首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A member of the medium-chain prenyl diphosphate synthases, Bacillus stearothermophilus heptaprenyl diphosphate synthase, catalyzes the consecutive condensation of isopentenyl diphosphate with allylic diphosphate to produce (all-E)-C35 prenyl diphosphate as the ultimate product. We previously showed that the product specificity of short-chain prenyl diphosphate synthases is regulated by the structure around the first aspartate-rich motif (FARM). The FARM is also conserved in a subunit of heptaprenyl diphosphate synthase, component II', which suggests that the structure around the FARM of component II' regulates the elongation. To determine whether component II' regulates the product chain length by a mode similar to that of the short-chain prenyl diphosphate synthases, we replaced a bulky amino acid at the eighth position before the FARM of component II', isoleucine 76, by glycine and analyzed the product specificity. The mutated enzyme, I76G, can catalyze condensations of isopentenyl diphosphate beyond the native chain length of C35. Moreover, two mutated enzymes of A79Y and S80F, which have a single replacement to the aromatic residue at the fourth or the fifth position before the FARM, mainly yielded a C20 product. These results strongly suggest that a common mechanism controls the product chain length of both short-chain and medium-chain prenyl diphosphate synthases and that, in wild-type heptaprenyl diphosphate synthase, the prenyl chain can grow on the surface of the small residues at positions 79 and 80, and the elongation is precisely blocked at the length of C35 by isoleucine 76.  相似文献   

2.
3.
The product chain length determination mechanism of type II geranylgeranyl diphosphate synthase from the bacterium, Pantoea ananatis, was studied. In most types of short-chain (all-E) prenyl diphosphate synthases, bulky amino acids at the fourth and/or fifth positions upstream from the first aspartate-rich motif play a primary role in the product determination mechanism. However, type II geranylgeranyl diphosphate synthase lacks such bulky amino acids at these positions. The second position upstream from the G(Q/E) motif has recently been shown to participate in the mechanism of chain length determination in type III geranylgeranyl diphosphate synthase. Amino acid substitutions adjacent to the residues upstream from the first aspartate-rich motif and from the G(Q/E) motif did not affect the chain length of the final product. Two amino acid insertion in the first aspartate-rich motif, which is typically found in bacterial enzymes, is thought to be involved in the product determination mechanism. However, deletion mutation of the insertion had no effect on product chain length. Thus, based on the structures of homologous enzymes, a new line of mutants was constructed in which bulky amino acids in the alpha-helix located at the expected subunit interface were replaced with alanine. Two mutants gave products with longer chain lengths, suggesting that type II geranylgeranyl diphosphate synthase utilizes an unexpected mechanism of chain length determination, which requires subunit interaction in the homooligomeric enzyme. This possibility is strongly supported by the recently determined crystal structure of plant type II geranylgeranyl diphosphate synthase.  相似文献   

4.
5.
ATP synthase uses a unique rotational mechanism to convert chemical energy into mechanical energy and back into chemical energy. The helix-turn-helix structure in the C-terminal domain of the β subunit containing the conserved DELSEED motif, termed “DELSEED-loop,” was suggested to be involved in coupling between catalysis and rotation. If this is indeed the role of the loop, it must have a critical length, the minimum length required to sustain its function. Here, the critical length of the DELSEED-loop was determined by functional analysis of mutants of Bacillus PS3 ATP synthase that had 7–14 amino acids within the loop deleted. A 10 residue deletion lost the ability to catalyze ATP synthesis, but was still an active ATPase. Deletion of 14 residues abolished any enzymatic activity. Modeling indicated that in both deletion mutants the DELSEED-loop was shortened by ∼10 Å; fluorescence resonance energy transfer experiments confirmed the modeling results. This appears to define the minimum length for DELSEED-loop required for coupling of catalysis and rotation. In addition, we could demonstrate that the loss of high-affinity binding to the catalytic site(s) that had been observed previously in two deletion mutants with 3–4 residues removed was not due to the loss of negative charged residues of the DELSEED motif in these mutants. An AALSAAA mutant in which all negative charges of the DELSEED motif were removed showed a normal pattern for MgATP binding to the catalytic sites, with a clearly present high-affinity site.  相似文献   

