首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract:  Soft-tissue preservation of the hind gut, or anal sac, in the tegmen of Tubulusocrinus (gen. nov.) doliolus (Wright) from the Mississippian (Visean, Asbian) Pittenweem Formation at St Andrews, Scotland, is the first of its kind known in crinoids; it sheds important new light on the nature of the cladid tegmen. Many cladid crinoids had a calcite-plated anal sac that may have functioned like a chimney to prevent fouling of the ambulacra. The tubular, uncalcified anal sac of Tubulusocrinus may have functioned like a hose by pointing down current between the arms to avoid fouling of the ambulacra. Its smaller size may also have required less energy to produce than a heavy-plated sac. The hind gut is apparently preserved by haematite replacement, which was probably altered from original authigenic pyrite that formed soon after catastrophic burial.  相似文献   

2.
Abstract:  The modern study of fossil crinoids began with J. S. Miller who, in 1821, described specimens from southern England, nearby Wales and other regions, and named several common Early Carboniferous genera. Later, in 1950–60, James Wright monographed all known Early Carboniferous crinoids from the British Isles. In spite of such previous scrutiny, we recognize here two new genera among species already described: Glamorganocrinus gen. nov. (type species: Ophiurocrinus gowerensis Wright, 1960) from South Wales and Mendipocrinus gen. nov. (type species: Poteriocrinus latifrons Austin and Austin, 1847) from southern England. These new genera increase the number of advanced cladid genera in the Ivorian Substage of the Tournaisian in western Europe to 18, and the total number of crinoid genera to 36. A review of species assigned to Mespilocrinus has led to the recognition of M. granulifer De Koninck and LeHon, 1854 as a nomen dubium. A new species of Mespilocrinus , M. wrighti sp. nov., is described from the Ivorian of South Wales; this is the most highly derived species of the genus, as based on a phylogenetic analysis including ten species and 13 characters, with Pycnosaccus as the outgroup. A single, well-ordered tree resulted from this analysis. Interpretation of this tree suggests that the centre of evolution for Mespilocrinus was North America, where three species appeared during the Kinderhookian (early Tournaisian), rapidly achieving morphological disparity within the genus. This radiation event was part of the overall explosive radiation of crinoids following the Late Devonian mass extinction event when crinoid diversity was at a global minimum during the Frasnian. Recovery began during the Famennian, followed by an explosive radiation in the Tournaisian.  相似文献   

3.
Two cladid crinoid species, ?Ulocrinus indicus Wanner, 1924, and ?Ulocrinus conoideus Wanner, 1937, are reinterpreted as cladid crinoids that do not belong to the cromyocrinids. This justifies Wanner's questioning of the generic assignment. ?Ulocrinus indicus has bifascial radial facets and is considered an advanced intermediate dendrocrinid assigned to the incertae superfamiliae, Katerocrinidae n. fam., Katerocrinus indicus n. gen., n. comb. This extends the range of the bifascial dendrocrinids upward into the Permian. ?Ulocrinus conoideus has trifascial radial facets and is assigned to the superfamily Scytalocrinoidea, incertae familiae, Dochmocrinus conoideus n. gen., n. comb. It re-emphasizes the need for revision of the family Scytalocrinidae. An unnamed, poorly preserved cup is described and considered to be a pelecocrinid crinoid, thus adding to the diversity of the West Timor Permian crinoids.  相似文献   

4.
5.
During the Mississippian (Tournaisian), numerous crinoid genera of the subclass Camerata evolved exaggerated anal tubes, cylindrical extensions of the tegmen with the anus at the distal end. Additionally, camerates exhibit higher frequency of platyceratid gastropod infestation than any other crinoid clade leading some researchers to speculate that anal tubes evolved in response to platyceratid parasitism. To test the infestation avoidance role of anal tubes, platyceratid distribution was analyzed among 636 tubed and 675 tubeless crinoids from Mississippian strata in North America. Results demonstrate significantly higher infestation frequency in tubeless crinoids. Rather than attach to the anal vent, as is typical for platyceratids, the gastropods that infested tubed crinoids are always found at the tube base and acquired nutrients from their hosts via drilling. It is likely that infesting tubeless crinoids was a more cost effective trophic strategy than drilling tubed crinoids.  相似文献   

