首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Legumin and vicilin are the major globulin seed storage proteins of pea. They are synthesised predominantly in the cotyledons where they are sequestered within membrane-bounded vacuolar protein bodies. In situ hybridisation histochemistry, with both biotinylated and 35S-labelled cDNA probes, has been used to visualise the temporal and spatial patterns of distribution of legumin and vicilin mRNAs during seed development. These patterns have been compared with those of storage protein deposition which have been determined by immunocytochemistry. Results indicate that within the cotyledons high levels of legumin and civilin mRNAs are restricted to the storage parenchyma tissues, whilst the epidermal cells and vascular parenchyma do not show such accumulation. The tissues of the embryo axis also show differential levels of expression, although where present the levels of mRNAs appear much lower than in the cotyledons. Throughout the embryo the patterns shown by in situ hybridisation are similar to those shown by immunocytochemistry, although the transient endosperm of early seed development does not show such a correlation.  相似文献   

3.
An antiserum specific for the legumin and vicilin of Vicia faba was used to examine extracts of seeds of taxa of the Fabeae and Trifolieae for the presence of related storage proteins, Proteins related to legumin were found to be widely distributed, indicating considerable conservation of the genetic information for this protein. Only Pisum sativum contained a protein immunochemically identical with the vicilin of V. faba; the equivalent proteins of all other genera tested here were immunochemically different from vicilin.  相似文献   

4.
Seed storage proteins are thought to be accumulated exclusively in the cell-expansion phase of embryogenesis and metabolized during germination and seedling growth. Here we show by a sensitive immunohistological technique that the two Vicia faba L. storage proteins vicilin and legumin are accumulated in substantial amounts in the suspensor and coenocytic endosperm and to a lesser extent in the mid-globular embryo. Both proteins appear and disappear at precise stages specific for each tissue. In the endosperm the accumulation starts around 12 d after pollination (DAP). After a maximum attained at 14–15 DAP, storage proteins are degraded within about 4 d. Accumulation is restricted to that part of the endosperm which covers the embryo and displays the highest levels of endoploidy (maximum 96n). In all other parts of the endosperm, storage proteins do not appear to accumulate, although storage-protein-specific mRNA synthesis takes place. In the suspensor, storage proteins are already observed at 6 DAP and disappear very quickly at approximately 10 DAP. Low amounts of legumin and vicilin are also detectable in the mid-globular embryo, but disappear completely as the embryo enters the heart stage. We conclude that storage proteins of Vicia faba accumulated transiently during early seed development are used as nutritive reserves for the growing embryo.Abbreviation DAP days after pollination Dedicated to Prof. Rigomar Rieger in the occasion of his 65th birthdayThis research was supported by the Ministry of Science and Research, Land Sachsen-Anhalt, Germany. U.W. acknowledges additional support by the Fonds der Chemischen Industrie.  相似文献   

5.
The legumin- and vicilin-like seed storage globulins of spermatophytes are specifically accumulated during embryogenesis and seed development. Previous studies have shown that a precursor common to both legumin and vicilin genes might have evolved by duplication from a single-domain ancestral gene. We here report that amino acid sequences of legumin and vicilin domains share statistically significant similarity to the germination-specific germins of wheat as well as to the spherulation-specific spherulins of myxomycetes. This conclusion is further supported by the derived intron-exon structure of a spherulin gene. Spherulins are thought to be involved in tissue desiccation or hydration. It is suggested that the present-day seed globulins of spermatophytes have evolved from a group of ancient proteins functional in cellular desiccation/hydration processes. Correspondence to: H. Bäumlein  相似文献   

6.
We were interested in determining whether the low protein contentof pea seeds (Pisum sativum L.) as compared to soya bean seeds(Glycine max L. Merrill) might be due to faster degradationof the pea storage proteins during development of the seed.Pea and soya bean cotyledons were subjected to a ‘pulse-chase’experiment using [3H]glycine in in-vitro cultures. In peas,legumin had a half-life of 146 days, while vicilin had a half-lifeof 39 days. There was no measureable degradation of soya beanstorage proteins. Even with the pea storage proteins, the half-liveswere so much longer than the maturation time of seeds that degradationof storage proteins could not account for the lower proteincontent of peas as compared to soya beans. The validity of theseresults was indicated by the finding that non-storage proteinshad much shorter half-lives and that omission of a carbon ora nitrogen source greatly accelerated degradation. Labelledglycine was found to be a good probe for protein turnover studiesbecause it was very rapidly metabolized. Glycine max L. Merrill, soya bean, Pisum sativum, L. pea, protein turnover, storage proteins, legumin, vicilin  相似文献   