6.
Geranylgeranyl pyrophosphate synthase (GGPPs) catalyzes a condensation reaction of farnesyl pyrophosphate with isopentenyl pyrophosphate to generate C(20) geranylgeranyl pyrophosphate, which is a precursor for carotenoids, chlorophylls, geranylgeranylated proteins, and archaeal ether-linked lipid. For short-chain trans-prenyltransferases that synthesize C(10)-C(25) products, bulky amino acid residues generally occupy the fourth or fifth position upstream from the first DDXXD motif to block further elongation of the final products. However, the short-chain type-III GGPPs in eukaryotes lack any large amino acid at these positions. In this study, the first structure of type-III GGPPs from Saccharomyces cerevisiae has been determined to 1.98 A resolution. The structure is composed entirely of 15 alpha-helices joined by connecting loops and is arranged with alpha-helices around a large central cavity. Distinct from other known structures of trans-prenyltransferases, the N-terminal 17 amino acids (9-amino acid helix A and the following loop) of this GGPPs protrude from the helix core into the other subunit and contribute to the tight dimer formation. Deletion of the first 9 or 17 amino acids caused the dissociation of dimer into monomer, and the Delta(1-17) mutant showed abolished enzyme activity. In each subunit, an elongated hydrophobic crevice surrounded by D, F, G, H, and I alpha-helices contains two DDXXD motifs at the top for substrate binding with one Mg(2+) coordinated by Asp(75), Asp(79), and four water molecules. It is sealed at the bottom with three large residues of Tyr(107), Phe(108), and His(139). Compared with the major product C(30) synthesized by mutant H139A, the products generated by mutant Y107A and F108A are predominantly C(40) and C(30), respectively, suggesting the most important role of Tyr(107) in determining the product chain length.  相似文献   

7.
Zhang YW  Li XY  Koyama T 《Biochemistry》2000,39(41):12717-12722
Among prenyltransferases, medium-chain (E)-prenyl diphosphate synthases are unusual because of their heterodimeric structures. The larger subunit has highly conserved regions typical of (E)-prenyltransferases. The smaller one has recently been shown to be involved in the binding of allylic substrate as well as determining the chain length of the reaction product [Zhang, Y.-W., et al. (1999) Biochemistry 38, 14638-14643]. To better understand the product chain length determination mechanism of these enzymes, several amino acid residues in the larger subunits of Micrococcus luteus B-P 26 hexaprenyl diphosphate synthase and Bacillus subtilis heptaprenyl diphosphate synthase were selected for substitutions by site-directed mutagenesis and examined by combination with the corresponding wild-type or mutated smaller subunits. Replacement of the Ala at the fifth position upstream to the first Asp-rich motif with bulky amino acids in both larger subunits resulted in shortening the chain lengths of the major products, and a double combination of mutant subunits of the heptaprenyl diphosphate synthase, I-D97A/II-A79F, yielded exclusively geranylgeranyl diphosphate. However, the combination of a mutant subunit and the wild-type, I-Y103S/II-WT or I-WT/II-I76G, produced a C(40) prenyl diphosphate, and the double combination of the mutants, I-Y103S/II-I76G, gave a reaction product with longer prenyl chain up to C(50). These results suggest that medium-chain (E)-prenyl diphosphate synthases take a novel mode for the product chain length determination, in which both subunits cooperatively participate in maintaining and determining the product specificity of each enzyme.  相似文献   

8.
Octaprenyl pyrophosphate synthase (OPPs) catalyzes consecutive condensation reactions of farnesyl pyrophosphate (FPP) with isopentenyl pyrophosphate (IPP) to generate C40 octaprenyl pyrophosphate (OPP), which constitutes the side chain of bacterial ubiquinone or menaquinone. In this study, the first structure of long chain C40-OPPs from Thermotoga maritima has been determined to 2.28-A resolution. OPPs is composed entirely of alpha-helices joined by connecting loops and is arranged with nine core helices around a large central cavity. An elongated hydrophobic tunnel between D and F alpha-helices contains two DDXXD motifs on the top for substrate binding and is occupied at the bottom with two large residues Phe-52 and Phe-132. The products of the mutant F132A OPPs are predominantly C50, longer than the C40 synthesized by the wild-type and F52A mutant OPPs, suggesting that Phe-132 is the key residue for determining the product chain length. Ala-76 and Ser-77 located close to the FPP binding site and Val-73 positioned further down the tunnel were individually mutated to larger amino acids. A76Y and S77F mainly produce C20 indicating that the mutated large residues in the vicinity of the FPP site limit the substrate chain elongation. Ala-76 is the fifth amino acid upstream from the first DDXXD motif on helix D of OPPs, and its corresponding amino acid in FPPs is Tyr. In contrast, V73Y mutation led to additional accumulation of C30 intermediate. The new structure of the trans-type OPPs, together with the recently determined cis-type UPPs, significantly extends our understanding on the biosynthesis of long chain polyprenyl molecules.  相似文献   