6.
This study documents previously unknown taxonomic and morphological diversity among early Palaeozoic crinoids. Based on highly complete, well preserved crown material, we describe two new genera from the Ordovician and Silurian of the Baltic region (Estonia) that provide insight into two major features of the geological history of crinoids: the early evolution of the flexible clade during the Great Ordovician Biodiversification Event (GOBE), and their diversification history surrounding the end‐Ordovician mass extinction. The unexpected occurrence of a highly derived sagenocrinid, Tintinnabulicrinus estoniensis gen. et. sp. nov., from Upper Ordovician (lower Katian) rocks of the Baltic palaeocontinent provides high‐resolution temporal, taxonomic and palaeobiogeographical constraints on the origin and early evolution of the Flexibilia. The Silurian (lower Rhuddanian, Llandovery) Paerticrinus arvosus gen. et sp. nov. is the oldest known Silurian crinoid from Baltica and thus provides the earliest Baltic record of crinoids following the aftermath of the end‐Ordovician mass extinction. A Bayesian ‘fossil tip‐dating’ analysis implementing the fossilized birth–death process and a relaxed morphological clock model suggests that flexibles evolved c. 3 million years prior to their oldest fossil record, potentially involving an ancestor–descendant relationship (via ‘budding’ cladogenesis or anagenesis) with the paraphyletic cladid Cupulocrinus. The sagenocrinid subclade rapidly diverged from ‘taxocrinid’ grade crinoids during the final stages of the GOBE, culminating in maximal diversity among Ordovician crinoid faunas on a global scale. Remarkably, diversification patterns indicate little taxonomic turnover among flexibles across the Late Ordovician mass extinction. However, the elimination of closely related clades may have helped pave the way for their subsequent Silurian diversification and increased ecological role in post‐Ordovician Palaeozoic marine communities. This study highlights the significance of studies reporting faunas from undersampled palaeogeographical regions for clade‐based phylogenetic studies and improving estimates of global biodiversity through geological time.  相似文献   

7.
The holdfast (attachment structure) is the most understudied aspect of the palaeoecology of the endoskeleton of fossil crinoids. A new collection of well-preserved holdfasts from a recently reopened quarry at Hunninge, Gotland, in Homerian (upper Wenlock) strata includes several morphologies. The most common are terminal dendritic radicular holdfasts (TDRHs) that may be derived from the cladid Ennallocrinus d'Orbigny. These have a consistent morphology of five, equally spaced, long radices that spread across the sea floor. These crinoids were gregarious, and TDRHs in a group commonly show the same radice orientations. The radices have a large axial canal compared with those of modern crinoids; each included, at least, nervous tissues. Taken together, these features suggest that, apart from attachment, these distinctive TDRHs may have served a sensory function. Other holdfasts in this assemblage also show monospecific aggregations, perhaps suggesting biochemical attraction such as that shown by certain other sessile invertebrates such as barnacles.  相似文献   

8.
New collections and revision of previously collected Moscovian crinoids from the Qijiagou Formation of the Taoshigo Valley near Turpan, Xinjiang Uyghur Autonomous Region, Western China, add to the generic diversity of the fauna. This camerate-rich echinoderm fauna is now recognized as containing at least one blastoid, five camerate, and ten cladid crinoid genera. The fauna shows greatest affinity at the family level with Moscovian crinoid faunas of Japan and North America.New taxa proposed are: Rhepocatillocrinus tianshanensis n. gen. n. sp.; Binariacrinus alveus n. gen. n. sp.; Bassocrinus abyssus n. gen. n. sp.; and Brabeocrinus asiaensis n. sp.  相似文献   

