首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The phototrophic sulphur bacterium. Thiocapsa roseopersicina, strain BBS, was grown under anaerobic conditions in the darkness on the medium containing glucose and thiosulphate or molecular sulphur. The assimilation of glucose is accompanied by the accumulation of small amounts of pyruvate in the medium, and the uptake of thiosulphate or molecular sulphur leads to the formation of sulphates and hydrogen sulphide.  相似文献   

2.
A chromosomal fragment has been identified in a gene bank from Escherichia coli, which augmented the yield of cysteine in an industrial production strain. Subcloning and genetic analysis showed that an open reading frame coding for a product of 299 amino acids (Orf299) was responsible. Orf299 was synthesized in the T7 polymerase/promoter system and exhibited the properties of an integral membrane protein. Mutational interruption of orf299 did not cause a distinct phenotype; however, transformants overexpressing orf299 had lost the ability to grow in minimal medium unless it was supplemented with a source of reduced sulphur compounds, and they excreted considerable amounts of cysteine and O-acetyl-L-serine, especially in the presence of thiosulphate. Most of the cysteine was found to be masked in 2-methyl-2,4-thiazolidinedicarboxylic acid. N-acetyl-L-serine was also present in the medium, but it is open to question whether it represents a primary excretion product. Measurement of the induction status of the cysteine regulon by means of a cysK'-'lacZ gene fusion demonstrated that the regulon is not induced upon growth in the presence of a poor sulphur source and that the introduction of a constitutive cysB allele alleviates this deficiency. The results indicate that orf299 codes for an export pump for different metabolites of the cysteine pathway. Its relation to other efflux systems and the physiological role are discussed.  相似文献   

3.
4.
Several studies have suggested that insulin and glucose increase adipose tissue lipoprotein lipase (LPL). To study the mechanism of the glucose-induced stimulation of LPL, the effects of glucose and glycosylation were examined in primary rat adipocyte cultures. In cells cultured in the presence of 1 mg/ml glucose, a 55-kDa LPL protein was synthesized and secreted into the medium, whereas cells cultured in glucose-free medium synthesized a 49-kDa form of LPL which was not secreted. The treatment of the mature 55-kDa form of LPL with peptide:N-glycosidase-F resulted in the formation of a 49-kDa form of LPL. When cells were cultured in the presence of tunicamycin, a 49-kDa form of LPL was synthesized by the cells but was not secreted. In addition, LPL activity was reduced by 90% when glycosylation was blocked by either tunicamycin or glucose deprivation. LPL synthetic rate was examined in cells cultured in a spectrum of glucose concentrations. LPL synthetic rate increased directly with medium glucose concentration and was decreased 80% in the absence of glucose compared to the synthetic rate in the presence of 1 mg/ml glucose. In addition, LPL synthetic rate in the presence of insulin was approximately 200% of the synthetic rate in untreated control cells at all glucose concentrations and even in the absence of glucose. In spite of the effect of glucose on LPL synthetic rate, glucose had no effect on the level of LPL mRNA. In contrast, the mRNA for the 78-kDa glucose-regulated protein (GRP78) was increased in adipocytes cultured in glucose-free medium. In summary, glucose was essential for glycosylation of LPL, and glycosylation was essential for LPL catalytic activity and secretion. In addition, glucose stimulated LPL synthetic rate and potentiated the stimulatory effects of insulin, but had no specific effect on LPL mRNA. Whereas insulin stimulates LPL by increasing the level of LPL mRNA, glucose stimulates LPL translation and post-translational processing.  相似文献   

5.
The assimilation of sulphate in Saccharomyces cerevisiae, comprising the reduction of sulphate to sulphide and the incorporation of the sulphur atom into a four-carbon chain, requires the integrity of 13 different genes. To date, the functions of nine of these genes are still not clearly established. A set of strains, each bearing a mutation in one MET gene, was studied. Phenotypic studies and enzyme determinations showed that the products of at least five genes are needed for the synthesis of an enzymically active sulphite reductase. These genes are MET1, MET5, MET8, MET10 and MET20. Wild-type strains of S. cerevisiae can use organic metabolites such as homocysteine, cysteine, methionine and S-adenosylmethionine as sulphur sources. They are also able to use inorganic sulphur sources such as sulphate, sulphite, sulphide or thiosulphate. Here we show that both of the two sulphur atoms of thiosulphate are used by S. cerevisiae. Thiosulphate is cleaved into sulphite and sulphide prior to utilization by the sulphate assimilation pathway, as the metabolism of one sulphur atom from thiosulphate requires the presence of an active sulphite reductase.  相似文献   