9.
In plants and bacteria, the branch point of (S)-lysine biosynthesis is the condensation of (S)-aspartate-beta-semialdehyde [(S)-ASA] and pyruvate, a reaction catalyzed by dihydrodipicolinate synthase (DHDPS, EC 4.2.1.52). It has been proposed that Arg138, a residue situated at the entrance to the active site of DHDPS, is responsible for binding the carboxyl of (S)-ASA and may additionally be involved in the mechanism of (S)-lysine inhibition. This study tests these assertions by mutation of Arg138 to both histidine and alanine. Following purification, DHDPS-R138H and DHDPS-R138A each showed severely compromised activity (approximately 0.1% that of the wild type), and the apparent Michaelis-Menten constant for (S)-ASA in each mutant, calculated using a pseudo-single substrate analysis, was significantly higher than that of the wild type. This provides good evidence that Arg138 is indeed essential for catalysis and plays a key role in substrate binding. To test whether structural changes could account for the change in kinetic behavior, the solution structure was probed via far-UV circular dichroism, confirming that the mutations at position 138 did not modify secondary structure. The crystal structures of both mutant enzymes were determined, confirming the presence of the mutations and suggesting that Arg138 plays an important role in catalysis: the stabilization of the catalytic triad residues, a motif we have previously demonstrated to be essential for activity. In addition, the role of Arg138 in (S)-lysine inhibition was examined. Both mutant enzymes showed the same IC(50) values as the wild type but different partial inhibition patterns, from which it is concluded that arginine 138 is not essential for (S)-lysine inhibition.  相似文献   

10.
Exopolyphosphatase of Escherichia coli (PPX) is a highly processive enzyme demonstrating the ability to recognize polyphosphates of specific lengths. The mechanisms responsible for the processivity and polymer length recognition of the enzyme were investigated in relation to the manner in which polyphosphate is bound to the enzyme. Multiple polyphosphate binding sites were identified on distant portions of the enzyme and were determined to be responsible for the polymer length recognition of the enzyme. In addition, two independently folded domains were identified. The N-terminal domain contained a quasi-processive polyphosphatase active site belonging to the sugar kinase/actin/hsp70 superfamily. The C-terminal domain contained a single polyphosphate binding site and was responsible for nearly all of the PPX affinity for polyphosphate. This domain was also found to confer a highly processive mode of action to PPX. Collectively, these results were used to describe the interaction of polyphosphate with PPX.  相似文献   

11.
The X-ray structure of the Escherichia coli aspartate transcarbamoylase with the bisubstrate analog phosphonacetyl-L-aspartate (PALA) bound shows that PALA interacts with Lys84 from an adjacent catalytic chain. To probe the function of Lys84, site-specific mutagenesis was used to convert Lys84 to alanine, threonine, and asparagine. The K84N and K84T enzymes exhibited 0.08 and 0.29% of the activity of the wild-type enzyme, respectively. However, the K84A enzyme retained 12% of the activity of the wild-type enzyme. For each of these enzymes, the affinity for aspartate was reduced 5- to 10-fold, and the affinity for carbamoyl phosphate was reduced 10- to 30-fold. The enzymes K84N and K84T exhibited no appreciable cooperativity, whereas the K84A enzyme exhibited a Hill coefficient of 1.8. The residual cooperativity and enhanced activity of the K84A enzyme suggest that in this enzyme another mechanism functions to restore catalytic activity. Modeling studies as well as molecular dynamics simulations suggest that in the case of only the K84A enzyme, the lysine residue at position 83 can reorient into the active site and complement for the loss of Lys84. This hypothesis was tested by the creation and analysis of the K83A enzyme and a double mutant enzyme (DM) that has both Lys83 and Lys84 replaced by alanine. The DM enzyme has no cooperativity and exhibited 0.18% of wild-type activity, while the K83A enzyme exhibited 61% of wild-type activity. These data suggest that Lys84 is not only catalytically important, but is also essential for binding both substrates and creation of the high-activity, high-affinity active site. Since low-angle X-ray scattering demonstrated that the mutant enzymes can be converted to the R-structural state, the loss of cooperativity must be related to the inability of these mutant enzymes to form the high-activity, high-affinity active site characteristic of the R-functional state of the enzyme.  相似文献   

