首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Theory that takes rigorous account of antibody bivalence in the characterization of immunospecific reactions by kinetic exclusion assay is presented. In addition to reinforcing the basic correctness of quantitative expressions currently being used for the determination of dissociation constants (Kd) by this method, the current study highlights a requirement for conformity of the system with critical assumptions/approximations therein. Published results for the interaction between the extracellular domain of human insulin-like growth factor (hIGFR) and anti-hIGFR are used to illustrate aspects of the theoretical predictions for a system to which those assumptions/approximations may well apply; and those for a cadmium–ethylenediaminetetraacetic acid (Cd–EDTA) antibody interaction to emphasize the consequences of adopting the same analytical procedure in a situation where one of those assumptions does not apply. The major weakness of current protocols for the characterization of antigen–antibody interactions by kinetic exclusion assay is an absence of any check on the likely magnitude of the probability of antibody capture by the affinity beads—a parameter that needs to be 5% or lower for validity of the quantitative expression on which the analysis is based.  相似文献   

2.
Our understanding of the energetics that govern antigen–antibody recognition lags behind the increasingly rapid accumulation of structural information on antigen–antibody complexes. Thanks to the development of highly sensitive microcalorimeters, the thermodynamic parameters of antigen–antibody interactions can now be measured with precision and using only nanomole quantities of protein. The method of choice is isothermal titration calorimetry, in which a solution of the antibody (or antigen) is titrated with small aliquots of the antigen (or antibody) and the heat change accompanying the formation of the antigen–antibody complex is measured with a sensitivity as high as 0.1 μcal s−1. The free energy of binding (ΔG), the binding enthalpy (ΔH), and the binding entropy (ΔS) are usually obtained from a single experiment, and no spectroscopic or radioactive label must be introduced into the antigen or antibody. The often large and negative change in heat capacity (ΔCp) accompanying the formation of an antigen–antibody complex is obtained from ΔHmeasured at different temperatures. The basic theory and the principle of the measurements are reviewed and illustrated by examples. The thermodynamic parameters relate to the dynamic physical forces that govern the association of the freely moving antigen and antibody into a well-structured and unique complex. This information complements the static picture of the antigen–antibody complex that results from X-ray diffraction analysis. Attempts to correlate dynamic and static aspects are discussed briefly.  相似文献   

3.
The reliable assessment of monoclonal antibody (mAb) affinity against membrane proteins in vivo is a major issue in the development of cancer therapeutics. We describe here a simple and highly sensitive method for the evaluation of mAbs against membrane proteins by means of a kinetic exclusion assay (KinExA) in combination with our previously developed membrane protein display system using budded baculovirus (BV). In our BV display system, the membrane proteins are displayed on the viral surface in their native form. The BVs on which the liver cancer antigen Roundabout 1 (Robo1) was displayed were adsorbed onto magnetic beads without fixative (BV beads). The dissociation constant (Kd, ∼10−11 M) that was measured on the Robo1 expressed BV beads correlated well with the value from a whole cell assay (the coefficient of determination, R2 = 0.998) but not with the value for the soluble extracellular domains of Robo1 (R2 = 0.834). These results suggest that the BV–KinExA method described here provides a suitably accurate Kd evaluation of mAbs against proteins on the cell surface.  相似文献   

4.
In biological systems, weak-affinity interactions (association constant, Ka, of less than approximately 104 M −1) between biomolecules are common and essential to the integrity of such units. However, studies of weak biological interactions are difficult due to the scarcity of analytical methods available for the bioscientist. In this communication, we report on the use of biosensors based on surface plasmon resonance to detect and characterize weak affinity antibody–antigen interactions. Monoclonal antibodies towards carbohydrate antigens were immobilized on sensor surfaces and were used to detect weak binding of the carbohydrate tetraglucose of dissociation constant, Kd, in the millimolar range. Sensorgrams were received in the form of square pulses where the kinetic rate constants were difficult to assess due to the rapid association and dissociation of the antigen to/from the immobilized antibody. © 1997 John Wiley & Sons, Ltd.  相似文献   

