首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The prevalence of drug-resistant strains of Mycobacterium tuberculosis (M. tb) emphasizes the need for new antitubercular drugs. An essential component of the drug discovery process is the development of tools to rapidly screen potential drug libraries against important biological targets. Similarly to well-documented M. tb targets, the antigen 85 (Ag85) enzymes are involved in the maintenance of the mycobacterial cell wall. The products synthesized by these mycolyltransferases are the cell wall components most responsible for the reduced permeability of drugs into the bacterial cell, thereby linking Ag85 activity directly with drug resistance. This article presents the development of a high-throughput colorimetric assay suitable for direct monitoring of the enzymatic activity. The assay uses a synthetic substrate containing three chemical moieties: an octanoyl fatty acid, β-d-glucose, and p-nitrophenyl. In the context of the assay, Ag85 catalyzes the removal of the fatty acid and releases p-nitrophenyl-β-d-glucoside. The glucoside is hydrolyzed by β-glucosidase to release the p-nitrophenolate chromophore. With this assay, the KM and kcat values of Ag85C were determined to be 0.047 ± 0.008 mM and 0.062 s−1, respectively. In addition, the assay exhibits a Z′ value of 0.81 ± 0.06, indicating its suitability for high-throughput screening applications and drug development.  相似文献   

3.
Internally quenched cathepsin L (Cat L) substrate ABZ-Bip-Arg-Ala-Gln-Tyr(3-NO2)-NH2 with high specificity constant (kcat/KM = 2.6 × 107 M−1 s−1) was synthesized. The resultant compound displayed high selectivity over other members of the cathepsin family (B, S, X, V, C, K, H, F, D, and A). Activity of Cat L at picomolar (pM) concentrations was found using this substrate. Moreover, it was established that the presence of the selective Cat L inhibitor suppressed the proteolysis of the substrate to a non-detectable level. Incubation of the synthesized compound with a cell lysate of healthy and cancer cell lines indicated significant differences in Cat L activity. Based on the obtained results, it is proposed that this substrate could be used for selective monitoring of Cat L activity in biological systems.  相似文献   

4.
Leukotriene A4 hydrolase (LTA4H) is a bifunctional zinc-dependent metalloprotease bearing both an epoxide hydrolase, producing the pro-inflammatory LTB4 leukotriene, and an aminopeptidase activity, whose physiological relevance has long been ignored. Distinct substrates are commonly used for each activity, although none is completely satisfactory; LTA4, substrate for the hydrolase activity, is unstable and inactivates the enzyme, whereas aminoacids β-naphthylamide and para-nitroanilide, used as aminopeptidase substrates, are poor and nonselective. Based on the three-dimensional structure of LTA4H, we describe a new, specific, and high-affinity fluorigenic substrate, PL553 [l-(4-benzoyl)phenylalanyl-β-naphthylamide], with both in vitro and in vivo applications. PL553 possesses a catalytic efficiency (kcat/Km) of 3.8 ± 0.5 × 104 M−1 s−1 using human recombinant LTA4H and a limit of detection and quantification of less than 1 to 2 ng. The PL553 assay was validated by measuring the inhibitory potency of known LTA4H inhibitors and used to characterize new specific amino-phosphinic inhibitors. The LTA4H inhibition measured with PL553 in mouse tissues, after intravenous administration of inhibitors, was also correlated with a reduction in LTB4 levels. This authenticates the assay as the first allowing the easy measurement of endogenous LTA4H activity and in vitro specific screening of new LTA4H inhibitors.  相似文献   

