首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glycosyltransferases catalyze transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. Identification of selective modulators of glycosyltransferases is important both to provide new tools for investigating pathophysiological roles of glycosylation reactions in cells and tissues, and as new leads in drug discovery. Here we describe a universal enzyme-coupled fluorescence assay for glycosyltransferases, based on quantification of nucleotides produced in the glycosyl transfer reaction. GDP, UDP, and CMP are phosphorylated with nucleotide kinase in the presence of excess ATP, generating ADP. Via coupled enzyme reactions involving ADP-hexokinase, glucose-6-phosphate dehydrogenase, and diaphorase, the ADP is utilized for conversion of resazurin to resorufin, which is determined by fluorescence measurement. The method was validated by comparison with an HPLC method, and employed to screen the LOPAC1280 library for inhibitors in a 384-well plate format. The assay performed well, with a Z′-factor of 0.80. We identified 12 hits for human galactosyltransferase B4GALT1 after elimination of false positives that inhibited the enzyme-coupled assay system. The assay components are all commercially available and the reagent cost is only 2 to 10 US cents per well. This method is suitable for low-cost, high-throughput assay of various glycosyltransferases and screening of glycosyltransferase modulators.  相似文献   

2.
Tissue transglutaminase (TGase 2) belongs to the multigene transglutaminase family of Ca2+-dependent protein cross-linking enzymes. Based on the transamidation activity of TGase 2, a novel colorimetric assay has been developed using covalently coupled spermine to carboxy-substituted polystyrene plates and biotinylated pepT26, an excellent acyl-donor substrate, highly specific for TGase 2. The assay is based on the incorporation of the gamma-carboxamide of glutamine of pepT26 into the immobilized spermine. The amount of biotinylated pepT26 bound to the plate, as measured by the activity of streptavidin-peroxidase, is directly proportional to the TGase activity. The colorimetric procedure showed a good correlation (r = 0.995) with the commonly used radiometric filter paper method for TGase2, and provides linear dose-response curves over a wide range of hrTGase2 concentrations (2.5-40 μU/ml). In addition, the assay shows higher sensitivity when compared with our previous TG-colorimetric test (more than 50-fold increase) and other existing assays. PepT26 displays strong reactivity with TGase 2, and no reactivity with TGases 1, 3, and FXIII. The procedure constitutes a rapid, TG2-specific, sensitive, and nonisotopic method for the measurement of TGase 2 activity in as low as 4 ng of hrTGase 2 and purified guinea pig liver transglutaminase, and 1.25 μg of guinea pig liver extracts.  相似文献   

3.
Adenylation/adenylate-forming enzymes catalyze the activation of a carboxylic acid at the expense of ATP to form an acyl-adenylate intermediate and pyrophosphate (PPi). In a second half-reaction, adenylation enzymes catalyze the transfer of the acyl moiety of the acyl-adenylate onto an acceptor molecule, which can be either a protein or a small molecule. We describe the design, development, and validation of a coupled continuous spectrophotometric assay for adenylation enzymes that employs hydroxylamine as a surrogate acceptor molecule, leading to the formation of a hydroxamate. The released pyrophosphate from the first half-reaction is measured using the pyrophosphatase-purine nucleoside phosphorylase coupling system with the chromogenic substrate 7-methylthioguanosine (MesG). The coupled hydroxamate-MesG assay is especially useful for characterizing the activity and inhibition of adenylation enzymes that acylate a protein substrate and/or fail to undergo rapid ATP-PPi exchange.  相似文献   

4.
The dyeing properties of three natural dyes – curcumin, gardenia yellow and lac dye – on wool fabric after treatment with microbial transglutaminase (MTGase) have been investigated. After 120 min of MTGase treatment, compared with the fabric only pretreated with chemical and protease, the colour strength of curcumin, gardenia yellow and lac dye increased from 8±0.13, 7.5±0.10 and 22±0.12 to about 12.8±0.20, 11.7±0.20 and 27.0±0.41, respectively. The values of wash fastness for dyed wool fabrics increased from 2 to 4 after MTGase treatment, but the light fastness was not obviously improved. By comparing with mordant dyeing, although the colour strength was poorer, MTGase after-treatment did not cause colour shade changes during dyeing and the wash fastness of dyed wool fabric was similar to that of the pre-mordanted samples.  相似文献   

5.
The measurement of prostaglandin E synthase (PGES) activity is cumbersome because the product of the reaction, PGE(2), is not readily quantitated by spectral means. The activity of isolated PGES is typically determined by PGE(2) immunoassay or by high-performance liquid chromatography using radiolabeled substrate. A relatively rapid continuous spectrophotometric assay which uses 15-hydroxyprostaglandin dehydrogenase (PGDH) to couple the oxidation of the 15-hydroxy group of PGE(2) to the formation of NADH was developed. PGDH is relatively specific for PGE(2) over the substrate for the PGES reaction, PGH(2), allowing a highly reproducible assay of PGES activity to be obtained.  相似文献   