5.
ObjectiveTo describe a three-time-point method for estimating kinetic parameters involved in 64Cu-labeled Ramucirumab (64Cu-NOTA-RamAb) trapping of VEGFR-2 positive lung tumors.Materials and methodsPositron emission tomography (microPET) data of tumor-bearing mice for 64Cu-NOTA-RamAb trapping in VEGFR-2 positive HCC4006 tumor were used, involving tissue activity measurements acquired at 3, 24 and 48 h post-injection, without and with administration of RamAb blocking dose. A kinetic model provided an analytical formula describing the tissue time-activity-curve, involving 64Cu-NOTA-RamAb uptake (Ki), release rate constant (kR) and fraction of free tracer in blood and interstitial volume (F).ResultsFitting analytical formula outcomes on mean microPET data yielded values of the kinetic parameters: Ki = 0.0314/0.0123 gram of blood per hour per gram of tissue, kR = 0.0387/0.0313 h−1 and F = 0.2075/0.2007 gram of blood per gram of tissue, without/with RamAb blocking dose, respectively (R = 0.99999 for the graph displaying microPET versus theoretical data; P < .01).ConclusionsThree independent kinetic parameters (Ki, kR and F) can be assessed from three data points acquired at early, mid and late imaging, i.e., at 3, 24 and 48 h post-injection, for further characterization of 64Cu-NOTA-RamAb trapping in VEGFR-2 positive lung tumors.  相似文献   

6.
Monoclonal antibodies (mAbs) are a growing segment of therapeutics, yet their in vitro characterization remains challenging. While it is essential that a therapeutic mAb recognizes the native, physiologically occurring epitope, the generation and selection of mAbs often rely on the use of purified recombinant versions of the antigen that may display non-native epitopes. Here, we present a method to measure both, the binding affinity of a therapeutic mAb towards its native unpurified antigen in human serum, and the antigen’s endogenous concentration, by combining the kinetic exclusion assay and Biacore’s calibration free concentration analysis. To illustrate the broad utility of our method, we studied a panel of mAbs raised against three disparate soluble antigens that are abundant in the serum of healthy donors: proprotein convertase subtilisin/kexin type 9 (PCSK9), progranulin (PGRN), and fatty acid binding protein (FABP4). We also determined the affinity of each mAb towards its purified recombinant antigen and assessed whether the interactions were pH-dependent. Of the six mAbs studied, three did not appear to discriminate between the serum and recombinant forms of the antigen; one mAb bound serum antigen with a higher affinity than recombinant antigen; and two mAbs displayed a different affinity for serum antigen that could be explained by a pH-dependent interaction. Our results highlight the importance of taking pH into account when measuring the affinities of mAbs towards their serum antigens, since the pH of serum samples becomes increasingly alkaline upon aerobic handling.  相似文献   

7.
The classical methods for quantifying drug–target residence time (tR) use loss or regain of enzyme activity in progress curve kinetic assays. However, such methods become imprecise at very long residence times, mitigating the use of alternative strategies. Using the NAD(P)H-dependent FabI enoyl-acyl carrier protein (enoyl-ACP) reductase as a model system, we developed a Penefsky column-based method for direct measurement of tR, where the off-rate of the drug was determined with radiolabeled [adenylate-32P]NAD(P+) cofactor. In total, 23 FabI inhibitors were analyzed, and a mathematical model was used to estimate limits to the tR values of each inhibitor based on percentage drug–target complex recovery following gel filtration. In general, this method showed good agreement with the classical steady-state kinetic methods for compounds with tR values of 10 to 100 min. In addition, we were able to identify seven long tR inhibitors (100–1500 min) and to accurately determine their tR values. The method was then used to measure tR as a function of temperature, an analysis not previously possible using the standard kinetic approach due to decreased NAD(P)H stability at elevated temperatures. In general, a 4-fold difference in tR was observed when the temperature was increased from 25 to 37 °C.  相似文献   