6.
Group B Neisseria meningitidis (SD1C) was grown on defined medium supplemented with each of a variety of sulphur compounds as the sole source of sulphur. The organism grew on sulphate, sulphite, bisulphite, thiosulphate, dithionite, hydrosulphide, thiocyanate, L-cysteine, L-cystine, reduced glutathione, methionine, mercaptosuccinate, and lanthionine, but not on dithionate unless previously sulphur starved. Good growth was seen on concentrations of sulphate or thiosulphate as low as 10 microM. When pregrown on and subsequently starved for sulphate, the meningococcus showed enhanced transport capacity for this ion. Optimal conditions for assessing sulphur transport by active sulphur-limited cells were determined. The maximal sulphate uptake velocity was 9.3 nmol sulphate X mg protein-1 X min-1, and the apparent Km was 1.4 microM, far below human nasopharyngeal or serum sulphate levels.  相似文献   

7.
Abstract The agar shake technique has been tested for the enumeration and isolation of bacteria involved in the anaerobic oxidation of reduced sulphur compounds. High numbers of colony forming units were observed from regions rich in sulphide, and the numbers of these forms were sometimes significantly correlated with the number of sulphate-reducing bacteria. The isolates could oxidise not only thiosulphate but also sulphide in liquid medium at the expense of nitrate. Addition of 1 mM glucose to the medium enhanced the rate and amount of thiosulphate oxidised by many of the isolates. Hence the use of the agar shake technique is recommended for the study of these little known facultatively or even obligately chemolithotrophic bacteria involved in the anaerobic oxidation of reduced inorganic sulphur compounds in the marine and estuarine environment.  相似文献   

8.
The sulphur nutrition of three isolates ofAlternaria tenuis Auct., isolated from the diseased leaves ofMangifera indica L.,Musa paradisiaca L. andPsidium guajava L., was studied. They were grown on the medium devoid of sulphur as well as on media containing various sources of sulphur viz., ammonium sulphate, sodium hyposulphite, sodium thiosulphate, magnesium sulphate, potassium sulphate, potassium metabisulphite, zinc sulphate and thiourea. Sodium hyposulphite, sodium thiosulphate, magnesium sulphate, potassium sulphate and zinc sulphate were generally found to be satisfactory sources for the growth of all the isolates under study. Poor growth of the different isolates was observed on the medium devoid of sulphur.  相似文献   

9.
The production by Arthrobacter sp. of a 30-kDa surface protein and a 25-kDa cytoplasmic protein was increased by the presence of MnO2 in the medium. This high production was also observed in the presence of MnO4- (Mn VII). N-terminal and partial internal sequences of the 30-kDa surface protein have shown no homology with other known proteins. The role of this protein is still unknown, but its highly induced synthesis is possibly related to the binding or the processing of manganic ion by the cells. The 25-kDa cytoplasmic protein has been identified by its N-terminal matching sequence as a superoxide dismutase isoenzyme (Mn-SOD). SOD activity measurements performed on cytoplasmic fractions are related to the protein amounts observed by gel electrophoresis. Arthrobacter sp. synthesized and exhibited SOD activity in both aerobic and anaerobic conditions, thus suggesting other or additional physiological functions for this enzyme.  相似文献   

10.
The in situ physiology of the filamentous sulphur bacterium Thiothrix spp. was investigated in an industrial wastewater treatment plant with severe bulking problems as a result of overgrowth of Thiothrix. Identification and enumeration using fluorescence in situ hybridization (FISH) with species-specific 16S and 23S rRNA probes revealed that 5–10% of the bacteria in the activated sludge were Thiothrix spp. By using a combination of FISH and microautoradiography it was possible to study the in situ physiology of probe-defined Thiothrix filaments under different environmental conditions. The Thiothrix filaments were very versatile and showed incorporation of radiolabelled acetate and/or bicarbonate under heterotrophic, mixotrophic and chemolithoautotrophic conditions. The Thiothrix filaments were active under anaerobic conditions (with or without nitrate) in which intracellular sulphur globules were formed from thiosulphate and acetate was taken up. Thiothrix -specific substrate uptake rates and growth rates in activated sludge samples were determined under different conditions. Doubling times of 6–9 h under mixotrophic conditions and 15–30 h under autotrophic conditions were estimated. The key properties that Thiothrix might be employing to outcompete other microorganisms in activated sludge were probably related to the mixotrophic growth potential with strong stimulation of acetate uptake by thiosulphate, as well as stimulation of bicarbonate incorporation by acetate in the presence of thiosulphate.  相似文献   