6.
Transglutaminase dependent cross-linking of proteins has been implicated in a wide range of biological phenomena occurring in both extracellular and intracellular compartments. Clarification of the physiological role of transglutaminases requires identification of substrate molecules. Here we report the detection, purification, and identification by mass spectrometry of proteins, the glutamate dehydrogenase, a protein disulfide isomerase, and aldehyde dehydrogenase as amine donor substrates for the transglutaminase activity of the nematode Caenorhabditis elegans utilizing a novel biotinylated oligoglutamine peptide as a substrate. We also purified and identified streptavidin-binding proteins of the worm.  相似文献   

7.
A facile approach for the production of a reusable immobilized recombinant Escherichia coli biotin ligase (BirA) onto amine-modified magnetic microspheres (MMS) via covalent cross-linking catalyzed using microbial transglutaminase (MTG) was proposed in this study. The site-specifically immobilized BirA exhibited approximately 95% of enzymatic activity of the free BirA, and without a significant loss in intrinsic activity after 10 rounds of recycling (P > 0.05). In addition, the immobilized BirA can be easily recovered from the solution via a simple magnetic separation. Thus, the immobilized BirA may be of general use for in vitro biotinylation in an efficient and economical manner.  相似文献   

8.
对微生物谷氨酰胺转胺酶(MTG)超滤浓缩的工艺条件进行了探讨及优化。实验采用截留分子量为30 kDa的聚醚砜(PES)膜,当发酵液初始pH为7,超滤浓缩倍数为4倍时,可以得到理想的MTG回收率。同时对超滤液中蛋白酶的变化进行了分析,发现随着超滤倍数的提高蛋白酶也逐渐提高,但在浓缩4倍以后达到较稳定的水平。聚醚砜(PES)超滤膜使用后用稀释的NaOH溶液浸泡清洗处理50 min后,膜通量可以恢复98.12%。  相似文献   

9.
An assay method for glycogen synthase (EC 2.4.1.11) has been developed based on the continuous measurement of the change of pH accompanying the glycogen synthesis reaction. The use of low buffer concentrations and an amplifier with variable gain and offset voltage allow us to register changes in the pH of the system small enough to ignore the significant pH dependence of the enzyme activity. A theoretical approach has been used to correlate the pH measurements with the progres of the reaction in terms of glucose incorporated into glycogen. The method offers the advantages of being continuous and of low cost.  相似文献   

10.
In this study, a novel microbial transglutaminase (MTG) from Streptomyces hygroscopicus WSH03-13 was applied in the processing of wool fabrics. The results indicated that MTG treatment could improve felting properties and decrease tensile strength loss of wool fabrics. For the wool fabrics used in this study, MTG treatment following chemical and protease pretreatment led to a 2.32% of area shrinkage and about 16% recovery in tensile strength based on the samples without MTG treatment. Moreover, a traditional resin treatment was compared with the role of MTG. Although the tensile strength of wool fabrics treated by MTG was lower than that treated by resin treatment, the fabrics had similar anti-felting properties, and the chemical oxygen demand of wastewater was only half of the latter.  相似文献   

11.
We developed a novel on-chip activity assay using protein arrays for quantitative and rapid analysis of transglutami-nase activity in mammalian cells. Transglutaminases are a family of Ca2+-dependent enzymes involved in cell regulation as well as human diseases such as neurodegenerative disorders, inflammatory diseases and tumor progression. We fabricated the protein arrays by immobilizing N,N′-dimethylcasein (a substrate) on the amine surface of the arrays. We initiated transamidating reaction on the protein arrays and determined the transglutaminase activity by analyzing the fluorescence intensity of biotinylated casein. The on-chip transglutaminase activity assay was proved to be much more sensitive than the [3H]putrescine-incorporation assay. We successfully applied the on-chip assay to a rapid and quantitative analysis of the transgluta-minase activity in all-trans retinoic acid-treated NIH 3T3 and SH-SY5Y cells. In addition, the on-chip transglutaminase activity assay was sufficiently sensitive to determine the transglutaminase activity in eleven mammalian cell lines. Thus, this novel on-chip transglutaminase activity assay was confirmed to be a sensitive and high-throughput approach to investigating the roles of transglutaminase in cellular signaling, and, moreover, it is likely to have a strong potential for monitoring human diseases. These authors contributed equally to this work.  相似文献   