12.
The presence of only one thiolase (EC 2.3.1.9) in wild-type Escherichia coli induced for enzymes of beta oxidation was demonstrated. A different thiolase was shown to be present in a mutant constitutive for the enzymes of butyrate degradation. The two thiolases were purified to near homogeneity by a simple two-step procedure and were found to be associated with different proteins as shown by gel electrophoresis. The thiolase isolated from induced wild-type Escherichia coli cell was active on beta-ketoacyl-coenzyme A derivatives containing 4 to 16 carbons, but exhibited optimal activity with medium-chain substrates. In contrast, the thiolase isolated from the constitutive mutant was shown to be specific for acetoacetyl-coenzyme A.  相似文献   

13.
Bacterial glutamine synthetases (GSs) are dodecameric aggregates comprised of two face-to-face hexameric rings, which form a cylindrical aqueous channel. Available crystal structures indicate that each subunit provides a 'central loop' that protrudes into this channel. Residues on either side of this loop contribute directly to substrate or metal ion cofactor binding. Although it has been suggested that this conspicuous structural feature may be functionally important, a systematic structure-function analysis of this loop has not been done. Here, we examine the behavior of a cysteine mutant, E165C, which yields inter-subunit disulfide bonds connecting the central loops. The inter-subunit disulfide bonds are readily detected by electrospray ionization mass spectrometry. Based on molecular models, the disulfide bonds would form only if the engineered cysteines on adjacent subunits moved approximately 5 A. Surprisingly, inter-subunit disulfide bonds between the central loops caused no detectable changes in the KMs for glutamate or ATP, nor the KD for either ATP or the transition state analog (L)-methionine sulfoximine (MSOX). Furthermore, covalent and quantitative adduction of the E165C mutant with iodo-acetamido-pyrene yielded nearly fully active enzyme bearing fluorescent pyrene excimers. The relative contribution of pyrene monomers to excimers in the steady state fluorescence is temperature dependent, suggesting thermal equilibrium between loop conformational states. However, the monomer-excimer ratio is independent of ligands such as MSOX, glutamate, or Mn2+. These results validate the suspected flexibility of the central loop, but raise significant doubt about its direct functional role in GS catalysis via conformational switching, including the proposed regulation of GS via ADP-ribosylation within this loop.  相似文献   

14.
Class II fructose 1,6-bisphosphate aldolases (FBP-aldolases) catalyse the zinc-dependent, reversible aldol condensation of dihydroxyacetone phosphate (DHAP) and glyceraldehyde 3-phosphate (G3P) to form fructose 1,6-bisphosphate (FBP). Analysis of the structure of the enzyme from Escherichia coli in complex with a transition state analogue (phosphoglycolohydroxamate, PGH) suggested that substrate binding caused a conformational change in the beta5-alpha7 loop of the enzyme and that this caused the relocation of two glutamate residues (Glu181 and Glu182) into the proximity of the active site. Site-directed mutagenesis of these two glutamate residues (E181A and E182A) along with another active site glutamate (Glu174) was carried out and the mutant enzymes characterised using steady-state kinetics. Mutation of Glu174 (E174A) resulted in an enzyme which was severely crippled in catalysis, in agreement with its position as a zinc ligand in the enzyme's structure. The E181A mutant showed the same properties as the wild-type enzyme indicating that the residue played no major role in substrate binding or enzyme catalysis. In contrast, mutation of Glu182 (E182A) demonstrated that Glu182 is important in the catalytic cycle of the enzyme. Furthermore, the measurement of deuterium kinetic isotope effects using [1(S)-(2)H]DHAP showed that, for the wild-type enzyme, proton abstraction was not the rate determining step, whereas in the case of the E182A mutant this step had become rate limiting, providing evidence for the role of Glu182 in abstraction of the C1 proton from DHAP in the condensation direction of the reaction. Glu182 lies in a loop of polypeptide which contains four glycine residues (Gly176, Gly179, Gly180 and Gly184) and a quadruple mutant (where each glycine was converted to alanine) showed that flexibility of this loop was important for the correct functioning of the enzyme, probably to change the microenvironment of Glu182 in order to perturb its pK(a) to a value suitable for its role in proton abstraction. These results highlight the need for further studies of the dynamics of the enzyme in order to fully understand the complexities of loop closure and catalysis in this enzyme.  相似文献   