7.
Intact pea (Pisum sativum L.) cotyledons were incubated with [14C]glucosamine at several stages of seed development and the resultant radioactive proteins were analysed by gel electrophoresis combined with immunoaffinity chromatography and sucrose gradient fractionation. Glucosamine was incorporated into at least five vicilin polypeptides (approx. molecular weight 70,000; 50,000, two components; 14,000, two components). No incorporation was detected into the subunits of legumin. Tunicamycin at 50 g/ml largely inhibited glucosamine incorporation but had little effect on the incorporation of 14C-labelled amino acids into cotyledon proteins, including vicilin. The assembly of vicilin polypeptides into full-sized protein oligomers (7–9 S) was also unaffected by tunicamycin. Chromatography on concanavalin A confirmed that glycosylation of cotyledon proteins was inhibited by tunicamycin. It is concluded that glycosylation of most cotyledonary proteins involves lipid-linked sugar intermediates, but that glycosylation itself is not an essential step in the synthesis of vicilin polypeptides nor in their assembly into oligomers.Abbreviations IgG immunoglobulin G - M Wt approximate molecular weight based on electrophoretic mobility relative to that of protein standards - SDS-PAGE Na-dodecyl sulfate-polyacrylamide gel electrophoresis  相似文献   

8.
The effects of differemt S and methionine regimes on growthof developing Vicia faba cotyledons in vitro were studied. Basalmedium (containing adequate S) supplemented with 05 mM methioninemarginally increased d. wt and uncombined amino acid accumulationbut adding 1–5 mM methionine inhibited both growth andprotein accumulation. Sulphur deficiency reduced both d. wtand protein accumulation but incresed accumulation of uncombinedamino acids. Adding 1 mM methionine to the S-deficient mediumrestored growth, normal protein and uncombined amino acid acnunulation.High sulphate medium (7.5 mM ) decreased d. wt, protein anduncombined amino acid accumulation. High sulphate medium or basal medium+methionine (05 mM) changedthe proportions of the seed proteins; legumin increased butvicilin decreased. Sulphur deficiency caused a relative increasein vicilin but a decrease in legumin. The different S and methionineregimes markedly changed the composition of the uncombined aminoacids, especially those derived from aspartic acid but not thecomposition of the protein fraction, except during S deficiency. The data presented indicates a flexibility in the storage proteincomposition of developing cotyledons grown in vitro, with theS and methionine status having a regulatory effect. Vicia faba L., field bean, cotyledon, growth, in vitro culture, uncombined amino acids, protein composition, legumin, vicilin, methionine, sulphur  相似文献   

9.
C. Domoney  D. R. Davies  R. Casey 《Planta》1980,149(5):454-460
A highly sensitive immunoassay has been used for the detection of a major storage protein, legumin, in embryos of Pisum sativum L.; with this technique nanogram quantities could be measured. In the two varieties tested, legumin could be detected in embryos in vivo, when they had attained a fresh weight of 2·10-3 g and 3·10-3 g, respectively. Contrary to earlier claims, embryos cultured in vitro were shown to be capable of initiating legumin synthesis. This capacity to initiate legumin synthesis was confirmed by two-dimensional isoelectric focusing-electrophoresis and fluorography; embryos harvested before initiation of legumin synthesis and cultured in radioactive medium were shown to have synthesized legumin subunits. The amounts of legumin and total protein synthesized per unit fresh weight were consistently greater in vitro than in equivalent embryos grown in vivo.Abbreviations ELISA Enzyme-linked immunosorbent assay - BSA bovine serum albumin - IgG immunoglobulin - SDS sodium dodecyl sulphate - DSP Pisum cv. Dark Skinned Perfection  相似文献   

