the responses of isolated rat adrenal glomerulosa cells to angiotensin II, ACTH and potassium. Simultaneous PGE2 and aldosterone measurements were made during timed incubations with these stimuli, and in incubations with arachidonic acid, meclofenamate, indomethacin, and aminoglutethamide. PGE2 and aldosterone production were assessed by radioimmunoassay. We were not able to demonstrate stimulation of PGE2 by angiotensin II, ACTH, or potassium despite significant increments in aldosterone production with these stimuli. Arachidonic acid enhanced PGE2 synthesis, but had no effect on aldosterone realease. Indomethacin and meclofenamate inhibited aldosterone secretion. Aminoglutethimide depressed aldosterone production, but had little effect on PGE2 levels in the media. These studies demonstrate that dienoic prostaglandins play no direct role in aldosterone production stimulated by angiotensin II, ACTH, or potassium in rat adrenal glomerulosa cells. Since inhibitors of cyclo-oxygenase decreased aldosterone synthesis, it is possible that fatty acids other than arachidonic acid may be cyclo-oxygenated to products which regulate aldosterone production.  相似文献   

3.
The relationship between aldosterone production and prostaglandin E2 synthesis was evaluated using the responses of isolated rat adrenal glomerulosa cells to angiotensin II, ACTH and potassium. Simultaneous PGE2 and aldosterone measurements were made during timed incubations with these stimuli, and in incubations with arachidonic acid, meclofenamate, indomethacin, and aminoglutethamide. PGE2 and aldosterone production were assessed by radioimmunoassay. We were not able to demonstrate stimulation of PGE2 by angiotensin II, ACTH, or potassium despite significant increments in aldosterone production with these stimuli. Arachidonic acid enhanced PGE2 synthesis, but had no effect on aldosterone release. Indomethacin and meclofenamate inhibited aldosterone secretion. Aminoglutethimide depressed aldosterone production, but had little effect on PGE2 levels in the media.These studies demonstrate that dienoic prostaglandins play no direct role in aldosterone production stimulated by angiotensin II, ACTH, or potassium in rat adrenal glomerulosa cells. Since inhibitors of cyclo-oxygenase decreased aldosterone synthesis, it is possible that fatty acids other than arachidonic acid may be cyclo-oxygenated to products which regulate aldosterone production.  相似文献   

4.
5.
It has been shown that serine proteases are involved in aldosterone and 18-hydroxycorticosterone production by the rat adrenal zona glomerulosa in response to a variety of stimulants. From evidence presented for various tissues, including the rat adrenal cortex, the observation that adenylate cyclase can be activated by proteolytic enzymes and inhibited by protease inhibitors has led to the suggestion that serine proteases may also be involved in the hormonal stimulation of adenylate cyclase. In studies designed to test this hypothesis using protease inhibitors, only high concentrations (greater than 10(-4) M) of TAME (p-tosyl-L-arginine methyl ester) inhibited ACTH stimulated steroid and cAMP production in rat adrenal glomerulosa cells. TPCK (tosyl-L-phenylalanine chloromethylketone) and TLCK (tosyl-L-lysine chloromethylketone) were found to have a similar effect at very high concentrations (10(-2) M) but had no effect at the serine protease inhibitory concentration of 5 X 10(-6) M. Other protease inhibitors tested had no effect on ACTH-stimulated cAMP but the inhibitory effect of high concentrations of protease inhibitors on ACTH-stimulated adenylate cyclase was duplicated by the polyanion dextran sulphate. The results suggest that the inhibitors act through non-specific membrane effects and that proteases are not involved in the activation of zona glomerulosa adenylate cyclase by ACTH. In view of these findings it is concluded that a more rigorous approach should be applied to the use of protease inhibitors in whole cell systems, and that the concept of hormonal activation of adenylate cyclase via proteolytic events, which is based on studies with such inhibitors, should be reconsidered.  相似文献   