8.
Antibodies are widely used not only as therapeutic agents but also as research tools and diagnostic agents, and extensive efforts have been made to generate antibodies that have higher affinity. It was recently reported that introduction of charged residues into the framework region of an antibody improved its affinity; however, the underlying molecular mechanism has not been elucidated. In this study, we used kinetic and thermodynamic analyses of the antibody–antigen interaction to investigate the molecular mechanism by which an antibody with introduced charged residues recognizes its antigen with higher affinity. The introduction of basic amino acid residues resulted in improvement of the affinity whereas the introduction of acidic residues weakened the interaction. For two mutant antigen-binding fragments (Fabs) with improved affinity (named K5- and R5-mutants), the balance between the association rate constant kon and the dissociation rate constant koff was distinct despite each mutant having the same number of charged residues. Moreover, thermodynamic analysis of the interactions in the transition state revealed a difference between the K5- and R5-mutants in terms of enthalpic energy change following formation of the encounter complex with the antigen. These results suggest that the affinity of the K5- and R5-mutants is improved by distinct mechanisms. Although the mutations destabilize the Fab and necessitate further studies, our strategy is expected to become a versatile and simple means to improve the affinity of antibodies to their antigens.  相似文献   

9.
We present the crystal structure and biophysical characterization of a human VL [variable domain immunoglobulin (Ig) light chain] single-domain intrabody that binds to the huntingtin (Htt) protein and has been engineered for antigen recognition in the absence of its intradomain disulfide bond, otherwise conserved in the Ig fold. Analytical ultracentrifugation demonstrated that the αHtt-VL 12.3 domain is a stable monomer under physiological conditions even at concentrations > 20 μM. Using peptide SPOT arrays, we identified the minimal binding epitope to be EKLMKAFESLKSFQ, comprising the N-terminal residues 5-18 of Htt and including the first residue of the poly-Gln stretch. X-ray structural analysis of αHtt-VL both as apo protein and in the presence of the epitope peptide revealed several interesting insights: first, the role of mutations acquired during the combinatorial selection process of the αHtt-VL 12.3 domain—initially starting from a single-chain Fv fragment—that are responsible for its stability as an individually soluble Ig domain, also lacking the disulfide bridge, and second, a previously unknown mode of antigen recognition, revealing a novel paratope. The Htt epitope peptide adopts a purely α-helical structure in the complex with αHtt-VL and is bound at the base of the complementarity-determining regions (CDRs) at the concave β-sheet that normally gives rise to the interface between the VL domain and its paired VH (variable domain Ig heavy chain) domain, while only few interactions with CDR-L1 and CDR-L3 are formed. Notably, this noncanonical mode of antigen binding may occur more widely in the area of in vitro selected antibody fragments, including other Ig-like scaffolds, possibly even if a VH domain is present.  相似文献   

10.

Aims

Root respiration is a major contributor to soil CO2 flux, and its response to management practices needs to be evaluated. The aim was to determine the effect of management practices (tillage systems and nitrogen fertilization levels) on root respiration and to develop a model able to simulate root respiration and its components.

Methods

The study was carried out during two contrasting growing seasons (2007–2008 and 2008–2009). Root respiration, including root tissue respiration (R ts ) and rhizomicrobial respiration of exudates (R rz ), was estimated as the difference between the soil CO2 flux of cropped and bare soil (the so-called root exclusion technique). Additionally a novel sub-model of R ts , was used to simulate root respiration based on root growth and specific root respiration rates.

Results

Root respiration was reduced under no-tillage. The model agreed well with the patterns and the amounts of the observed values of root respiration, although prior calibration was needed.