12.
The prevalence of drug-resistant strains of Mycobacterium tuberculosis (M. tb) emphasizes the need for new antitubercular drugs. An essential component of the drug discovery process is the development of tools to rapidly screen potential drug libraries against important biological targets. Similarly to well-documented M. tb targets, the antigen 85 (Ag85) enzymes are involved in the maintenance of the mycobacterial cell wall. The products synthesized by these mycolyltransferases are the cell wall components most responsible for the reduced permeability of drugs into the bacterial cell, thereby linking Ag85 activity directly with drug resistance. This article presents the development of a high-throughput colorimetric assay suitable for direct monitoring of the enzymatic activity. The assay uses a synthetic substrate containing three chemical moieties: an octanoyl fatty acid, β-d-glucose, and p-nitrophenyl. In the context of the assay, Ag85 catalyzes the removal of the fatty acid and releases p-nitrophenyl-β-d-glucoside. The glucoside is hydrolyzed by β-glucosidase to release the p-nitrophenolate chromophore. With this assay, the KM and kcat values of Ag85C were determined to be 0.047 ± 0.008 mM and 0.062 s−1, respectively. In addition, the assay exhibits a Z′ value of 0.81 ± 0.06, indicating its suitability for high-throughput screening applications and drug development.  相似文献   

13.
Exclusion of Hoechst 33342 dye is a characteristic common to stem cells, as well as chemotherapy-resistant cancer cells. Normally, these dye-excluding cells can be sorted from enzymatically dissociated tissues with a UV cell sorter/flow cytometer. UV-flow cytometry can be expensive, time-consuming and not readily available to all laboratories. We have developed a simple, high-throughput 96-well microtiter plate assay by which cell populations can be quickly screened for Hoechst dye uptake and exclusion. The method is compatible with green-fluorescent EGFP expressing cells, often used in stem cell biology. Useful applications for this assay will be the rapid screening of clonal stem cell populations and tumor cells for Hoechst dye uptake.  相似文献   

14.
Herein we report the design of a direct and continuous fluorometric assay for determining tissue transglutaminase (TGase) activity. The progress of the TGase-catalyzed reaction of 4-(N-carbobenzoxy-l-phenylalanylamino)-butyric acid coumarin-7-yl ester was monitored as an increase of fluorescence (lambda(exc) 330 nm, lambda(em) 460 nm) due to the release of 7-hydroxycoumarin. Using this assay, we determined the K(m) of two acceptor substrates, N-acetyl-L-lysine methyl ester and aminoacetonitrile. We also determined the K(m) of 4-(N-carbobenzoxy-L-phenylalanylamino)-butyric acid coumarin-7-yl ester for its TGase-mediated hydrolysis and for its enzymatic reaction with the acyl acceptor substrates N-acetyl-L-lysine methyl ester and aminoacetonitrile. We ascertained that the fluorescent substrate was selective toward tissue TGase by testing it with different enzymes, namely microbial transglutaminase (mTGase), Factor XIIIa, papain, and gamma-glutamyl transpeptidase. 4-(N-carbobenzoxyglycinylamino)-butyric acid coumarin-7-yl ester, lacking the benzyl side chain, was also found to be an efficient fluorogenic substrate of tissue TGase. Finally, we have shown that this method is applicable to 96-well microtiter plate format.  相似文献   

15.
Histone deacetylases catalyze the hydrolysis of an acetyl group from post-translationally modified acetyl-lysine residues in a wide variety of essential cellular proteins, including histones. Because these lysine modifications can alter the activity and properties of affected proteins, aberrant acetylation/deacetylation may contribute to disease states. Many fundamental questions regarding the substrate specificity and regulation of these enzymes have yet to be answered. Here, we optimize an enzyme-coupled assay to measure low micromolar concentrations of acetate, coupling acetate production to the formation of NADH (nicotinamide adenine dinucleotide, reduced form) that is measured by changes in either absorbance or fluorescence. Using this assay, we measured the steady-state kinetics of peptides representing the H4 histone tail and demonstrate that a C-terminally conjugated methylcoumarin enhances the catalytic efficiency of deacetylation catalyzed by cobalt(II)-bound histone deacetylase 8 [Co(II)–HDAC8] compared with peptide substrates containing a C-terminal carboxylate, amide, and tryptophan by 50-, 2.8-, and 2.3-fold, respectively. This assay can be adapted for a high-throughput screening format to identify HDAC substrates and inhibitors.  相似文献   

16.
An assay for glucosamine-6-phosphate synthase using a yeast glucosamine-6-phosphate N-acetyltransferase 1 (GNA1) as coupling enzyme was developed. GNA1 transfers the acetyl moiety from acetyl-coenzyme A (CoA) to glucosamine-6-phosphate, releasing coenzyme A. The assay measures the production of glucosamine-6-phosphate by either following the consumption of acetyl-CoA spectrophotometrically at 230nm or quantifying the free thiol with 5,5'-dithio-bis(2-nitrobenzoic acid) (Ellman's reagent) in a discontinuous manner. This method is simple to perform and can be adapted to a 96-well microtiter plate format, which will facilitate high-throughput inhibitor screening and mechanistic studies using purified GlmS.  相似文献   