11.
A free-living aspartate-fermenting Campylobacter spec. was shown to utilize hydrogen produced in mixed culture by Clostridium cochlearium from glutamate. Resting cells of Campylobacter were shown to reduce aspartate, fumarate and malate as well as nitrate, nitrite, hydroxylamine, sulphite, thiosulphate and elemental sulphur with molecular hydrogen. Growth of Campylobacter spec. was demonstrated with formate as electron donor and nitrate, thiosulphate, elemental sulphur or oxygen as electron acceptor in the presence of acetate as carbon source.  相似文献   

12.
Two different pathways for thiosulphate oxidation are present in the purple sulphur bacterium Allochromatium vinosum: oxidation to tetrathionate and complete oxidation to sulphate with obligatory formation of sulphur globules as intermediates. The tetrathionate:sulphate ratio is strongly pH-dependent with tetrathionate formation being preferred under acidic conditions. Thiosulphate dehydrogenase, a constitutively expressed monomeric 30 kDa c-type cytochrome with a pH optimum at pH 4.2 catalyses tetrathionate formation. A periplasmic thiosulphate-oxidizing multienzyme complex (Sox) has been described to be responsible for formation of sulphate from thiosulphate in chemotrophic and phototrophic sulphur oxidizers that do not form sulphur deposits. In the sulphur-storing A. vinosum we identified five sox genes in two independent loci (soxBXA and soxYZ). For SoxA a thiosulphate-dependent induction of expression, above a low constitutive level, was observed. Three sox-encoded proteins were purified: the heterodimeric c-type cytochrome SoxXA, the monomeric SoxB and the heterodimeric SoxYZ. Gene inactivation and complementation experiments proved these proteins to be indispensable for thiosulphate oxidation to sulphate. The intermediary formation of sulphur globules in A. vinosum appears to be related to the lack of soxCD genes, the products of which are proposed to oxidize SoxY-bound sulphane sulphur. In their absence the latter is instead transferred to growing sulphur globules.  相似文献   

13.
The purple sulphur bacterium Thiocapsa roseopersicina, strain BBS, grown in the darkness in aerobic autotrophic conditions, oxidized sulphides to free sulphur and then to sulphates. This was accompanied with the fixation of carbon dioxide by the cells. Addition of glucose to the mineral medium increased the biomass yield; the cells oxidized thiosulphate still at a high rate. These results prove the possibility of switching T. roseopersicina from photosynthesis to a dark chemolithautotrophic way of life.  相似文献   

14.
The wild type Nostoc muscorum (UW strain) has yielded various physiological mutants altered in utilization of sulphate, following mutagenic treatments with N-methyl, N'-nitro N-nitrosoguanidine (NTG). One of the mutant strains designated as Sat-20 failed to grow in a medium containing sulphate (MgSO4.7 H2O). However, the mutant strain could grow when supplemented with thiosulphate (Na2S2O3.5 H2O), while methionine could fulfil the sulphur requirement only partially. On comparative reasons, the wild type as well as the mutant showed preference for thiosulphate over other sulphur sources employed.  相似文献   