6.
A method is described for preparing monolayer cultures of zona glomerulosa cells isolated from the rat adrenal cortex. Aldosterone and corticosterone were secreted by the cultures when maintained with medium containing 11 mM K+. ACTH, while stimulating aldosterone biosynthesis at first, did not maintain its long-term secretion, yet caused corticosterone production to rise to a steadily maintained level. The significance of this effect is discussed.  相似文献   

7.
G protein-coupled receptors (GPCRs) such as angiotensin II, bradykinin and endothelin-1 (ET-1) are critically involved in the regulation of adrenal function, including aldosterone production from zona glomerulosa cells. Whereas, substantial data are available on the signaling mechanisms of ET-1 in cardiovascular tissues, such information in adrenal glomerulosa cells is lacking. Bovine adrenal glomerulosa (BAG) cells express receptors for endothelin-1 (ET-1) and their stimulation caused phosphorylation of Src (at Tyr416), proline-rich tyrosine kinase (Pyk2 at Tyr402), extracellularly regulated signal kinases (ERK1/2), and their dependent proteins, p90 ribosomal S6 kinase (RSK-1) and CREB. ET-1 elicited these responses predominantly through activation of a Gi-linked cascade with a minor contribution from the Gq/PKC pathway. Whereas, selective inhibition of EGF-R kinase with AG1478 caused complete inhibition of EGF-induced ERK/RSK-1/CREB activation, it caused only partial reduction (30–40%) of such ET-1-induced responses. Consistent with this, inhibition of matrix metalloproteinases (MMPs) with GM6001 reduced ERK1/2 activation by ET-1, consistent with partial involvement of the MMP-dependent EGF-R activation in this cascade. Activation of ERK/RSK-1/CREB by both ET-1 and EGF was abolished by inhibition of Src, indicating its central role in ET-1 signaling in BAG cells. Moreover, the signaling characteristics of ET-1 in cultured BAG cells closely resembled those observed in clonal adrenocortical H295R cells. The ET-1-induced proliferation of BAG and H295 R cells was much smaller than that induced by Ang II or FGF. These data demonstrate that ET-1 causes ERK/RSK-1/CREB phosphorylation predominantly through activation of Gi and Src, with a minor contribution from MMP-dependent EGF-R transactivation.  相似文献   

8.
The plasma-membrane receptors, coupling mechanisms, and effector enzymes that mediate target-cell activation by angiotensin II (AII) have been characterized in rat and bovine adrenal glomerulosa cells. The AII holoreceptor is a glycoprotein of Mr approximately 125,000 under non-denaturing conditions. Photoaffinity labeling of AII receptors with azido-AII derivatives has shown size heterogeneity among the AII binding sites between species and target tissues, with Mr values of 55,000 to 79,000. Such variations in molecular size probably reflect differences in carbohydrate content of the individual receptor sites. The adrenal AII receptor, like that in other tissues, is coupled to the inhibitory guanine nucleotide inhibitory protein (Ni). However, studies with pertussis toxin have shown that stimulation of aldosterone production by AII is not mediated by Ni but by a pertussis-insensitive nucleotide regulatory protein of unidentified nature. Although Ni is not involved in the stimulatory action of AII on steroidogenesis, it does mediate the inhibitory effects of high concentrations of AII upon aldosterone production. The actions of AII on adrenal cortical function are thus regulated by at least two guanine nucleotide regulatory proteins that are selectively activated by increasing AII concentrations. The principal effector enzyme in AII action is phospholipase C, which is rapidly stimulated in rat and bovine glomerulosa after AII receptor activation. AII-induced breakdown of phosphatidylinositol bisphosphate (PIP2) and phosphatidylinositol phosphate (PIP) leads to formation of inositol 1,4,5-trisphosphate (IP3) and inositol 1,4-bisphosphate (IP2). These are metabolized predominantly to inositol-4-monophosphate, which serves as a marker of polyphosphoinositide breakdown, whereas inositol-1-phosphate is largely derived from phosphatidylinositol hydrolysis. The AII-stimulated glomerulosa cell also produces inositol 1,3,4-trisphosphate, a biologically inactive IP3 isomer formed from Ins-1,4,5-trisphosphate via inositol tetrakisphosphate (IP4) during ligand activation in several calcium-dependent target cells. The Ins-1,4,5-P3 formed during AII action binds with high affinity to specific intracellular receptors that have been characterized in the bovine adrenal gland and other AII target tissues, and may represent the sites through which IP3 causes calcium mobilization during the initiation of cellular responses.  相似文献   