Conclusions

Root respiration was reduced by the long-term adoption of no-tillage, but was increased by N fertilizer. The root exclusion technique and the model were useful means to estimate root respiration on cropland under semiarid Mediterranean conditions. Additionally the model successfully separated out the theoretical contributions of R ts and R rz to root respiration.  相似文献   

11.
Axial and Radial Hydraulic Resistance to Roots of Maize (Zea mays L.)   总被引:14,自引:4,他引:10       下载免费PDF全文
A root pressure probe was employed to measure hydraulic properties of primary roots of maize (Zea mays L.). The hydraulic conductivity (Lpr) of intact root segments was determined by applying gradients of hydrostatic and osmotic pressure across the root cylinder. In hydrostatic experiments, Lpr was constant along the segment except for an apical zone of approximately 20 millimeters in length which was hydraulically isolated due to a high axial resistance. In osmotic experiments, Lpr decreased toward the base of the roots. Lpr (osmotic) was significantly smaller than Lpr (hydrostatic). At various distances from the root tip, the axial hydraulic resistance per unit root length (Rx) was measured either by perfusing excised root segments or was estimated according to Poiseuille's law from cross-sections. The calculated Rx was smaller than the measured Rx by a factor of 2 to 5. Axial resistance varied with the distance from the apex due to the differentiation of early metaxylem vessels. Except for the apical 20 millimeters, radial water movement was limiting water uptake into the root. This is important for the evaluation of Lpr of roots from root pressure relaxations. Stationary water uptake into the roots was modeled using measured values of axial and radial hydraulic resistances in order to work out profiles of axial water flow and xylem water potentials.  相似文献   

12.
The stability of aptamer–ligand complexes is probed in nanopore-based dynamic force spectroscopy experiments. Specifically, the ATP-binding aptamer is investigated using a backward translocation technique, in which the molecules are initially pulled through an α-hemolysin nanopore from the cis to the trans side of a lipid bilayer membrane, allowed to refold and interact with their target, and then translocated back in the transcis direction. From these experiments, the distribution of bound and unbound complexes is determined, which in turn allows determination of the dissociation constant Kd ≈ 0.1 mM of the aptamer and of voltage-dependent unfolding rates. The experiments also reveal differences in binding of the aptamer to AMP, ADP, or ATP ligands. Investigation of an aptamer variant with a stabilized ATP-binding site indicates fast conformational switching of the original aptamer before ATP binding. Nanopore force spectroscopy is also used to study binding of the thrombin-binding aptamer to its target. To detect aptamer–target interactions in this case, the stability of the ligand-free aptamer—containing G-quadruplexes—is tuned via the potassium content of the buffer. Although the presence of thrombin was detected, limitations of the method for aptamers with strong secondary structures and complexes with nanomolar Kd were identified.  相似文献   

13.
The interactions between water-soluble cationic oxovanadyl[meso-tetrakis(4-N-methylpyridiumyl)]porphyrin (VOTMPyP) and various synthetic polynucleotide including poly[d(A–T)2], poly[d(G–C)2], and poly[d(I–C)2] were studied using absorption, circular dichroism (CD), and linear dichroism (LD) spectroscopy. When VOTMPyP formed a complex with poly[d(A–T)2] and poly[d(I–C)2], a positive CD signal at low [VOTMPyP]/[DNA] ratios (R ratios) and strong excitonic CD signals at above R ≥ 0.15 were induced. The appearance of the CD spectra of the VOTMPyP-poly[d(G–C)2] complex were very different: a small negative CD at low R ratios and very small excitonic CD at high R ratios were observed. Considering the facts that the minor grooves of the former two polynucleotides resemble and the major groove of poly[d(I–C)2] is similar with that of poly[d(G–C)2], it is conclusive that VOTMPyP binds to the minor groove of all DNA at lower R ratios while they stack at the outside of DNA at higher R ratios. The binding geometry of VOTMPyP to all polynucleotides studied by LD seemed to be homogenous, irrespective of the R ratio. It has been found that VOTMPyP can have five- and six-fluxional coordination states. Comparing the absorption spectra of VOTMPyP complexed with poly[d(A–T)2] and poly[d(G–C)2], the distinctive absorptions of the five- and six-coordinated species were observed at lower R ratios which centered at 420–430 nm and 442 nm, respectively. While the six-coordinated VOTMPyP favored the poly[d(A–T)2], the five-coordinated species favored the poly[d(G–C)2] at the low R ratios. As the stacked species increased with an increasing R ratio, the six-coordinated species became the major bound species. These observations lead us to conclude that the guanine base′ amino group plays a crucial role not only in determining the binding mode of VOTMPyP but also in the conversion of the six-coordinated species to the five-coordinated species.  相似文献   