10.
Since there is some question as to whether or not legumin is glycosylated, this storage protein was isolated by various procedures from developing cotyledons of Pisum sativum L. supplied with [14C]-labeled glucosamine and analyzed by sodium dodecylsulfate-polyacrylamide gel electrophoresis. Legumin isolated by the classical method of Danielsson [(1949) Biochem. J. 44, 387–400] a procedure in which globulins extracted with a buffered salt solution are precipitated with ammonium sulfate (70% saturation) and legumin separated from vicilin by isoelectric precipitation, was labeled. The glucosamine incorporated into legumin was associated with low-molecular-weight polypeptides. In contrast, legumin isolated by the method of Casey [(1979) Biochem. J. 177, 509–520], a procedure where legumin is prepared by zonal isoelectric precipitation from globulins precipitated with 40–70% ammonium sulfate, was not labeled. However, the globulin fraction precipitated with 40% ammonium sulfate was labeled and the radioactive glucosamine was associated with low-molecular-weight polypeptides. Legumin isolated from protein bodies [Thomson et al. (1978) Aust. J. Plant Physiol. 5, 263–279] was not extensively labeled. However, the saltinsoluble fraction of protein body extracts was labeled and the radioactivity was associated with low-molecular-weight polypeptides. These results indicate that protein bodies contain a glycoprotein of low-molecular-weight that co-purifies with legumin isolated by the method of Danielsson but that is discarded when isolation methods developed more recently are used.  相似文献   

11.
Legumin and vicilin,storage proteins of legume seeds   总被引:3,自引:0,他引:3  
The structure, location in the seed and distribution of the storage protein of legume seeds are described. Methods which have been employed for the extraction, purification and characterisation of seed globulins are reviewed in relation to modern biochemical practice. The physical, chemical and immunological characteristics of the classical legumin and vicilin preparations from Pisum sativum are summarised and the distributions of proteins with sedimentation coefficients and/or immunological determinants similar to those of legumin and vicilin, are tabulated. The structure and composition of various purified legumin and vicilin-type proteins from a variety of legumes, are compared.  相似文献   

12.
Intact cotyledons were taken from pea seeds at various stages during seed development and pulse-labeled with 14C-amino acids. Salt-soluble proteins then were extracted and fractionated on Na dodecyl sulfate-polyacrylamide gels. Storage proteins in these extracts were identified by their binding to immunoaffinity columns. The labeling studies showed that the synthesis of storage protein polypeptides accounts for a major part of total protein synthesis of developing cotyledons between 10 and 22 days after flowering. The distribution of the incorporated radioactivity between individual storage protein polypeptides varied with stage of development. For example, the synthesis of the 50 kilodalton complex of vicilin subunits dominated the early stages of protein accumulation but was a negligible proportion of the total incorporation in the later stages. On the other hand, the 75 kilodalton vicilin subunit was synthesized throughout this entire period. The major small subunit of legumin (20 kilodaltons) was not detected by either Coomassie blue staining or by 2-hour labeling during this period. It was found to arise during the desiccation phase of seed maturation from a long-lived precursor with a relative electrophoretic mobility equivalent to 19 kilodaltons.  相似文献   

13.
Polyribosomes which have template activity in the wheat germ system have been isolated from developing pea seeds. Some of the translation products have identical mobilities to the vicilin and legumin subunits by SDS-PAGE. Certain products were specifically immunoprecipitated with antisera prepared against purified vicilin and legumin fractions. Various RNA fractions including poly A-rich RNA have also been isolated from polyribosomes and shown to direct the synthesis of polyripeptides whose properties are similar to the storage protein subunits. The results are discussed in relationship to other investigations with seed storage protein biosynthesis in vitro.Abbreviations DTT dithiothreitol - SDS-PAGE SDS-polyacrylamide gel electrophoresis - TCA tricarboxylic acid  相似文献   

14.
A third storage protein, distinct from legumin and vicilin, has been purified from the seeds of pea (Pisum sativum L.). This protein has been named 'convicilin' and is present in protein bodies isolated from pea seeds. Convicilin has a subunit mol.wt. of 71 000 and a mol.wt. in its native form of 290 000. Convicilin is antigenically dissimilar to legumin, but gives a reaction of identity with vicilin when tested against antibodies raised against both proteins. However, convicilin contains no vicilin subunits and may be clearly separated from vicilin by non-dissociating techniques. Unlike vicilin, convicilin does not interact with concanavalin A, and contains insignificant amounts of carbohydrates. Limited heterogeneity, as shown by isoelectric focusing, N-terminal analysis, and CNBr cleavage, is present in convicilin isolated from a single pea variety; genetic variation of the protein between pea lines has also been observed.  相似文献   