9.
Two unusual Middle Ordovician crinoid genera from the St. Petersburg Region, Pentamerocrinus Jaekel, 1918 and Grammocrinus Eichwald, 1860, are redescribed. A new species, Pentamerocrinus kosovi sp. nov., is described based on new material and the cup structure in the type species Grammocrinus lineatus, which has previously been known only from stem fragments, is reconstructed. The system of ridges and canals on the internal surface of the cup plates in both genera is described, allowing the reconstruction of the aboral nervous system. It is in general similar to extant crinoids, but the two Ordovician genera differ considerably in structural details. In Pentamerocrinus, ten nerve cords diverge interradially from the ganglionated nerve ring at the cup base and soon are fused in pairs inside the rays. In Grammocrinus, a similar nerve ring also gives rise to ten cords, but they are inside the rays and become fused in the interrays. This distinction in morphology of the nervous systems is correlated with the interradial arrangement of the axial canal angles of the stem in the first case and radial in the second. Therefore, despite general similarity in the structure and arrangement of calyceal plates, the genus Grammocrinus is assigned to the disparid crinoid family Iocrinidae, while the monotypic family Pentamerocrinidae Jaekel, 1918 is regarded as a fam. inc. sed. of inadunate crinoids.  相似文献   

10.
Taphonomic information is examined to evaluate the early history of connective tissues in the Crinoidea. The pattern of stalk segmentation of Middle and Late Ordovician crinoids is consistent with the two-ligament (intercolumnal and through-going ligaments) pattern present in living isocrinid crinoids and interpreted for fossil isocrinids, holocrinids, and Lower Mississippian crinoids. A single rhombiferan was also examined; its taphonomic pattern is also indicative of this style of tissue organization. Furthermore, the taphonomy of all Middle and Late Ordovician crinoids may reflect that they lacked discretely organized muscles between arm brachials, which is consistent with the hypothesis that muscles evolved as a connective tissue between plates only once within the Crinoidea, during the Early Devonian. These data indicate that the two-ligament organization of the stalk is a primitive feature among the Crinoidea and perhaps even among stalked echinoderms. Therefore, the autotomy function of this column-tissue organization among living crinoids is an exaptation. On the other hand, discretely organized muscles as connective tissue in crinoid arms is a derived trait that first appeared during the middle Paleozoic; this adaptation proved very successful for the advanced cladid crinoids.  相似文献   

11.
Fossilized tube feet are described on Codiacrinus schultzei Follmann from the Lower Devonian Hunsrück Slate of Germany. This is the first definitive proof of tube feet on any fossil crinoid. Three lightly pyritized, flattened tube feet are preserved in a single interray of this cladid crinoid. The tube feet were at least 7 mm long. Their preservation is very similar to the tube feet reported previously from a Hunsrück ophiuroid, except that the Codiacrinus tube feet have small papillae, similar to living crinoids.  相似文献   

12.
Despite their importance for understanding phylogeny, character evolution and classification, well-constrained homology relationships for posterior plating in crinoids have only recently been attempted. Here, we re-evaluate posterior plate homologies in all major crinoid lineages using development, fossil ontogenies and phylogenetic evidence. Based on these lines of evidence, we change terminology for some posterior plates to correct misnomers and make recommendations for updated terminology of others to better reflect homology. Among pentacrinoids (disparids, hybocrinids, eucladids, flexibles and articulates) the relative position of posterior interray plates, not their topology, reflects homology. From proximal to distal, pentacrinoid posterior plates are the radianal, anal X and right sac plate, regardless of the total number of plates in the adult calyx. Camerate posterior plating contrasts with pentacrinoids, but insufficient data are available to resolve homology relationships between these two clades. More examples of early post-larval ontogeny are needed in camerates and other Palaeozoic crinoids.  相似文献   

13.
Temporally long-ranging (=long-lived) taxa have been postulated to have unusual properties that aid their prolonged geologic survival. Past studies have examined dispersal capabilities, geographic ranges, and single-character morphological adaptations as factors that may contribute to geologic longevity. Here, I test whether long-lived fossil crinoid taxa are morphologically unusual using a whole suite of morphological characters. I define long-lived taxa in several explicit, comparative ways. I find that long-lived crinoid genera and families are often less distant from mean morphologies of their crinoid orders than their shorter-lived relatives; that is, they are relatively less specialized. I also compare the morphology of crinoid genera relative to basal members of their respective orders; mean morphological distances of long-lived genera from basal morphologies are seldom distinct from those of their shorter-lived relatives. I observe that long-lived crinoid genera are less distant from mean morphologies of their temporal cohorts compared with shorter-lived genera but not in a statistically significant manner. I conclude that long-lived crinoids are relatively unspecialized, in the sense that they are relatively closer to mean morphologies of their taxonomic groups.  相似文献   