5.
Due to their efficiency in the hydrolysis of the collagen triple helix, Clostridium histolyticum collagenases are used for isolation of cells from various tissues, including isolation of the human pancreatic islets. However, the instability of clostridial collagenase I (Col G) results in a degraded Col G that has weak collagenolytic activity and an adverse effect on islet isolation and viability. A Förster resonance energy transfer triple-helical peptide substrate (fTHP) has been developed for selective evaluation of bacterial collagenase activity. The fTHP [sequence: Gly-mep-Flp-(Gly-Pro-Hyp)4-Gly-Lys(Mca)-Thr-Gly-Pro-Leu-Gly-Pro-Pro-Gly-Lys(Dnp)-Ser-(Gly-Pro-Hyp)4-NH2] had a melting temperature (Tm) of 36.2 °C and was hydrolyzed efficiently by bacterial collagenase (kcat/KM = 25,000 s−1 M−1) but not by clostripain, trypsin, neutral protease, thermolysin, or elastase. The fTHP bacterial collagenase assay allows for rapid and specific assessment of enzyme activity toward triple helices and, thus, potential application for evaluating the efficiency of cell isolation by collagenases.  相似文献   

6.
γ-Glutamyltransferase (GGT, E.C. 2.3.2.2) catalyzes the hydrolysis and transpeptidation of extracellular glutathione. Due to its central role in maintaining mammalian glutathione homeostasis, GGT is now believed to be a valuable drug target for a variety of life-threatening diseases, such as cancer. Unfortunately, however, effective tools for screening GGT inhibitors are still lacking. We report here the synthesis and evaluation of an α-phenylthio-containing glutathione peptide mimic that eliminates thiophenol upon GGT-catalyzed hydrolysis of the γ-glutamyl peptide bond. The concurrent, real-time spectrophotometric quantification of the released thiophenol using Ellman’s reagent creates a GGT assay format that is simple, robust, and highly sensitive. The versatility of the assay has been demonstrated by its application to the kinetic characterization of equine kidney GGT, and enzyme inhibition assays. The ability of the glutathione mimic to behave as an excellent donor substrate (exhibiting Michaelis-Menten kinetics with a Km of 11.3 ± 0.5 μM and a kcat of 90.1 ± 0.8 nmol mg−1 min−1), coupled to the assay’s ability to study the hydrolysis-only mode of the GGT-catalyzed reaction, make our approach amenable to high-throughput drug screening platforms.  相似文献   

7.
The role that heparanase plays during metastasis and angiogenesis in tumors makes it an attractive target for cancer therapeutics. Despite this enzyme’s significance, most of the assays developed to measure its activity are complex. Moreover, they usually rely on labeling variable preparations of the natural substrate heparan sulfate, making comparisons across studies precarious. To overcome these problems, we have developed a convenient assay based on the cleavage of the synthetic heparin oligosaccharide fondaparinux. The assay measures the appearance of the disaccharide product of heparanase-catalyzed fondaparinux cleavage colorimetrically using the tetrazolium salt WST-1. Because this assay has a homogeneous substrate with a single point of cleavage, the kinetics of the enzyme can be reliably characterized, giving a Km of 46 μM and a kcat of 3.5 s−1 with fondaparinux as substrate. The inhibition of heparanase by the published inhibitor, PI-88, was also studied, and a Ki of 7.9 nM was determined. The simplicity and robustness of this method, should, not only greatly assist routine assay of heparanase activity but also could be adapted for high-throughput screening of compound libraries, with the data generated being directly comparable across studies.  相似文献   

8.
Streptococcus pneumoniae D39 AdcR (adhesin competence repressor) is the first metal-sensing member of the MarR (multiple antibiotic resistance repressor) family to be characterized. Expression profiling with a ΔadcR strain grown in liquid culture (brain-heart infusion) under microaerobic conditions revealed upregulation of 13 genes, including adcR and adcCBA, encoding a high-affinity ABC uptake system for zinc, and genes encoding cell-surface zinc-binding pneumococcal histidine triad (Pht) proteins and AdcAII (Lmb, laminin binding). The ΔadcR, H108Q and H112Q adcR mutant allelic strains grown in 0.2 mM Zn(II) exhibit a slow-growth phenotype and an approximately twofold increase in cell-associated Zn(II). Apo- and Zn(II)-bound AdcR are homodimers in solution and binding to a 28-mer DNA containing an adc operator is strongly stimulated by Zn(II) with KDNA-Zn = 2.4 × 108 M- 1 (pH 6.0, 0.2 M NaCl, 25 °C). AdcR binds two Zn(II) per dimer, with stepwise Zn(II) affinities KZn1 and KZn2 of ≥ 109 M- 1 at pH 6.0 and ≥ 1012 M- 1 at pH 8.0, and one to three lower affinity Zn(II) depending on the pH. X-ray absorption spectroscopy of the high-affinity site reveals a pentacoordinate N/O complex and no cysteine coordination, the latter finding corroborated by wild type-like functional properties of C30A AdcR. Alanine substitution of conserved residues His42 in the DNA-binding domain, and His108 and His112 in the C-terminal regulatory domain, abolish high-affinity Zn(II) binding and greatly reduce Zn(II)-activated binding to DNA. NMR studies reveal that these mutants adopt the same folded conformation as dimeric wild type apo-AdcR, but fail to conformationally switch upon Zn(II) binding. These studies implicate His42, His108 and H112 as metalloregulatory zinc ligands in S. pneumoniae AdcR.  相似文献   