9.
Bovine adrenal glomerulosa (AZG) cells were shown to express bTREK-1 background K(+) channels that set the resting membrane potential and couple angiotensin II (ANG II) receptor activation to membrane depolarization and aldosterone secretion. Northern blot and in situ hybridization studies demonstrated that bTREK-1 mRNA is uniformly distributed in the bovine adrenal cortex, including zona fasciculata and zona glomerulosa, but is absent from the medulla. TASK-3 mRNA, which codes for the predominant background K(+) channel in rat AZG cells, is undetectable in the bovine adrenal cortex. In whole cell voltage clamp recordings, bovine AZG cells express a rapidly inactivating voltage-gated K(+) current and a noninactivating background K(+) current with properties that collectively identify it as bTREK-1. The outwardly rectifying K(+) current was activated by intracellular acidification, ATP, and superfusion of bTREK-1 openers, including arachidonic acid (AA) and cinnamyl 1-3,4-dihydroxy-alpha-cyanocinnamate (CDC). Bovine chromaffin cells did not express this current. In voltage and current clamp recordings, ANG II (10 nM) selectively inhibited the noninactivating K(+) current by 82.1 +/- 6.1% and depolarized AZG cells by 31.6 +/- 2.3 mV. CDC and AA overwhelmed ANG II-mediated inhibition of bTREK-1 and restored the resting membrane potential to its control value even in the continued presence of ANG II. Vasopressin (50 nM), which also physiologically stimulates aldosterone secretion, inhibited the background K(+) current by 73.8 +/- 9.4%. In contrast to its potent inhibition of bTREK-1, ANG II failed to alter the T-type Ca(2+) current measured over a wide range of test potentials by using pipette solutions of identical nucleotide and Ca(2+)-buffering compositions. ANG II also failed to alter the voltage dependence of T channel activation under these same conditions. Overall, these results identify bTREK-1 K(+) channels as a pivotal control point where ANG II receptor activation is transduced to depolarization-dependent Ca(2+) entry and aldosterone secretion.  相似文献   

10.
11.
Somatostatin (SRIF) is a potent inhibitor of angiotensin II (AII)-stimulated aldosterone production in rat adrenal glomerulosa cells. This inhibition can be prevented by pretreatment of the cells with pertussis toxin, but little else is known about either the specificity or the biochemical bases of SRIF action in this tissue. We therefore conducted detailed studies of the influence of SRIF on steroidogenesis elicited by AII and the other two physiological stimuli of aldosterone production, K+ and adrenocorticotropic hormone (ACTH), in rat adrenal glomerulosa cells. We also determined the effects of SRIF on cytosolic calcium concentration ([Ca2+]i) and cellular cAMP levels. In these studies, SRIF was found to inhibit the aldosterone responses elicited by low concentrations of all three stimuli, which are believed to promote steroid secretion via discrete but interacting cellular signalling mechanisms. In addition, SRIF consistently lowered cellular cAMP levels in the presence of each of the three agents. However, SRIF caused a small and transient increase rather than a decrease in basal ([Ca2+]i), and had no effect on the subsequent elevation of ([Ca2+]i) by AII and K+. These data indicate that activation of a Gi-like protein by SRIF influences steroid responses to all three major regulators of glomerulosa-cell function, and suggest that basal levels of cAMP play a facilitatory or permissive role in the control of aldosterone production by predominantly calcium-mobilizing regulators of mineralocorticoid secretion.  相似文献   