15.
Mature embryonic axes were used for chickpea (Cicer arietinum L.) regeneration via somatic embryogenesis. Qualitative and quantitative estimation of protein profile during somatic embryogenesis by SDS-PAGE and densitometric analysis showed differential expression of various storage proteins at different stages of somatic embryo development, which was compared with the profile of developing seeds. Total protein content in somatic embryos of chickpea increased from globular stage [2.9 μg mg−1(f.m.)] to cotyledonary stage [4.8 μg mg−1(f.m.)] and then started decreasing during onset of maturation and germination [up to 1.5 μg mg−1(f.m.)]. Differential expression of seed storage proteins, late embryogenesis abundant (LEA) proteins and proteins related with stress response were documented at different stages of somatic embryogenesis. Germinating somatic embryos showed degradation products of several seed storage proteins and the appearance of new polypeptides (76.8, 67.6, 49.9 and 34.2 kDa), which were absent during differentiation of somatic embryos. A low molecular mass (17.7 kDa) polypeptide was uniformly present during all stages of somatic embryogenesis and it may belong to a group of stress-related proteins. This study describes the expression of true seed storage proteins like legumin, vicilin, convicilin and their subunits at different stages of somatic embryogenesis, which may serve as excellent markers for embryogenic pathway of regeneration in chickpea.  相似文献   

16.
Cotyledons of Phaseolus aureus contain protein-bound glucosamine which is metabolized during germination. The glucosamine is present in storage glycoproteins, and these are concurrently metabolized along with the glucosamine. These glycoproteins are associated with protein bodies. Characterization of the glucosamine-containing storage proteins showed them to be identical with vicilin and legumin, the major storage proteins of the Leguminosae. Phaseolus aureus vicilin has a sedimentation constant of 8.0S and is made up of four nonidentical subunits. It contains 0.2% glucosamine and 1% mannose. Legumin has a sedimentation constant of 11.3S and is made up of three nonidentical subunits. It contains about 0.1% glucosamine.  相似文献   

17.
18.
Legumin-like 11S and vicilin-like 7S globulins are the main storage proteins of most angiosperms and gymnosperms. The subunits of the hexameric legumin are synthesized as a precursor comprising a N-terminal acidic - and a C-terminal basic -chain. The trimeric vicilin molecule consists of subunits composed of two symmetrical N- and C-terminal structural domains.In a multiple alignment we have compared the N-terminal and C-terminal domains of 11 legumns and seven vicilins of several dicot, monocot, and gymnosperm species. The comparisons using all six possible pairwise combinations reveal that the N-terminal and C-terminal domains of both protein families are similar to each other. These results together with data on the distribution of variable and conserved regions, on the positions of susceptible sites for proteolytic attack, as well as on the published 7S protein tertiary structure suggest that both protein families share a common single-domain ancestor molecule and lead to the hypothesis that a triplication event has occurred during the evolution of a putative legumin/vicilin ancestor gene.Moreover, the comparison of the intron/exon pattern reveals that at least three out of five intron positions are precisely conserved between the genes of both protein families, further supporting the idea of a common evolutionary origin of recent legumin and vicilin encoding genes. Correspondence to: H. Bäumlein  相似文献   

19.
《Plant science》1986,46(3):159-167
The effects of abscisic acid (ABA), high osmotica, fluridone (an inhibitor of carotenoid biosynthesis), gibberellic acid (GA3) and an inhibitor of gibberellin biosynthesis, paclobutrazol (1-(4-chlorophenyl)-4,4-dimethyl-2-(1-24-triazol-1-yl)pentan-3-ol) on storage protein accumulation were studied in developing Vicia faba L. cotyledons cultured for 2 or 3 days in vitro. Extracts of these cotyledons were separated by sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) under reducing conditions. ABA stimulated the accumulation of vicilin and legumin polypeptides. GA3 did not noticeably stimulate the accumulation of any polypeptide. There was stimulation of vicilin and legumin polypeptide accumulation by high osmoticum (18% sucrose), which was further enhacedd by ABA and inhibited by fluridone. The fluridone inhibition was reversed by ABA addition.The data provides evidence that ABA modulates the synthesis of V. faba storage proteins.  相似文献   

20.
D. J. Wright  D. Boulter 《Planta》1972,105(1):60-65
Summary Vicilin and legumin were extracted from developing seeds at different stages using the classical method of repeated isoelectric precipitations. The subunits of these two protein fractions were separated by SDS gel electrophoresis, and it was shown that the sub-unit structure of vicilin changed during development whereas that of legumin did not. Thus vicilin is not a single protein.Vicilin was formed prior to legumin during seed development although the rate of synthesis of the latter was faster, so that in the mature seed the ratio of legumin to vicilin was about 4:1 by weight.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号