9.
Trypanosoma cruzi dihydroorotate dehydrogenase (TcDHODH) catalyzes the oxidation of l-dihydroorotate to orotate with concomitant reduction of fumarate to succinate in the de novo pyrimidine biosynthetic pathway. Based on the important need to characterize catalytic mechanism of TcDHODH, we have tailored a protocol to measure TcDHODH kinetic parameters based on isothermal titration calorimetry. Enzymatic assays lead to Michaelis-Menten curves that enable the Michaelis constant (KM) and maximum velocity (Vmax) for both of the TcDHODH substrates: dihydroorotate (KM = 8.6 ± 2.6 μM and Vmax = 4.1 ± 0.7 μM s-1) and fumarate (KM = 120 ± 9 μM and Vmax = 6.71 ± 0.15 μM s-1). TcDHODH activity was investigated using dimethyl sulfoxide (10%, v/v) and Triton X-100 (0.5%, v/v), which seem to facilitate the substrate binding process with a small decrease in KM. Arrhenius plot analysis allowed the determination of thermodynamic parameters of activation for substrates and gave some insights into the enzyme mechanism. Activation entropy was the main contributor to the Gibbs free energy in the formation of the transition state. A factor that might contribute to the unfavorable entropy is the hindered access of substrates to the TcDHODH active site where a loop at its entrance regulates the open-close channel for substrate access.  相似文献   

10.
S-Nitrosoglutathione (GSNO) is a nitric oxide (NO) donor compound which has been postulated to be involved in transport of NO in vivo. It is known that γ-glutamyl transpeptidase (GGT) is one of the enzymes involved in the enzyme-mediated decomposition of GSNO, but no kinetics studies of the reaction GSNO-GGT are reported in literature.In this study we directly investigated the kinetics of GGT with respect to GSNO as a substrate and glycyl-glycine (GG) as acceptor co-substrate by spectrophotometry at 334 nm. GGT hydrolyses the γ-glutamyl moiety of GSNO to give S-nitroso-cysteinylglycine (CGNO) and γ-glutamyl-GG. However, as both the substrate GSNO and the first product CGNO absorb at 334 nm, we optimized an ancillary reaction coupled to the enzymatic reaction, based on the copper-mediated decomposition of CGNO yielding oxidized cysteinyl-glycine and NO. The ancillary reaction allowed us to study directly the GSNO/GGT kinetics by following the decrease of the characteristic absorbance of nitrosothiols at 334 nm. A Km of GGT for GSNO of 0.398 ± 31 mM was thus found, comparable with Km values reported for other γ-glutamyl substrates of GGT.  相似文献   

