首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The effect of Pb on Saccharomyces cerevisiae cell structure and function was examined. Membrane integrity was assessed by the release of UV-absorbing compounds and by the intracellular K+ efflux. No leakage of UV260-absorbing compounds or loss of K+ were observed in Pb (until 1,000 μmol/l) treated cells up to 30 min; these results suggest that plasma membrane seems not to be the immediate and primary target of Pb toxicity. The effect of Pb on yeast metabolism was examined using the fluorescent probe FUN-1 and compared with the ability to reproduce, evaluated by colony-forming units counting. The exposition of yeast cells, during 60 min to 1,000 μmol/l Pb, induces a decrease in the ability to process FUN-1 although the cells retain its proliferation capacity. A more prolonged contact time (120 min) of yeast cells with Pb induces a marked (> 50%) loss of yeast cells metabolic activity and replication competence through a mechanism which most likely requires protein synthesis.  相似文献   

2.
Characteristics of sterol uptake in Saccharomyces cerevisiae.   总被引:2,自引:4,他引:2       下载免费PDF全文
A Saccharomyces cerevisiae sterol auxotroph, FY3 (alpha hem1 erg7 ura), was used to probe the characteristics of sterol uptake in S. cerevisiae. The steady-state cellular concentration of free sterol at the late exponential phase of growth could be adjusted within a 10-fold range by varying the concentration of exogenously supplied sterol. When cultured on 1 microgram of sterol ml-1, the cells contained a minimal cellular free-cholesterol concentration of 0.85 nmol/mg (dry weight) and were termed sterol depleted. When cultured on 11 micrograms of sterol ml-1 or more, the cells contained a maximal cellular free-cholesterol concentration of 6.8 nmol/mg (dry weight) and were termed free sterol saturated. Cells with free-sterol concentrations below the maximal level were capable of accumulating free sterol from the medium. The capacity of the cells for cholesterol uptake was inversely proportional to the initial intracellular concentration. The uptake of sterol was shown to be a nonactive process that is independent of cellular energy sources or viability. The intracellular transport of sterol for esterification is not sensitive to anti-microtubule agents.  相似文献   

3.
There are both low- and high-affinity mechanisms for uptake of glucose in Saccharomyces cerevisiae; high-affinity uptake somehow depends on the presence of hexose kinases (L. F. Bisson and D. G. Fraenkel, Proc. Natl. Acad. Sci. U.S.A. 80:1730-1734, 1983; L. F. Bisson and D. G. Fraenkel, J. Bacteriol. 155:995-1000, 1983). We report here on the effect of culture conditions on the level of high-affinity uptake. The high-affinity component was low during growth in high concentrations of glucose (100 mM), increased as glucose was exhausted from the medium, and decreased again during prolonged incubation in the stationary phase. The higher level of uptake was found in growth on low concentrations of glucose (0.5 mM) and in growth on normal concentrations of galactose, lactate plus glycerol, or ethanol. These results suggest that some component of high-affinity uptake is repressible by glucose. A shift from medium with 100 mM glucose to medium with 5 mM glucose resulted in up to a 10-fold increase in the level of high-affinity uptake within 90 min; the increase did not occur in the presence of cycloheximide or 2,4-dinitrophenol or in buffer alone with low glucose, suggesting that protein synthesis or energy metabolism (or both) was required. Reimposition of the high glucose concentration caused loss of high-affinity uptake, a process not prevented by cycloheximide. The use of hexokinase single-gene mutants showed that the derepression of high-affinity uptake was not clearly correlated with changes in levels of the kinases themselves. These results place the phenomenon of high- and low-affinity uptake in a physiological context, in that high-affinity uptake seems to be expressed best in conditions where it might be needed. Apparent similarities between glucose uptake in yeast and animal cells are noted.  相似文献   

4.
5.
Peroxisomes play a major role in human cellular lipid metabolism, including fatty acid β-oxidation. The most frequent peroxisomal disorder is X-linked adrenoleukodystrophy, which is caused by mutations in ABCD1. The biochemical hallmark of X-linked adrenoleukodystrophy is the accumulation of very long chain fatty acids (VLCFAs) due to impaired peroxisomal β-oxidation. Although this suggests a role of ABCD1 in VLCFA import into peroxisomes, no direct experimental evidence is available to substantiate this. To unravel the mechanism of peroxisomal VLCFA transport, we use Saccharomyces cerevisiae as a model organism. Here we provide evidence that in this organism very long chain acyl-CoA esters are hydrolyzed by the Pxa1p-Pxa2p complex prior to the actual transport of their fatty acid moiety into the peroxisomes with the CoA presumably being released into the cytoplasm. The Pxa1p-Pxa2p complex functionally interacts with the acyl-CoA synthetases Faa2p and/or Fat1p on the inner surface of the peroxisomal membrane for subsequent re-esterification of the VLCFAs. Importantly, the Pxa1p-Pxa2p complex shares this molecular mechanism with HsABCD1 and HsABCD2.  相似文献   