14.
An immunoglobulin Mk monoclonal (F8IVE9) antibody raised against oat (Avena sativa cv Garry) root homogenate has been produced and characterized. The predominant target bound by this antibody is a 62-kilodalton protein (p62) that is expressed in both oat root and oat shoot cells. Treatment of the oat antigen with periodate, or with recombinant N-glycanase, affects the F8IVE9 binding to the antigen, suggesting that the specific epitope for this monoclonal antibody involves a carbohydrate determinant. Levels of p62 present in cells of the oat root increase approximately twofold as the root tissue matures during the first 11 days postgermination. In contrast, levels of expression in shoot tissue remain relatively constant during the same period. The p62 antigen has been shown to be expressed at the plasma membrane by immunohistochemical means, by immunofluorescent labeling of protoplasts, and by enzyme-linked immunosorbent assay analysis of purified plasma membrane. The F8IVE9 antigenic target appears to be uniformly distributed through root tissue but is differentially expressed in specific sections of the shoot. F8IVE9 antibody also binds to antigens expressed in a number of other species, including clover, corn, pea, broccoli, mustard, and bean, and has been shown to bind to Samanea protoplast plasma membranes. This monoclonal antibody may prove to be useful for a variety of investigations, including an analysis of the specific patterns of cellular differentiation that occur during early morphogenesis, and the characterization of plasma membrane-associated elements in plants.  相似文献   

15.
Tau protein hyperphosphorylation triggers tau aggregation and its toxicity, leading to neuronal death and cell-to-cell toxicity. Hence, inhibition of protein kinases is a viable tool toward reduction of tau toxicity. By targeting various epitopes of Tau441 protein immobilized on Au surface, the protein kinase inhibition by anti-tau antibodies was measured by surface electrochemistry. The electrochemical impedance spectroscopy was used to measure the charge transfer resistance (Rct) of nonphosphorylated tau–Au film (nTau–Au) and compared with the phosphorylated tau–Au film (pTau–Au). The pTau–Au films were characterized by X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (TOF–SIMS), which indicated high phosphorus content. The Rct factor was used as the measure of inhibition efficacies by anti-tau antibodies (D8, A10, P262, and Tau46) in addition to antibody formulation intravenous immunoglobulin (IVIG). The Rct factor for pTau–Au in the absence of antibodies was 0.25 ± 0.08, indicating a dramatic decrease in Rct on phosphorylation. The Rct factors for Tau46 and A10 were 0.57 ± 0.22 and 0.65 ± 0.26, respectively, indicating phosphorylation inhibition. All antibodies exhibited similar binding to nTau–Au. The proposed electrochemical assay may be used for detection of other posttranslational modifications.  相似文献   

16.
In this article, a novel, label-free, and inherent electroactive redox immunosensor for carcinoembryonic antigen (CEA) based on gold nanoparticles (AuNPs) and Nile blue A (NB) hybridized electrochemically reduced graphene oxide (NB–ERGO) is proposed. The composite of NB–graphene oxide (NB–GO) was prepared by π–π stacking interaction. Then, chronoamperometry was adopted to simultaneously reduce HAuCl4 and nanocomposites of NB–GO for synthesizing AuNPs/NB–ERGO. The immunosensor was fabricated by capturing CEA antibody (anti-CEA) at this nanocomposite modified electrode. The immunosensor determination was based on the fact that, due to the formation of antigen–antibody immunocomplex, the decreased response currents of NB were directly proportional to the concentrations of CEA. Under optimal conditions, the linear range of the proposed immunosensor was estimated to be from 0.001 to 40 ng ml−1 and the detection limit was estimated to be 0.00045 ng ml−1. The proposed immunosensor was used to determine CEA in clinical serum samples with satisfactory results. The proposed method may provide promising potential application in clinical immunoassays with the properties of facile procedure, stability, high sensitivity, and selectivity.  相似文献   