11.
We describe the first validated scintillation proximity assay (SPA) binding method for quantitation of 3H-labeled d-lysergic acid diethylamide (LSD) binding to recombinant human 5-hydroxytryptamine 6 (5-HT6) receptors expressed in Chinese hamster ovary (CHO)-Dukx and HeLa cells. The assay was developed using intact cells as a receptor source because membrane fractions derived from these cells failed to discern specific binding from a high level of nonspecific binding. The pharmacological binding profile of seven 5-HT6 agonists and antagonists using intact CHO-Dukx/5-HT6 cells in the SPA format was similar to data obtained from a filtration binding assay using HeLa/5-HT6 membranes. Ki values and rank order of potencies obtained in the SPA format were consistent with published filtration data as follows: SB-271046 (Ki = 1.9 nM) > methiothepin (Ki = 6.2 nM) > mianserin (Ki = 74.3 nM) > 5-methoxytryptamine (5-MeOT, Ki = 111 nM) > 5-HT (Ki = 150 nM) > ritanserin (Ki = 207 nM) > 5-carboxamidotryptamine (5-CT, Ki = 704 nM). Additional evaluation with four antipsychotics demonstrated strong agreement with previous literature reports. A high specific binding signal and low assay variability, as determined by Z′ = 0.81 ± 0.017, make the SPA format amenable to automation and higher throughput; hence, this assay can be a viable alternative to the more labor-intensive filtration and centrifugation methods.  相似文献   

12.
The rapid rise in pathogenic bacteria resistant to current treatments, coupled with the paucity of new therapeutic agents in the pipeline, has resulted in a significant need for new antibiotics. One strategy to overcome resistance requires new chemical entities that inhibit key enzymes in essential metabolic processes that have not been previously targeted and for which there is no preexisting drug resistance. Biotin protein ligase (BPL), required to complete acetyl CoA carboxylase’s capability for fatty acid biosynthesis, is one target that has not yet been fully explored. However, its application in large-scale compound screens has been limited due to the lack of a truly high-throughput assay for enzyme activity. Here we report a novel assay system for BPL from Escherichia coli (BirA). This assay employs fluorescence polarization technology together with a unique peptide substrate for BirA. Additionally, the multiple handling steps and requirement for radiolabeled ligands associated with previous assays have been eliminated. Kinetic analysis of MgATP (Km 0.25 ± 0.01 mM) and biotin (Km 1.45 ± 0.15 μM) binding produced results consistent with published data. Inhibition studies with end products of the BPL reaction, AMP and pyrophosphate, further validated the assay. Statistical analysis, performed upon both intraassay and interassay results (n = 30), showed the coefficient of variance to be <10% across all data sets. Furthermore, Z′ factors between 0.5 and 0.8 demonstrated the utility of this technology in high-throughput applications.  相似文献   

13.
Microorganisms living in arsenic-rich geothermal environments act on arsenic with different biochemical strategies, but the molecular mechanisms responsible for the resistance to the harmful effects of the metalloid have only partially been examined. In this study, we investigated the mechanisms of arsenic resistance in the thermophilic bacterium Thermus thermophilus HB27. This strain, originally isolated from a Japanese hot spring, exhibited tolerance to concentrations of arsenate and arsenite up to 20 mM and 15 mM, respectively; it owns in its genome a putative chromosomal arsenate reductase (TtarsC) gene encoding a protein homologous to the one well characterized from the plasmid pI258 of the Gram + bacterium Staphylococcus aureus. Differently from the majority of microorganisms, TtarsC is part of an operon including genes not related to arsenic resistance; qRT-PCR showed that its expression was four-fold increased when arsenate was added to the growth medium. The gene cloning and expression in Escherichia coli, followed by purification of the recombinant protein, proved that TtArsC was indeed a thioredoxin-coupled arsenate reductase with a kcat/KM value of 1.2 × 104 M− 1 s− 1. It also exhibited weak phosphatase activity with a kcat/KM value of 2.7 × 10− 4 M− 1 s− 1. The catalytic role of the first cysteine (Cys7) was ascertained by site-directed mutagenesis. These results identify TtArsC as an important component in the arsenic resistance in T. thermophilus giving the first structural–functional characterization of a thermophilic arsenate reductase.  相似文献   