14.
The well-known association of platyceratid gastropods with crinoids has traditionally been considered an example of coprophagous commensalism. The Occurrence of several crinoid 'stands' ( Platycrinites sp.) from closely spaced bedding surfaces in the upper Mississippian Wymps Gap Limestone member of the Mauch Chunk Formation of southwestern Pennsylvania encourages reinterpretation of this relationship. Crinoid calyces were collected from five separate clusters, two of which contained associated platyceratids. 'Infested' crinoids either died prematurely or were stunted, compared to crinoids in the 'uninfested' clusters. Platyceratid attachment apparently had an adverse effect upon crinoid growth. Serial acetate peels show positioning of the gastropod on the crinoid tegmen over a highly developed anal tube, or chimney. However, the terminus of the anal tube abuts the gastropod's shell and is poorly situated for fecal ingestion by the snail. We suggest that the snail probably pursued another trophic strategy, perhaps taking advantage of aerosol filtration by the crinoid and elevation above the substrate.  相似文献   

15.
The crinoids and blastoids from the Pilton (Beds) Formation of the type Devonian of north Devonshire are revised. These fossils were monographed by the Rev. G. F. Whidborne in 1898, but have not been studied since that time. Recent studies on various groups of fossils from the Pilton and related rocks in North Devon confirm that the great majority of these fossils are Famennian, although three specimens from Fremington are probably Early Carboniferous (Tournaisian). We identify four blastoid taxa from a fauna that is sparse and poorly preserved; two spiraculates, one fissiculate, and one taxon unidentifiable at the ordinal level. Mesoblastus cf. M. crenulatus from the Gattendorfia Zone (Lower Carboniferous) near Fremington is the oldest known representative of this genus. The crinoid fauna is somewhat more diverse, but the preservation is equally poor. No changes are made in the flexible crinoids. Among camerate crinoids, one species is reassigned to Eumorphocrinus and one is retained in Actinocrinites. Specimens of some crinoids, such as Rhodocrinites and Megistocrinus, are so poorly preserved that certain identification was not possible. The hexacrinoid Adelocrinus, relegated to uncertainty for 150 years, is here shown to be a valid genus that is very similar to Arthroacantha, but not synonymous with it. Among the cladid crinoids, the dominant groups are those within the Superfamily Scytalocrinacea, which includes Bridgerocrinus, Sostronocrinus, and Scytalocrinus, all of which are placed in the new family Sostronocrinidae. One new species, Glossocrinus whidbornei, is named. Non‐pinnulate cladids, common in older Devonian rocks, do not occur. The fauna shows considerable similarity with faunas from eastern North America and Germany. It shows less resemblance to the extensive Famennian crinoid and blastoid fauna of north‐western China, despite some remarkable congruencies, especially the occurrence of very similar species of Actinocrinites in these widely separated areas.  相似文献   