17.
A model of three-dimensional root growth has been developed to simulate the interactions between root systems, water and nitrate in the rooting environment. This interactive behaviour was achieved by using an external-supply/internal-demand regulation system for the allocation of endogenous plant resources. Data from pot experiments on lupins heterogeneously supplied with nitrate were used to test and parameterise the model for future simulation work. The model reproduced the experimental results well (R 2 = 0.98), simulating both the root proliferation and enhanced nitrate uptake responses of the lupins to differential nitrate supply. These results support the use of the supply/demand regulation system for modelling nitrate uptake by lupins. Further simulation work investigated the local uptake response of lupins when nitrate was supplied to a decreasing fraction of the root system. The model predicted that the nitrate uptake activity of lupin roots will increase as the fraction of root system with access to nitrate decreases, but is limited to an increase of around twice that of a uniformly supplied control. This work is the first example of a modelled root system responding plastically to external nutrient supply. This model will have a broad range of applications in the study of the interactions between root systems and their spatially and temporally heterogeneous environment.  相似文献   

18.
Chlorophyll fluorescence serves as a proxy photosynthesis measure under different climatic conditions. The objective of the study was to predict PSII quantum yield using greenhouse microclimate data to monitor plant conditions under various climates. Multilayer leaf model was applied to model fluorescence emission from actinic light-adapted (F') leaves, maximum fluorescence from light-adapted (Fm') leaves, PSII-operating efficiency (Fq'/Fm'), and electron transport rate (ETR). A linear function was used to approximate F' from several measurements under constant and variable light conditions. Model performance was evaluated by comparing the differences between the root mean square error (RMSE) and mean square error (MSE) of observed and predicted values. The model exhibited predictive success for Fq'/Fm' and ETR under different temperature and light conditions with lower RMSE and MSE. However, prediction of F' and Fm' was poor due to a weak relationship under constant (R2 = 0.48) and variable (R2 = 0.35) light.  相似文献   

19.
In this study, a novel tracer, horseradish peroxidase (HRP) functionalized gold nanorods (Au NRs) nanocomposites (HRP–Au NRs), was designed to label the signal antibodies for sensitive electrochemical measurement of alpha-fetoprotein (AFP). The preparation of HRP–Au NRs nanocomposites and the labeling of secondary antibody (Ab2) were performed by one-pot assembly of HRP and Ab2 on the surface of Au NRs. The immunosensor was fabricated by assembling carbon nanotubes (CNTs), Au NRs, and capture antibodies (Ab1) on the glassy carbon electrode. In the presence of AFP antigen, the labels were captured on the surface of the Au NRs/CNTs via specific recognition of antigen–antibody, resulting in the signal intensity being clearly increased. Differential pulse voltammetry (DPV) was employed to record the response signal of the immunosensor in phosphate-buffered saline (PBS) containing hydrogen peroxide (H2O2) and 3,3′,5,5′-tetramethylbenzidine (TMB). Under optimal conditions, the signal intensity was linearly related to the concentration of AFP in the range of 0.1–100 ng ml−1, and the limit of detection was 30 pg ml−1 (at signal/noise [S/N] = 3). Furthermore, the immunoassay method was evaluated using human serum samples, and the recovery obtained was within 99.0 and 102.7%, indicating that the immunosensor has potential clinical applications.  相似文献   

20.
The Wittig reaction between alkylidene triphenylphosphoranes [R — CH = P(C6H5)3, where R varied from H to n — C17H35] and methyl 12-oxooctadecanoate or methyl 10-oxohexadecanoate in dimethylformamide (DMF) has been employed in the synthesis of a partial homologous series of esters of branched chain fatty acids in high yields. The effect of various ratios of reactants in both DMF and dimethylsulfoxide (DMSO) was investigated. Purification from triphenylphosphine oxide was readily accomplished by chromatography on a column of silicic acid-Celite impregnated with silver nitrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号