14.
In the current study, capillary electrophoresis (CE)-based enzyme assay for characterization and inhibition study of bovine carbonic anhydrase II (bCA II) was developed. The developed method is the first CE assay for carbonic anhydrase (CA). The method was optimized in order to get short analysis time, minimal sample volume consumption, and high resolution of substrate and product. The CE conditions were optimized as follows: fused-silica capillary (30 cm effective length × 75 μm i.d.), pressure injection for 5 s, 20 mM sodium borate buffer (pH 9.0), constant voltage of 15 kV, constant capillary temperature of 25 °C, and detection at 260 nm. For precise measurements, uridine was used as an internal standard during optimization of the CE methods. The limits of detection and quantification for p-nitrophenyl acetate (p-NPA) were 3.01 and 9.12 μM, respectively, whereas for p-nitrophenolate they were 2.05 and 6.22 μM, respectively. The performance of the developed method was confirmed by determination of kinetic parameters (i.e., Km and Vmax of bCA for p-NPA); the inhibition constant (Ki) was determined for furosemide, a standard inhibitor of CA. The new method proved to be fast and efficient, and it can be used for the investigation of inhibitors of all isoforms of CAs.  相似文献   

15.
A simple and reliable continuous assay for measurement of α-mannosidase activity is described and demonstrated for analysis with two recombinant human enzymes using the new substrate resorufin α-d-mannopyranoside (Res-Man). The product of enzyme reaction, resorufin, exhibits fluorescence emission at 585 nm with excitation at 571 nm and has a pKa of 5.8, allowing continuous measurement of fluorescence turnover at or near physiological pH values for human lysosomal and Drosophila Golgi α-mannosidases. The assay performed using recombinant Drosophila Golgi α-mannosidase (dGMII) has been shown to give the kinetic parameters Km of 200 μM and Vmax of 11 nmol/min per nmol dGMII. Methods for performing the assay using several concentrations of the known α-mannosidase inhibitor swainsonine are also presented, demonstrating a potential for use of the assay as a simple method for high-throughput screening of inhibitors potentially useful in cancer treatment.  相似文献   

16.
1H NMR spectroscopy was used to follow the cleavage of sucrose by invertase. The parameters of the enzyme's kinetics, Km and Vmax, were directly determined from progress curves at only one concentration of the substrate. For comparison with the classical Michaelis-Menten analysis, the reaction progress was also monitored at various initial concentrations of 3.5 to 41.8 mM. Using the Lambert W function the parameters Km and Vmax were fitted to obtain the experimental progress curve and resulted in Km = 28 mM and Vmax = 13 μM/s. The result is almost identical to an initial rate analysis that, however, costs much more time and experimental effort. The effect of product inhibition was also investigated. Furthermore, we analyzed a much more complex reaction, the conversion of farnesyl diphosphate into (+)-germacrene D by the enzyme germacrene D synthase, yielding Km = 379 μM and kcat = 0.04 s− 1. The reaction involves an amphiphilic substrate forming micelles and a water insoluble product; using proper controls, the conversion can well be analyzed by the progress curve approach using the Lambert W function.  相似文献   

17.
A glucose-tolerant β-glucosidase was purified to homogeneity from prune (Prunus domestica) seeds by successive ammonium sulfate precipitation, hydrophobic interaction chromatography and anion-exchange chromatography. The molecular mass of the enzyme was estimated to be 61 kDa by SDS-PAGE and 54 kDa by gel permeation chromatography. The enzyme has a pI of 5.0 by isoelectric focusing and an optimum activity at pH 5.5 and 55 °C. It is stable at temperatures up to 45 °C and in a broad pH range. Its activity was completely inhibited by 5 mM of Ag+ and Hg2+. The enzyme hydrolyzed both p-nitrophenyl β-d-glucopyranoside with a Km of 3.09 mM and a Vmax of 122.1 μmol/min mg and p-nitrophenyl β-d-fucopyranoside with a Km of 1.65 mM and a Vmax of 217.6 μmol/min mg, while cellobiose was not a substrate. Glucono-δ-lactone and glucose competitively inhibited the enzyme with Ki values of 0.033 and 468 mM, respectively.  相似文献   