15.
Lee M  Maher MJ  Christopherson RI  Guss JM 《Biochemistry》2007,46(37):10538-10550
Dihydroorotase (DHOase) catalyzes the reversible cyclization of N-carbamyl-l-aspartate (CA-asp) to l-dihydroorotate (DHO) in the de novo biosynthesis of pyrimidine nucleotides. Two different conformations of the surface loop (residues 105-115) were found in the dimeric Escherichia coli DHOase crystallized in the presence of DHO (PDB code 1XGE). The loop asymmetry reflected that of the active site contents of the two subunits: the product, DHO, was bound in the active site of one subunit and the substrate, CA-asp, in the active site of the other. In the substrate- (CA-asp-) bound subunit, the surface loop reaches in toward the active site and makes hydrogen bonds with the bound CA-asp via two threonine residues (Thr109 and Thr110), whereas the loop forms part of the surface of the protein in the product- (DHO-) bound subunit. To investigate the relationship between the structural states of this loop and the catalytic mechanism of the enzyme, a series of mutant DHOases including deletion of the flexible loop were generated and characterized kinetically and structurally. Disruption of the hydrogen bonds between the surface loop and the substrate results in significant loss of catalytic activity. Furthermore, structures of these mutants with low catalytic activity have no interpretable electron density for parts of the flexible loop. The structure of the mutant (Delta107-116), in which the flexible loop is deleted, shows only small differences in positions of other substrate binding residues and in the binuclear zinc center compared with the native structure, yet the enzyme has negligible activity. The kinetic and structural analyses suggest that Thr109 and Thr110 in the flexible loop provide productive binding of substrate and stabilize the transition-state intermediate, thereby increasing catalytic activity.  相似文献   

16.
Catalytic role of histidine 147 in Escherichia coli thymidylate synthase   总被引:3,自引:0,他引:3  
Nine mutant thymidylate synthases were isolated that only differed in sequence at position 147. The wild-type enzyme (which had a histidine residue at 147) and mutant enzymes were purified to near homogeneity and their kinetic properties were compared. Although the kcat values for the mutant enzymes were 10-10,000-fold lower than for the wild-type enzyme, the Km values for both 2'-deoxyuridylate and 5,10-methylenetetrahydrofolate were nearly identical for all the enzymes indicating that His-147 is not significantly involved in initial substrate binding. By comparing the wild-type (His-147) to the glycine (Gly-147) enzyme, the side chain of His-147 was estimated to lower the activation energy of the catalytic step by 1.6-2.9 kcal mol-1. In contrast to the wild-type enzyme, the activity of the Gly-147 enzyme decreased when the pH was raised above 7.5. The activity loss coincided with the deprotonation of a residue that had a pKa of 9.46 +/- 0.2 and an enthalpy of ionization (delta Hion) of 12.1 +/- 0.9. These values are consistent with the involvement of a lysine or an arginine residue in the catalytic process. An inspection of the rates of ternary complex formation among enzyme, 5-fluoro-2'-deoxyuridylate, and 5,10-methylenetetrahydrofolate for the mutant enzymes indicated that His-147 is not needed for the proton removal from C-5 of 2'-deoxyuridylate but rather participates in an initial catalytic step and alters the pKa value of a catalytically important lysine or arginine residue.  相似文献   

17.
Directed evolution of farnesyl diphosphate (FPP, C15) synthase (IspA) of Escherichia coli was carried out by error-prone PCR with a color complementation screen utilizing C40 carotenoid pathway enzymes. This allowed IspA mutants with enhanced production of the C40 carotenoid precursor geranylgeranyl diphosphate (GGPP, C20) to be readily identified. Analysis of these mutants was carried out in order to better understand the mechanisms of product chain length specificity in this enzyme. The 12 evolved clones having enhanced C20 GGPP production have characteristic mutations in the conserved regions of prenyl diphosphate synthases (designated regions I through VII). Some of these mutations (I76T, Y79S, Y79H, C75Y, H83Y, and H83Q) are found near or before the conserved first aspartate rich motif (FARM), which is involved in the mechanism for chain elongation reaction of all prenyl synthases. Molecular modeling suggested a mechanism for chain length determination for these mutations including substitutions at the 1st and 9th amino acids upstream of the FARM that have not been reported previously. In addition, a mutation on a helix adjacent to the FARM within the substrate-binding pocket (D115G) suggests a novel mechanism for chain length determination. One mutant IspA clone carries a mutation of C155G at the 2nd amino acid upstream of conserved region IV (GQxxDL), which was recently found to be an important region controlling the chain elongation of a Type III GGPP synthase. One IspA clone carries mutations (T234A and T249I) near the conserved second aspartate rich motif (SARM). As a verification of the in vivo activity of the mutant clones (represented as C40 carotenoid formation), we confirmed the product distribution of wild-type and mutant IspA using an in vitro assay.  相似文献   