6.
Aspects of glucose uptake in Saccharomyces cerevisiae.   总被引:2,自引:1,他引:2       下载免费PDF全文
A wild-type Saccharomyces cerevisiae strain showed simple saturation kinetics for glucose uptake, with a Km of 4 mM when cells were obtained from exponential growth on glucose, and a similar, single Km of 2 to 8 mM was found under a variety of other growth conditions. Later in growth on glucose, and during ethanol utilization, a second kinetic component was observed, which might reflect either artifacts of membrane alteration or a Km in the molar range.  相似文献   

7.
8.
Potentiation of oxygen toxicity by menadione in Saccharomyces cerevisiae   总被引:1,自引:0,他引:1  
M Chaput  J Brygier  Y Lion  A Sels 《Biochimie》1983,65(8-9):501-512
The cytotoxicity of molecular oxygen can be sharply increased in the yeast Saccharomyces cerevisiae by the use of redox compounds capable of shunting electrons in vivo and of spontaneous reoxidation under aerobic conditions. Among these redox compounds, menadione (Vitamin K3) is particularly able to stimulate the cyanide-resistant respiration of the yeast cells. Under steady-state conditions, the efficiency of menadione is modulated by the physiological state of the yeast cells and also depends on the availability of reducing agents within the cell. Menadione shows lethal effects towards yeast cells in the presence of O2 only, as a result of the production of toxic metabolites like O2-. and H2O2 which are actually detected in the extracellular fluid. Inhibitors of the enzymes scavenging O2-. and H2O2 generally potentiate the lethal effects of this redox compound. On the other hand, superoxide dismutase and/or catalase supplemented into the incubation buffer have been found to protect the cells to various extents from the cytotoxic effects of menadione. Our data support the following conclusions: When the cellular enzymatic defences are functional, the moderate lethality induced by menadione is principally mediated by O2-. ions acting on the outer side of the cell (peripheral region). In the presence of cyanide, but not of azide, the loss of viability also results from additional damage occurring within the inner cell region. In this case, intracellular injury can be caused by H2O2 alone but our data also suggest that during redox cycling more reactive species--O2-. and probably OH.--are generally intracellularly and are involved in the cytotoxic process.  相似文献   

9.
Regulation by heme of sterol uptake in Saccharomyces cerevisiae   总被引:2,自引:0,他引:2  
The leaky heme mutants G204, G216, and G214 are shown to accumulate exogenous sterols. Unlike hem mutants which have complete blocks in the heme pathway, these strains do not require ergosterol, methionine, or unsaturated fatty acids for growth. The addition of aminolevulinic acid to the growth medium inhibited sterol uptake in G204 96% but had only a slight effect on sterol uptake by strains G214 and G216. Sterol uptake in all three strains was inhibited 83-94% when cells were grown in the presence of hematin. Sterol analysis of these strains grown in the presence and absence of either aminolevulinic acid or hematin revealed that saturation of the cell membrane with ergosterol was not responsible for the dramatic decrease in sterol uptake. These results suggest that sterol uptake by yeast cells is controlled by heme, and explain the non-viability of yeast strains that are heme competent and auxotrophic for sterols.  相似文献   

10.
Glucose uptake in the cell cycle of Saccharomyces cerevisiae   总被引:2,自引:0,他引:2  
Glucose uptake was determined in the cell cycle of the yeast Saccharomyces cerevisiae. It was observed that there are two periods per cell cycle at which cells utilize glucose. This finding could give an explanation for the known fact that yeast cells in the stationary phase of growth are of two size classes.  相似文献   