12.
Direct effects of heparin (0.1-10 IU/ml) on basal and stimulated aldosterone production have been studied using intact rat adrenal glomerulosa cells. Heparin at any dose did not affect basal aldosterone production when added to the incubation medium. Heparin at a 0.01 IU/ml dose had no effect on aldosterone production maximally stimulated by angiotensin II (AII, 4.8 X 10(-8) M), ACTH (4.3 X 10(-9) M) or potassium (8.0 mM). However, heparin at 0.1 and 0.3 IU/ml doses selectively blocked aldosterone production maximally stimulated by AII but not by ACTH or potassium, while the compound at 1 and 10 IU/ml doses inhibited aldosterone production maximally stimulated by these three stimuli. In addition, the inhibitory effect of 0.3 IU/ml heparin occurred as early as 30 min after incubation with heparin. These data suggest that heparin at 0.1 and 0.3 IU/ml doses acts directly on adrenal zona glomerulosa to selectively block the stimulatory action of AII, while the compound at 1 and 10 IU/ml doses inhibits all the stimulatory actions of AII, ACTH and potassium.  相似文献   

13.
In adrenal zona glomerulosa cells, calcium entry is crucial for aldosterone production and secretion. This influx is stimulated by increases of extracellular potassium in the physiological range of concentrations and by angiotensin II (Ang II). The high threshold voltage-activated (L-type) calcium channels have been shown to be the major mediators for the rise in cytosolic free calcium concentration, [Ca2+]c, observed in response to a depolarisation by physiological potassium concentrations. Paradoxically, both T- and L-type calcium channels have been shown to be negatively modulated by Ang II after activation by a sustained depolarisation. While the modulation of T-type channels involves protein kinase C (PKC) activation, L-type channel inhibition requires a pertussis toxin-sensitive G protein. In order to investigate the possibility of additional modulatory mechanisms elicited by Ang II on L-type channels, we have studied the effect of PKC activation or tyrosine kinase inhibition. Neither genistein or MDHC, two strong inhibitors of tyrosine kinases, nor the phorbol ester PMA, a specific activator of PKC, affected the Ang II effect on the [Ca2+]c response and on the Ba2+ currents elicited by cell depolarisation with the patch-clamp method. We propose a model describing the mechanisms of the [Ca2+]c modulation by Ang II and potassium in bovine adrenal glomerulosa cells.  相似文献   

14.
The present study was designed to examine the effect of angiotensin on both the early and the late phases of aldosterone biosynthesis. In order to isolate the early phase (the formation of pregnelone). it was necessary to identify an agent that would inhibit the 3β-hydroxysteroid dehydrogenase, 4–5 eneisomerase enzyme system which facilitates the conversion of pregnenolone to progesterone. Such an agent was found in trilostane. Treatment of zona glomerulosa cells with trilostane resulted in accumulation of pregnenolone, and the addition of angiotensin increased the accumulation of pregnenolone still further. This observation demonstrates that angiotensin stimulates aldosterone biosynthesis at a point prior to pregnenolone formation.The late phase of aldosterone biosynthesis was isolated by using aminoglutethimide to inhibit the formation of pregnenolone by cells of the zona glomerulosa. Aldosterone was formed when aldosterone precursors occurring in the biosynthetic pathway from pregnenolone onward were added. When angiotensin was added along with deoxycorticosterone, the conversion of deoxycorticosterone to aldosterone was enhanced (P < 0.05). This observation demonstrates that angiotensin stimulates aldosterone formation at a point distal to deoxycorticosterone formation. Thus, angiotensin stimulates aldosterone biosynthesis at at least 2 independent points, one early and one late in the biosynthetic pathway.  相似文献   