18.
The uncI gene, the first gene of the unc operon, has been cloned into an expression vector carrying the lambda PRPL promoters in tandem orientation and the gene cI857 coding for the thermolabile repressor. Linkage of the uncI gene to an efficient ribosome binding site (the translational initiation region of the uncE gene) resulted in 10-20-fold increased gene expression. The i protein has been extracted from overproducing cells using chloroform/methanol and purified to homogeneity by ion exchange chromatography. Analyzing the products of the uncI gene encoded by different plasmids, we provide evidence that, in contrast to the previously reported data (Walker, J. E., Saraste, M., and Gay, N. J. (1984) Biochim. Biophys. Acta 768, 164-200), the chromosome-encoded i protein contains the N-terminal sequence Ser-Val-Ser-Leu-Val-Ser-Arg and has a molecular weight of 13,504.  相似文献   

19.
Previous studies have shown that human TS mRNA translation is controlled by a negative autoregulatory mechanism. In this study, an RNA electrophoretic gel mobility shift assay confirmed a direct interaction between Escherichia coli (E.coli) TS protein and its own E.coli TS mRNA. Two cis-acting sequences in the E.coli TS mRNA protein-coding region were identified, with one site corresponding to nucleotides 207-460 and the second site corresponding to nucleotides 461-807. Each of these mRNA sequences bind TS with a relative affinity similar to that of the full-length E.coli TS mRNA sequence (IC50 = 1 nM). A third binding site was identified, corresponding to nucleotides 808-1015, although its relative affinity for TS (IC50 = 5.1 nM) was lower than that of the other two cis-acting elements. E.coli TS proteins with mutations in amino acids located within the nucleotide-binding region retained the ability to bind RNA while proteins with mutations at either the nucleotide active site cysteine (C146S) or at amino acids located within the folate-binding region were unable to bind TS mRNA. These studies suggest that the regions on E.coli TS defined by the folate-binding site and/or critical cysteine sulfhydryl groups may represent important RNA binding domains. Further evidence is presented which demonstrates that the direct interaction with TS results in in vitro repression of E.coli TS mRNA translation.  相似文献   

20.
Glucosamine-6-phosphate synthase (GlmS) catalyzes the formation of D-glucosamine 6-phosphate from D-fructose 6-phosphate using L-glutamine as the ammonia source. Because N-acetylglucosamine is an essential building block of both bacterial cell walls and fungal cell wall chitin, the enzyme is a potential target for antibacterial and antifungal agents. The most potent carbohydrate-based inhibitor of GlmS reported to date is 2-amino-2-deoxy-D-glucitol 6-phosphate, an analogue of the putative cis-enolamine intermediate formed during catalysis. The interaction of a series of structurally related cis-enolamine intermediate analogues with GlmS is described. Although arabinose oxime 5-phosphate is identified as a good competitive inhibitor of GlmS with an inhibition constant equal to 1. 2 (+/-0.3) mM, the presence of the amino function at the 2-position is shown to be important for potent inhibition. Comparison of the binding affinities of 2-deoxy-D-glucitol 6-phosphate and 2-amino-2-deoxy-D-glucitol 6-phosphate indicates that the amino function contributes -4.1 (+/-0.1) kcal/mol to the free energy of inhibitor binding. Similarly, comparison of the binding affinities of 2-deoxy-D-glucose 6-phosphate and D-glucosamine 6-phosphate indicates that the amino function contributes -3.0 (+/-0.1) kcal/mol to the free energy of product binding. Interactions between GlmS and the 2-amino function of its ligands contribute to the uniform binding of the product and the cis-enolamine intermediate as evidenced by the similar contribution of the amino group to the free energy of binding of D-glucosamine 6-phosphate and 2-amino-2-deoxy-D-glucitol 6-phosphate, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号