16.
THE EARLY RADIATION AND PHYLOGENY OF ECHINODERMS   总被引:3,自引:0,他引:3  
1. Living echinoderms are characterized by an extensive water vascular system developed from the larval left hydrocoel, a complex, multi-plated endoskeleton with stereom structure, and pentamery. Fossil evidence shows that stereom evolved before pentamery, but both were acquired during the Lower Cambrian. 2. Cladistic analysis of Lower Cambrian genera reveals very few characters in common between carpoids and true echinoderms, and that the split between them was the first fundamental evolutionary dichotomy within the Dexiothetica. 3. Helicoplacoids are stem group echinoderms with spiral plating and three ambulacra arranged radially around a lateral mouth. They are the most primitive echinoderms and the first to show a radial arrangement of the water vascular and ambulacral systems. Unlike later echinoderms, their skeleton shows no dorsal/ventral (aboral/oral) differentiation. They were probably sedentary suspension feeders. 4. Camptostroma is the most primitive known pentaradiate echinoderm and, in our view, possibly a common ancestor of all living groups. It had a short conical dorsal (aboral) surface with imbricate plating, a ridged lateral wall and a slightly domed ventral (oral) surface with five curved ambulacra in a 2-1-2 arrangement inherited from the triradiate pattern of the helicoplacoids. Interambulacral areas bore epispires and the CD interambulacrum contained the anus, hydropore and/or gonopore. All parts of the theca had plates in at least two layers. 5. All other echinoderms belong to one of two monophyletic subphyla, the Pelmatozoa and the Eleutherozoa. 6. Stromatocystites is the earliest known eleutherozoan and differs from Camptostroma in having a test with only one layer of plates and having lost the dorsal elongation. In Stromatocystites the dorsal surface is flat and the plating tesselate. Stromatocystites was an unattached, low-level suspension feeder. 7. The lepidocystoids are the earliest known pelmatozoans. They differ from Camptostroma in having an attached dorsal stalk which retained the primitive imbricate plating, and by developing erect feeding structures along the ambulacra. In Kinzercystis, the ambulacra are confined to the thecal surface and erect, biserial brachioles arise alternately on either side. Lepidocystis has a similar arrangement except that, the distal part of each ambulacrum extends beyond the edge of the theca as a free arm. 8. Pelmatozoans diverged more or less immediately into crinoids, with multiple free arms composed of uniserial plates, and cystoids sensu lato, which retained brachioles. Gogia (Lower to Middle Cambrian) is the most primitive known cystoid and differs from Kinzercystis principally in having all plating tesselate, while Echmatocrinus (Middle Cambrian) is the most primitive known crinoid and differs from Lepidocystis in lacking brachioles and in having more than five free arms with uniserial plates. 9. Post Lower Cambrian differentiation of pelmatozoan groups proceeded rapidly, exploiting the primitive suspension-feeding mode of life. Maximum morphological diversity was reached in the Ordovician, but thereafter crinoids progressively displaced cystoid groups and reached their peak diversity during the Carboniferous. The eleutherozoans were slower to diversify, but by the Arenig the earliest ‘sea-stars’ (in reality, advanced members of the eleutherozoan stem group) had reversed their living orientation and had begun to exploit a deposit-feeding mode of life. These in turn led to the ophiuroids, echinoids and holothuroids. 10. The basic echinoderm ambulacrum was already present in the helicoplacoids. It had biserial, alternate flooring plates and complexly plated sheets of cover plates on either side. The radial water vessel lay in the floor of the ambulacrum, external to the body cavity, and gave rise ventrally to short, lateral branches (fore-runners of tube feet) that were used to open the cover plate sheets, and dorsally was connected to internal compensation sacs which acted as fluid reservoirs (and were preadapted for a role in gaseous exchange). Plating on the cover plate sheets was organized and reflected the positions of the lateral branches from the radial water vessel. In Camptostroma, the cover plate sheets had biserially aligned rows of cover plates associated with the lateral branches. 11. Brachioles arose by extension of the lateral branches of the radial water vessel and associated serially aligned cover plates found in Camptostroma. They bear a single alternate series of cover plates. In Lepidocystis the ambulacra extended beyond the edge of the oral surface as true arms. Brachial plates of arms are homologues of primary ambulacral flooring plates, and arms bear multiple series of cover plates. Uniserial ambulacral plating is a derived condition and evolved independently in crinoids, paracrinoids and isorophid edrioasteroids. Pinnules in crinoids arose independently in inadunates and camerates by a progressively more unequal branching of the arms. Thus all parts of the subvective system in crinoids are internally homologous, whereas in cystoids, brachioles and arms (or ambulacra) are not homologous structures. 12. The position of the hydropore is the best reference point in orientating echinoderms. Carpenter's system of identifying ambulacra by letters, arranged clock-wise in oral view with the A ambulacrum opposite the hydropore, is consistent in all echinoderm classes. In all Lower Cambrian pentaradiate echinoderms the anus, gonopore and hydropore lie in the CD interambulacrum and this is accepted as the primitive arrangement. In helicoplacoids we tentatively suggest that the A ambulacrum spiralled down from the mouth while the two ambulacra that spiralled up represent the B + C and D + E ambulacra combined. 13. The pelmatozoan stem arose from a polyplated stalk, via a meric stem to a true column with holomeric (single piece) columnals. This happened independently in the crinoids and the cystoids. 14. Our analysis of echinoderm phylogeny leads us to recommend the following changes to the higher level classification of echinoderms: The phylum Echinodermata includes only those groups with radial symmetry superimposed upon a fundamental larval asymmetry. It has a stem group that contains the triradiate helicoplacoids and a crown group to which all other (pentaradiate) echinoderms belong. The crown group contains two monophyletic subphyla, the Pelmatozoa and the Eleutherozoa, and the Pelmatozoa contains two superclasses, the Crinoidea which are extant and the Cystoidea, which are extinct.  相似文献   