15.
In culture, vascular smooth muscle cells grow and form a confluent monolayer of cells. Under appropriate conditions, regions of the monolayer can be induced to draw away from the substrate and form multicellular nodules. The ultrastructure of the cells in the nodules appears to be similar to that of differentiated smooth muscle cells. The process of nodulation is associated with the synthesis of a unique protein whose molecular weight is estimated from gradient gel electrophoresis to be 38,000 (38-kDa Protein). The protein is secreted into the culture medium and can be detected either by metabolic labeling or by staining with Coomassie Blue. Partial purification of 38-kDa Protein was achieved using affinity chromatography. The protein is adsorbed to heparin-agarose, but not to gelatin-agarose. The concentration of 38-kDa Protein in nodular conditioned medium is estimated at 1.9 micrograms/ml and less than 0.01 microgram/ml in conditioned medium made from monolayer cells. The presence of 5% fetal bovine serum in the labeling medium does not affect 38-kDa Protein synthesis. Cross-reactivity with fibronectin was evaluated using polyvalent antibodies to 38-kDa Protein. The 38-kDa Protein is not antigenically related to fibronectin. Furthermore, we establish that the protein is not qualitatively influenced by the presence of ascorbate (50 micrograms/ml), beta-aminoproprionitrile fumarate (50 micrograms/ml) heparin (10 ng/ml), or fibronectin (20 micrograms/ml) in the culture medium. We find that the added components neither suppress 38-kDa Protein synthesis in nodular cultures nor enhance 38-kDa Protein synthesis in monolayer cultures. The 38-kDa Protein is not detected in either monolayer or nodular cell layers and appears to be a secreted protein. Its appearance in nodular conditioned medium during nodulation suggests a relationship with that process.  相似文献   

16.
 Sulphur formation by the obligately chemolithoautotrophic Thiobacillus o and Thiobacillus neapolitanus was studied in aerobic, substrate-limited continuous cultures. The performance of transient-state and steady-state cultures was compared using different methods for measuring sulphur production. Below a dilution rate (D) of 0.3 h-1 (at 50% air saturation), sulphate-producing steady states were obtained, and cultures grown with sulphide or thiosulphate (at D=0.06 h-1) showed similar characteristics (e.g. cell yields, oxidation capacities and CO2-fixation capacities). Elemental sulphur was a major product above D=0.3 h-1, but steady states were difficult to achieve, because of adherence of sulphur to the fermentor surfaces and the accumulation of sulphide. These problems could be circumvented using transient-state experiments of 1 h. It was then found that elemental sulphur was formed under oxygen limitation or at high substrate load. The rates of sulphur formation obtained by sulphur analysis agreed with the values calculated from stoichiometric balances. Sulphide and thiosulphate proved to be equivalent substrates for both Thiobacillus species during elemental sulphur formation under the conditions tested. It is concluded that transient-state cultures of thiobacilli, pregrown as sulphate-producing steady-state cultures, provide experimental conditions for the quantitative assessment of sulphur formation from (labile) sulphide and from thiosulphate. Received: 15 May 1995 / Received revision: 4 August 1995 / Accepted: 22 August 1995  相似文献   

17.
Oxidation of reduced sulphur compounds by Thiobacillus acidophilus was studied with cell suspensions from heterotrophic and mixotrophic chemostat cultures. Maximum substrate-dependent oxygen uptake rates and affinities observed with cell suspensions from mixotrophic cultures were higher than with heterotrophically grown cells. ph Optima for oxidation of sulphur compounds fell within the pH range for growth (pH 2–5), except for sulphite oxidation (optimum at pH 5.5). During oxidation of sulphide by cell suspensions, intermediary sulphur was formed. Tetrathionate was formed as an intermediate during aerobic incubation with thiosulphate and trithionate. Whether or not sulphite is an inter-mediate during sulphur compound oxidation by T. acidophilus remains unclear. Experiments with anaerobic cell suspensions of T. acidophilus revealed that trithionate metabolism was initiated by a hydrolytic cleavage yielding thiosulphate and sulphate. A hydrolytic cleavage was also implicated in the metabolism of tetrathionate. After anaerobic incubation of T. acidophilus with tetrathionate, the substrate was completely converted to equimolar amounts of thiosulphate, sulphur and sulphate. Sulphide- and sulphite oxidation were partly inhibited by the protonophore uncouplers 2,4-dinitrophenol (DNP) and carbonyl cyanide m-chlorophenylhydrazone (CCCP) and by the sulfhydryl-binding agent N-ethylmaleimide (NEM). Oxidation of elemental sulphur was completely inhibited by these compounds. Oxidation of thiosulphate, tetrathionate and trithionate was only slightly affected. The possible localization of the different enzyme systems involved in sulphur compound oxidation by T. acidophilus is discussed.  相似文献   