11.
Arsenic trioxide uptake by hexose permeases in Saccharomyces cerevisiae   总被引:2,自引:0,他引:2  
Arsenic trioxide is a toxic metalloid and carcinogen that is also used as an anticancer drug, and for this reason it is important to identify the routes of arsenite uptake by cells. In this study the ability of hexose transporters to facilitate arsenic trioxide uptake in Saccharomyces cerevisiae was examined. In the absence of glucose, strains with disruption of the arsenite efflux gene ACR3 accumulated high levels of (73)As(OH)(3). The addition of glucose inhibited uptake by approximately 80%. Disruption of FPS1, the aquaglyceroporin gene, reduced glucose-independent uptake by only about 25%, and the residual uptake was nearly completely inhibited by hexoses, including glucose, galactose, mannose, and fructose but not pentoses or disaccharides. A strain lacking FPS1, ACR3, and all genes for hexose permeases except for HXT3, HXT6, HXT7, and GAL2 exhibited hexose-inhibitable (73)As(OH)(3) uptake, whereas a strain lacking all 18 hexose transport-related genes (HXT1 to HXT17 and GAL2), FPS1 and ACR3, exhibited <10% of wild type (73)As(OH)(3) transport. When HXT1, HXT3, HXT4, HXT5, HXT7, or HXT9 was individually expressed in that strain, hexose-inhibitable (73)As(OH)(3) uptake was restored. In addition, the transport of [(14)C]glucose was inhibited by As(OH)(3). These results clearly demonstrate that hexose permeases catalyze the majority of the transport of the trivalent metalloid arsenic trioxide.  相似文献   

12.
Although yeast cannot normally incorporate exogenous deoxythymidine 5'-monophosphate (dTMP) into deoxyribonucleic acid, mutants able to do so have been isolated. We have characterized a recessive suppressor of dTMP uptake (sot1) that prevents strains carrying either tup1, tup2, or tup4 from growing on selective medium. The sot1 mutation maps between rad1 and the centromere of chromosome XVI, and is unlinked to any of the tup mutations. The sot1 mutation does not suppress the other pleiotropic effects of the tup1 mutant, notably the lack of mating of tup1 MATalpha strains. The sot1 mutation specifically blocks the uptake of dTMP into tup strains. After growing a sot1 strain in medium containing [3H]dTMP, we showed that the medium still contained more than 90% of the original [3H]dTMP and that this medium could support the incorporation of [3H]dTMP by a tup2 strain. Therefore, sot1 strains do not degrade dTMP in the medium. The sot1 mutation had no effect on the uptake of other nutrients essential for growth, including several amino acids, adenine, and uracil.  相似文献   

13.
14.
Since the discovery of the apoptotic pathway in Saccharomyces cerevisiae, several compounds have been shown to cause apoptosis in this organism. While the toxicity of polyunsaturated fatty acids (PUFA) peroxides towards S. cerevisiae has been known for a long time, studies on the effect of nonoxidized PUFA are scarce. The present study deals specifically with linoleic acid (LA) in its nonoxidized form and investigates its toxicity to yeast. Saccharomyces cerevisiae is unable to synthesize PUFA, but can take up and incorporate them into its membranes. Reports from the literature indicate that LA is not toxic to yeast cells. However, we demonstrated that yeast cell growth decreased in cultures treated with 0.1 mM LA for 4 h, and 3-(4,5 dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide reduction (a measure of respiratory activity) decreased by 47%. This toxicity was dependent on the number of cells used in the experiment. We show apoptosis induction by LA concomitant with increases in malondialdehyde, glutathione content, activities of catalase and cytochrome c peroxidase, and decreases in two metabolic enzyme activities. While the main purpose of this study was to show that LA causes cell death in yeast, our results indicate some of the molecular mechanisms of the cell toxicity of PUFA.  相似文献   

15.
The mechanism of cerium uptake by Saccharomyces cerevisiae   总被引:1,自引:0,他引:1  
  相似文献   

16.
It has been reported that GAP1 and AGP2 catalyze the uptake of polyamines together with amino acids in Saccharomyces cerevisiae. We have looked for polyamine-preferential uptake proteins in S. cerevisiae. DUR3 catalyzed the uptake of polyamines together with urea, and SAM3 was found to catalyze the uptake of polyamines together with S-adenosylmethionine, glutamic acid, and lysine. Polyamine uptake was greatly decreased in both DUR3- and SAM3-deficient cells. The K(m) values for putrescine and spermidine of DUR3 were 479 and 21.2 mum, respectively, and those of SAM3 were 433 and 20.7 mum, respectively. Polyamine stimulation of cell growth of a polyamine requiring mutant, which is deficient in ornithine decarboxylase, was not influenced by the disruption of GAP1 and AGP2, but it was diminished by the disruption of DUR3 and SAM3. Furthermore, the polyamine stimulation of cell growth of a polyamine-requiring mutant was completely inhibited by the disruption of both DUR3 and SAM3. The results indicate that DUR3 and SAM3 are major polyamine uptake proteins in yeast. We previously reported that polyamine transport protein kinase 2 regulates polyamine transport. It was found that DUR3 (but not SAM3) was activated by phosphorylation of Thr(250), Ser(251), and Thr(684) by polyamine transport protein kinase 2.  相似文献   