18.
GOX is the most widely used enzyme for the development of electrochemical glucose biosensors and biofuel cell in physiological conditions. The present work describes the production of a recombinant glucose oxidase from Penicillium amagasakiense (yGOXpenag) displaying a more efficient glucose catalysis (kcat/KM(glucose) = 93 μM−1 s−1) than the native GOX from Aspergillus niger (nGOXaspng), which is the most industrially used (kcat/KM(glucose) = 27 μM−1 s−1). Expression in Pichia pastoris allowed easy production and purification of the recombinant active enzyme, without overglycosylation. Its biotechnological interest was further evaluated by measuring kinetics of ferrocinium-methanol (FMox) reduction, which is commonly used for electron transfer to the electrode surface. Despite their homologies in sequence and structure, pH-dependant FMox reduction was different between the two enzymes. At physiological pH and temperature, we observed that electron transfer to the redox mediator is also more efficient for yGOXpenag than for nGOXaspng(kcat/KM(FMox) = 27 μM−1 s−1 and 17 μM−1 s−1 respectively). In our model system, the catalytic current observed in the presence of blood glucose concentration (5 mM) was two times higher with yGOXpenag than with nGOXaspng. All our results indicated that yGOXpenag is a better candidate for industrial development of efficient bioelectrochemical devices used in physiological conditions.  相似文献   

19.
Use of the reductant dithiothreitol (DTT) as a substrate for measuring vitamin K 2,3-epoxide reductase (VKOR) activity in vitro has been reported to be problematic because it enables side reactions involving the vitamin K1 2,3-epoxide (K1>O) substrate. Here we characterize specific problems when using DTT and show that tris(3-hydroxypropyl)phosphine (THPP) is a reliable alternative to DTT for in vitro assessment of VKOR enzymatic activity. In addition, the pH buffering compound imidazole was found to be problematic in enhancing DTT-dependent non-enzymatic side reactions. Using THPP and phosphate-based pH buffering, we measured apparent Michaelis–Menten constants of 1.20 μM for K1>O and 260 μM for the active neutral form of THPP. The Km value for K1>O is in agreement with the value that we previously obtained using DTT (1.24 μM). Using THPP, we successfully eliminated non-enzymatic production of 3-hydroxyvitamin K1 and its previously reported base-catalyzed conversion to K1, both of which were shown to occur when DTT and imidazole are used as the reductant and pH buffer, respectively, in the in vitro VKOR assay. Accordingly, substitution of THPP for DTT in the in vitro VKOR assay will ensure more accurate enzymatic measurements and assessment of warfarin and other 4-hydroxycoumarin inhibition constants.  相似文献   

20.
The inhibition of horse serum butyrylcholinesterase (EC 3.1.1.8) by the organophosphorus compound paraoxon (diethyl 4-nitrophenyl phosphate) was studied by flow microcalorimetry at 37 °C in Tris buffer (pH 7.5) using a modification of the kinetic model described by Stojan and coworkers [J. Stojan, V. Marcel, S. Estrada-Mondaca, A. Klaebe, P. Masson, D. Fournier, A putative kinetic model for substrate metabolisation by Drosophila acetylcholinesterase, FEBS Lett. 440 (1998) 85-88]. The reversible steps of the inhibition were studied in the mixing cell of the calorimeter, whereas the irreversible step was studied in the flow-through cell. A new pseudo-first-order approximation was developed to allow the kinetic analysis of inhibition progress curves in the presence of substrate when a significant amount of substrate is transformed. This approximation also allowed one to compute an analytical expression of the calorimetric curves using a gamma distribution to describe the impulse response of the calorimeter. Fitting models to data by nonlinear regression, with simulated annealing as a stochastic optimization method, allowed the determination of all kinetic parameters. It was found that paraoxon binds to both the enzyme and acyl-enzyme, but with weak affinities (Ki = 0.123 mM and Ki = 5.5 mM). A slight activation was observed at the lowest paraoxon concentrations and was attributed to the binding of the substrate to the enzyme-inhibitor complex. The bimolecular inhibition rate constant ki = 2.8 × 104 M−1 s−1 was in agreement with previous studies. It is hoped that the methods developed in this work will contribute to extending the application range of microcalorimetry in the field of irreversible inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号