18.
Transport and metabolism of 5'-nucleotidase in a rat hepatoma cell line   总被引:3,自引:0,他引:3  
The biosynthesis of the ectoenzyme 5'-nucleotidase in the rat hepatoma cell line H4S has been studied by pulse-labeling with [35S]methionine and subsequent immunoprecipitation of the cell lysate. 5'-Nucleotidase is a membrane glycoprotein with an apparent molecular mass on SDS-gels of 72 kDa. The enzyme is initially synthesized as a 68-kDa precursor which is converted to the mature 72-kDa form in 15-60 min (t1/2 = 25 min). The molecular mass of the unglycosylated enzyme is approximately 58 kDa. Culturing the cells in the presence of varying concentrations of tunicamycin, an inhibitor of N-glycosylation, revealed six species of 5'-nucleotidase after sodium dodecyl sulfate/polyacrylamide electrophoresis. This indicates the presence of five N-linked oligosaccharide chains accounting for the difference between the 58-kDa polypeptide backbone and the 68-kDa species. The 68-kDa precursor is susceptible to cleavage by endo-beta-N-acetylglycosaminidase H; the 72-kDa mature protein is converted to several bands upon this treatment. This result indicates that part of 5'-nucleotidase keeps one or two high-mannose or hybrid chains in the mature form, even after prolonged pulse-chase labeling. The newly synthesized mature enzyme reaches the cell surface after 20-30 min. The half-life of 5'-nucleotidase is about 30 h in H4S cells. No immunoprecipitable 5'-nucleosidase is released into the culture medium.  相似文献   

19.
Summary Streptomyces clavuligerus produced simultaneously cephamycin C and clavulanic acid in defined medium in long-term fermentations and in resting-cell cultures. Biosynthesis of cephamycin by phosphate-limited resting cells was dissociated from clavulanic acid formation by removing either glycerol or sulphate from the culture medium. In absence of glycerol no clavulanic acid was formed but cephamycin production occurred, whereas in absence of sulphate no cephamycin was synthesized but clavulanic biosynthesis took place. Sulphate, sulphite and thiosulphate were excellent sulphur sources for cephamycin biosynthesis while l-methionine and l-cysteine were poor precursors of this antibiotic. Increasing concentrations of sulphate also stimulated clavulanic acid formation. The biosynthesis of clavulanic acid was much more sensitive to phosphate (10–100 mM) regulation than that of cephamycin. Therefore, the formation of both metabolites was pertially dissociated at 25 mM phosphate. By contrast, nitrogen regulation by ammonium salts or glutamic acid strongly reduced the biosynthesis of both cephamycin and clavulanic acid.  相似文献   

20.
Alkaliphilic sulphur-oxidizing bacteria were isolated from samples from alkaline environments including soda soil and soda lakes. Two isolates, currently known as strains AL 2 and AL 3, were characterized. They grew over a pH range 8.0–10.4 with an optimum at 9.5–9.8. Both strains could oxidize thiosulphate, sulphide, polysulphide, elemental sulphur and tetrathionate. Strain AL 3 more actively oxidized thiosulphate and sulphide, while isolate AL 2 had higher activity with elemental sulphur and tetrathionate. Isolate AL 2 was also able to oxidize trithionate. The pH optimum for thiosulphate and sulphide oxidation was between 9–10. Some activity remained at pH 11, but was negligible at pH 7. Metabolism of tetrathionate by isolate AL 2 involved initial anaerobic hydrolysis to form sulphur, thiosulphate and sulphate in a sequence similar to that in other colourless sulphur-oxidizing bacteria. Sulphate was produced by both strains. During batch growth on thiosulphate, elemental sulphur and sulphite transiently accumulated in cultures of isolates AL 2 and AL 3, respectively. At lower pH values, both strains accumulated sulphur during sulphide and thiosulphate oxidation. Both strains contained ribulose bisphosphate carboxylase. Thiosulphate oxidation in isolate AL 3 appeared to be sodium ion-dependent. Isolate AL 2 differed from AL 3 by its high GC mol % value (65.5 and 49.5, respectively), sulphur deposition in its periplasm, the absence of carboxysomes, lower sulphur-oxidizing capacity, growth kinetics (lower growth rate and higher growth yield) and cytochrome composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号