17.
Manganese-dependent superoxide dismutase 2 (SOD2) in the mitochondria plays a key role in protection against oxidative stress. Here we probed the pathway by which SOD2 acquires its manganese catalytic cofactor. We found that a mitochondrial localization is essential. A cytosolic version of Saccharomyces cerevisiae Sod2p is largely apo for manganese and is only efficiently activated when cells accumulate toxic levels of manganese. Furthermore, Candida albicans naturally produces a cytosolic manganese SOD (Ca SOD3), yet when expressed in the cytosol of S. cerevisiae, a large fraction of Ca SOD3 also remained manganese-deficient. The cytosol of S. cerevisae cannot readily support activation of Mn-SOD molecules. By monitoring the kinetics for metalation of S. cerevisiae Sod2p in vivo, we found that prefolded Sod2p in the mitochondria cannot be activated by manganese. Manganese insertion is only possible with a newly synthesized polypeptide. Furthermore, Sod2p synthesis appears closely coupled to Sod2p import. By reversibly blocking mitochondrial import in vivo, we noted that newly synthesized Sod2p can enter mitochondria but not a Sod2p polypeptide that was allowed to accumulate in the cytosol. We propose a model in which the insertion of manganese into eukaryotic SOD2 molecules is driven by the protein unfolding process associated with mitochondrial import.  相似文献   

18.
This paper examines the effects of ionic gold on Saccharomyces cerevisiae, as determined by long-term (growth in gold-containing media) and short-term interactions (H+ efflux activity). An increasing gold concentration inhibited growth and at <0.2 mM Au, growth was not observed. Transmission electron microscopy revealed no differences in ultrastructure but fine electron dense particles were observed in unstained preparations from gold-containing medium. After glucose addition (to 10mM) to starved suspensions of S. cerevisiae, glucose-dependent reduction of external pH occurred as the cells extruded protons. In the presence of increasing gold concentrations, the lag time before proton extrusion did not change but the rate and duration decreased significantly with a marked influence on proton efflux rate being observed at 10 M. Extension of preincubation time of yeast cells in gold-containing medium resulted in a decreasing proton efflux rate and colloidal phase formation in the cell suspensions, the time between gold addition and the beginning of colloidal phase formation depending on the gold concentration used. Both Ca and Mg enhanced the inhibitory effect of gold on the yeast cells with Ca showing a stronger inhibitory effect than Mg.  相似文献   

19.
In Saccharomyces cerevisiae, the mitochondrial carrier family protein Pic2 imports copper into the matrix. Deletion of PIC2 causes defects in mitochondrial copper uptake and copper-dependent growth phenotypes owing to decreased cytochrome c oxidase activity. However, copper import is not completely eliminated in this mutant, so alternative transport systems must exist. Deletion of MRS3, a component of the iron import machinery, also causes a copper-dependent growth defect on non-fermentable carbon. Deletion of both PIC2 and MRS3 led to a more severe respiratory growth defect than either individual mutant. In addition, MRS3 expressed from a high copy number vector was able to suppress the oxygen consumption and copper uptake defects of a strain lacking PIC2. When expressed in Lactococcus lactis, Mrs3 mediated copper and iron import. Finally, a PIC2 and MRS3 double mutant prevented the copper-dependent activation of a heterologously expressed copper sensor in the mitochondrial intermembrane space. Taken together, these data support a role for the iron transporter Mrs3 in copper import into the mitochondrial matrix.  相似文献   

20.
Budding yeast ( Saccharomyces cerevisiae ) Rap1p has been expressed in fission yeast ( Schizosaccharo-myces pombe ) under the control of the regulatable fructose bisphosphatase ( fbp ) promoter. When the fbp promoter was derepressed, cells containing the complete RAP1 gene failed to show any significant growth, suggesting that Rap1p is toxic. A derivative of Rap1p that has a temperature-sensitive mutation in the DNA-binding domain was not toxic in cells grown at 37°C, a temperature at which DNA binding by rap1p ts is severely inhibited. Removal of a short region downstream of the DNA-binding domain, including a region previously shown to be essential for Rap1p toxicity in budding yeast, also abolished the toxic effect. The toxic effect of Rap1p has therefore been conserved between two distantly related yeasts. In budding yeast, overexpression of Rap1p also caused changes to the lengths of the telomeric repeats. No effects on telomeres were detected in fission yeast.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号