17.
In a biomass assay based on adenosine 5(')-triphosphate (ATP) bioluminescence, extracellular ATP is removed; then intracellular ATP is extracted from the microorganism by an ATP extractant and subsequently reacted with luciferase. To provide a highly sensitive assay, the concentration of benzalkonium chloride (BAC) in the ATP extractant was optimized by using a mutant luciferase resistant to BAC. The use of 0.2% BAC, which was acceptable for the luciferase, simultaneously achieved the maximum extraction of intracellular ATP from microorganisms and the inactivation of the ATP-eliminating enzymes for removal of extracellular ATP. The detection limit (blank+3 SD) for ATP was 1.8x10(-14)M (1.8x10(-18)mol/assay) in the presence of the ATP extractant with coefficients of variation of 0.7 to 6.3%. The reagent system coupled with the ATP-eliminating enzymes allowed for the detection of 93 colony-forming units (CFU)/ml of Escherichia coli ATCC 25922, 170CFU/ml of Pseudomonas aeruginosa ATCC 27853, 170CFU/ml of Proteus mirabilis ATCC 29906, 68CFU/ml of Staphylococcus aureus ATCC 25923, and 7.7CFU/ml of Bacillus subtilis ATCC 6051. The yeast cell of Saccharomyces cerevisiae IFO 10217 could be detected at 1CFU/ml. With 54 kinds of microorganisms, the average ATP extraction efficiency compared to the trichloroacetic acid extraction method was 81.0% in 24 strains among gram-negative bacteria, 99.4% in 13 strains among gram-positive bacteria, and 97.0% in 17 strains among yeast. The ATP contents of the gram-negative bacteria, gram-positive bacteria, and yeasts ranged from 0.40 to 2.70x10(-18)mol/CFU (mean=1.5x10(-18)mol/CFU), from 0.41 to 16.7x10(-18)mol/CFU (mean=5.5x10(-18)mol/CFU), and from 0.714 to 54.6x10(-16)mol/CFU (mean=8.00x10(-16)mol/CFU), respectively.  相似文献   

18.
DAP epimerase is the penultimate enzyme in the lysine biosynthesis pathway. The most versatile assay for DAP epimerase catalytic activity employs a coupled DAP epimerase–DAP dehydrogenase enzyme system with a commercial mixture of DAP isomers as substrate. DAP dehydrogenase converts meso-DAP to THDP with concomitant reduction of NADP+ to NADPH. We show that at high concentrations, accumulation of NADPH results in inhibition of DAPDH, resulting in spurious kinetic data. A new assay has been developed employing DAP decarboxylase that allows the reliable characterisation of DAP epimerase enzyme kinetics.  相似文献   

19.
Transglutaminases (TGs), a family of calcium-dependent transamidating enzymes, are involved in functions such as apoptosis and inflammation and play a role in autoimmune diseases and neurodegenerative disorders. In this study, we describe a novel array-based approach to rapidly determine in situ TG activity in human umbilical vein endothelial cells and J82 human bladder carcinoma cells. Amine arrays were fabricated by immobilizing 3-aminopropyltrimethoxysilane on glass slides. The assay was specific and highly reproducible. The average coefficient of variation betweens spots was 2.6% (n = 3 arrays), and the average correlation coefficients between arrays and between arrays/reactions were 0.998 and 0.976, respectively (n = 3 arrays). The assay was successfully applied to detect changes in TG activity induced by maitotoxin and to analyze inhibition of the TG activation with cystamine and monodansyl cadaverine. In addition, the assay demonstrated that intracellular reactive oxygen species regulate the maitotoxin-induced activation of TG. Thus, the array-based in situ TG activity assay constitutes a rapid and high-throughput approach to investigating the roles of TGs in cell signaling.  相似文献   

20.
Members of the transglutaminase enzyme family are involved in a broad range of biological phenomena, including haemostasis, apoptosis, semen coagulation, skin formation, and wound healing. A new and rapid method for measurement of transglutaminase activity is described in this article. The enzyme links tritium-labeled putrescine to biotinylated oligoglutamine, and the tritiated peptide is bound to a streptavidin-coated microtiter plate permanently covered by a thin layer of scintillant. Only the radioisotope incorporated into the peptide substrate is close enough to the scintillant molecules for photons to be produced. The signal generation depends on the transglutaminase activity, and it can be detected by appropriate light-measuring instrumentation without separation steps. The assay is sensitive, specific, linear at concentrations of tissue transglutaminase between 0.05 and 1.6m U/ml, and suitable for high-throughput measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号