15.
The effect of prostaglandin E (PGE) on aldosterone release and the mechanism of action of PGE in mediating the release of aldosterone were studied using isolated rat glomerulosa cells. PGE1 stimulated aldosterone release in a dose-dependent fashion at concentrations between 10(-8) and 10(-6) M and caused approximately a two-fold increase over the basal aldosterone level at 10(-6) M. A significant and dose-dependent increase in cAMP production was also produced by PGE1 at concentrations greater than 10(-8) M. Aldosterone release induced by 10(-7) M or 10(-6) M PGE2 was significantly reduced by a competitive receptor blocking PG-antagonist, SC 19220 (10(-7) M), but not affected by (Sar1, Ileu8)-angiotensin-II (A-II), a competitive inhibitor of A-II. PGE-stimulated aldosterone release was almost completely abolished by depleting the extracellular Ca2+ by EGTA, or by verapamil, a Ca2+-channel blocker or W-7, a calmodulin inhibitor. These findings suggest that PGE stimulates aldosterone release through the membrane receptor binding and activation of adenylate cyclase and that Ca2+-calmodulin system plays an essential role in mediating the steroidogenic action of PGE in the adrenal glomerulosa cells. However, the physiological significance of PGE in the regulation of aldosterone secretion remains to be elucidated.  相似文献   

16.
The mineralocorticoid aldosterone plays an important role in the regulation of plasma electrolyte homeostasis. Exposure of acutely isolated rat adrenal zona glomerulosa cells to elevated K(+) activates voltage-gated calcium channels and initiates a calcium-dependent increase in aldosterone synthesis. We developed a novel 96-well format aldosterone secretion assay to rapidly evaluate the effect of known T- and L-type calcium channel antagonists on K(+)-stimulated aldosterone secretion and better define the role of voltage-gated calcium channels in this process. Reported T-type antagonists, mibefradil and Ni(2+), and selected L-type antagonist dihydropyridines, inhibited K(+)-stimulated aldosterone synthesis. Dihydropyridine-mediated inhibition occurred at concentrations which had no effect on rat alpha1H T-type Ca(2+) currents. In contrast, below 10 microM, the L-type antagonists verapamil and diltiazem showed only minimal inhibitory effects. To examine the selectivity of the calcium channel antagonist-mediated inhibition, we established an aldosterone secretion assay in which 8Br-cAMP stimulates aldosterone secretion independent of extracellular calcium. Mibefradil remained inhibitory in this assay, while the dihydropyridines had only limited effects. Taken together, these data demonstrate a role for the L-type calcium channel in K(+)-stimulated aldosterone secretion. Further, they confirm the need for selective T-type calcium channel antagonists to better address the role of T-type channels in K(+)-stimulated aldosterone secretion.  相似文献   

17.
18.
19.
When angiotensin II stimulates aldosterone secretion, it causes a rapid but transient mobilization of calcium from an intracellular pool and a sustained increase in the influx of calcium in adrenal glomerulosa cells. The present studies were undertaken to determine the respective roles of the two angiotensin II-induced changes in cellular calcium metabolism in modulating events during the sustained phase of cellular response which is thought to be mediated by the C-kinase branch of the calcium messenger system. The sustained response to angiotensin II is only 50% of maximal in cells pretreated with dantrolene in a concentration sufficient to inhibit the angiotensin II-induced mobilization of intracellular calcium. Also, if A23187 is added to cells simultaneously with 1-oleoyl-2-acetylglycerol (OAG), the aldosterone secretory response is similar to that seen after angiotensin II. However, if A23187 is added first and the transient aldosterone secretory response allowed to decay, and OAG then added, the sustained aldosterone secretory response is only 45-50% of maximal. Addition of the calcium channel agonist, BAY K 8644, with OAG leads to an aldosterone secretory response which is only 50% of maximal, but if upon addition of OAG and BAY K 8644 the cells are also exposed for 5 min to media containing 8 mM K+, then the sustained secretory response is maximal. These data imply that the initial transient rise in the [Ca2+] of the cell cytosol plays a role in determining the extent to which C-kinase is shifted from its calcium-insensitive to its calcium-sensitive form. The second group of experiments examined the relationship between the sustained angiotensin II-induced increase in plasma membrane calcium influx and the sustained aldosterone secretory response. The results show that in the presence of 1 microM nitrendipine or 2 mM extracellular K+, angiotensin II causes no increase in calcium influx and only a transient rather than a sustained increase in the rate of aldosterone secretion indicating that the sustained phase of the response is dependent upon a continued high rate of Ca2+ influx which regulates the rate of turnover of the activated C-kinase.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号