17.
Following the end‐Permian biotic crisis which led to the near extinction of crinoids, this echinoderm class rebounded rapidly during the Mesozoic, resulting in forms with important morphological and behavioural novelties. However, quantitative patterns of crinoid diversity during the Mesozoic remain largely unexplored. Here, we report results of analyses of the evolutionary dynamics of post‐Palaeozoic crinoid genera spanning a time interval between 250 and 70 Myr. We show that crinoids reached their Mesozoic peak of genus‐level richness during the Late Jurassic. We also document a major reorganization of different ecological crinoid groups in the Mesozoic. More specifically, the diversity of sessile forms generally increased towards the mid‐Mesozoic but decreased significantly starting in the Cretaceous, whereas the number of motile crinoid genera increased linearly during the Mesozoic. The possible role of biotic and abiotic factors in crinoid evolution is discussed.  相似文献   

18.
Order Diplobathrida is a major clade of camerate crinoids spanning the Ordovician–Mississippian, yet phylogenetic relationships have only been inferred for Ordovician taxa. This has hampered efforts to construct a comprehensive tree of life for crinoids and develop a classification scheme that adequately reflects diplobathrid evolutionary history. Here, I apply maximum parsimony and Bayesian phylogenetic approaches to the fossil record of diplobathrids to infer the largest tree of fossil crinoids to date, with over 100 genera included. Recovered trees provide a framework for evaluating the current classification of diplobathrids. Notably, previous suborder divisions are not supported, and superfamily divisions will require significant modification. Although numerous revisions are required for families, most can be retained through reassignment of genera. In addition, recovered trees were used to produce phylogeny‐based estimates of diplobathrid lineage diversity. By accounting for ghost lineages, phylogeny‐based richness estimates offer greater insight into diversification and extinction dynamics than traditional taxonomy‐based approaches alone and provide a detailed summary of the ~150 million‐year evolutionary history of Diplobathrida. This study constitutes a major step toward producing a phylogeny of the Crinoidea and documenting crinoid diversity dynamics. In addition, it will serve as a framework for subsequent phylogeny‐based investigations of macroevolutionary questions.  相似文献   

19.
No Devonian disparid crinoids have been described from Uzbekistan, although parahexacrinid thecae and assorted columnals have been described in several papers in the past 50 years. Discovery of a cup of Pisocrinus and a thecae of Haplocrinites are the first of these genera known from Uzbekistan. The stratigraphic range of Haplocrinites is revised to be late Early Devonian (Emsian) to Early Carboniferous (Tournaisian) because Silurian species assigned to the genus are based on loose ossicles that morphologically do not belong to the genus. The paleogeographic ranges of Pisocrinus and Haplocrinites are extended into Uzbekistan. Haplocrinites uzbekistanensis n. sp. is described.  相似文献   

20.
The three genera traditionally classified as Pilobolaceae have been identified on the basis of morphological characteristics. In the absence of distinctive morphological differences phylogenetic techniques have proven to be superior for developing phylogenies. Molecular techniques have been used primarily for studies of higher fungi; there are few investigations of the Zygomycota using genetic sequences for classification. DNA sequences coding for three regions of rRNA were used to investigate phylogenetic relationships of the three genera traditionally considered within the Pilobolaceae. Evidence indicates that Pilaira should be removed from Pilobolaceae and the family redescribed. Sporangiospore size is the morphological characteristic that most closely correlates with rDNA clades of phylogenetic trees. This study demonstrates that traditional morphological characteristics alone are not adequate to differentiate species of Pilobolus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号