首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phosphorus (P) uptake by plant roots depends on P intensity (I) and P quantity (Q) in the soil. The relative importance of Q and I on P uptake is unknown for soils with large P sorption capacities because of difficulties in determining trace levels of P in the soil solution. We applied a new isotope based method to detect low P concentrations (<20 μg P l−1). The Q factor was determined by assessment of the isotopically exchangeable P in the soil (E-value) and the I factor was determined by measurement of the P concentration in the pore water. A pot trial was set up using four soils with similar labile P quantities but contrasting P buffering capacities. Soils were amended with KH2PO4 at various rates and pigeon pea (Cajanus cajan L.) was grown for 25 days. The P intensity ranged between 0.0008 and 50 mg P l−1 and the P quantity ranged between 10 and 500 mg P kg−1. Shoot dry matter (DM) yield and P uptake significantly increased with increasing P application rates in all soils. Shoot DM yield and P uptake, relative to the maximal yield or P uptake, were better correlated with the P concentration in the pore water (R 2 = 0.83–0.90) than with the E-value (R 2=0.40–0.53). The observed P uptakes were strongly correlated to values simulated using a mechanistic rhizosphere model (NST 3.0). A sensitivity analysis reveals that the effect of P intensity on the short-term P uptake by pigeon pea exceeded the effect of P quantity both at low and high P levels. However, DM yield and P uptake at a given P intensity consistently increased with increasing P buffering capacity (PBC). The experimental data showed that the intensity yielding 80% of the maximal P uptake was 4 times larger in the soil with the smallest PBC compared to the soil with the largest PBC. This study confirms that short-term P uptake by legumes is principally controlled by the P intensity in the soil, but is to a large extent also affected by the PBC of the soil. Section Editor: N. J. Barrow  相似文献   

2.
The ability of two sodium bicarbonate (Colwell and Olsen) and two ammonium fluoride (Bray I and Bray II) soil tests to reflect the effect of phosphate buffering capacity of the soil on plant growth through time was studied on ten Argentine soils. The soils were divided into three groups (low, medium and high buffering capacity) according to a buffering index calculated from the slope of the Freundlich equation. The relation between phosphate extracted by soil tests and both relative yield and phosphate uptake of rye grass plants was affected by the phosphate buffering capacity of the soil. The effect of buffering on that relation was more marked for the sodium bicarbonate tests (specially Colwell) than for the Bray tests. This effect was consistent with time. Hence, adjustment for buffering would be more important for the sodium bicarbonate tests than for the Bray tests. Soils with high buffering capacity were able to sustain a greater rate of phosphate uptake. The effect of buffering on the relation between soil tests and both relative yield and phosphate uptake was greatest when the plants were young and decreased with time. This effect would therefore be very important for the early nutrition of annual pasture or crop species.  相似文献   

3.
The role of Zn bioavailability in soil on Zn hyperaccumulation by Thlaspi caerulescens was investigated. Thlaspi caerulescens from Prayon, Belgium, and Clough Wood, UK, were grown in pots containing unenriched soil (35 g Zn g–1), or five treatments enriched with Zn compounds of different solubility (ZnS, Zn3(PO4)2, ZnO, ZnCO3, and ZnSO77H2O). The Zn-enriched treatments had similar total Zn contents (1000 g Zn g–1), but differed greatly in their concentrations of extractable-Zn. In the treatments with little extractable-Zn (unenriched and ZnS-enriched) T. caerulescens accessed Zn fractions that were not initially soluble; the mass of Zn accumulated in the shoots on Day 90 was greater than the mass of ammonium nitrate extractable-Zn in the soil on Day 0. Moreover, the decrease in ammonium nitrate extractable-Zn in the unenriched treatment after growth accounted for only 50 and 24% of the Zn accumulated by plants of the Clough Wood and Prayon populations, respectively. Despite accumulation of Zn from the previously non-labile fraction in soil, Zn hyperaccumulation from the unenriched and ZnS-enriched treatments was less than from the four treatments with highly extractable-Zn. The mechanisms involved in the solubilization of Zn were therefore not strong. The dissolution of Zn in the soil might have resulted from the very high root density in the pots either enhancing weak mobilization mechanisms, and/or highly efficient uptake in to the roots coupled with replenishment of the Zn taken up through the soil buffering capacity.  相似文献   

4.
Adsorption of zinc in rice soils was studied to define the functional relationship between quantity, intensity and buffering capacity factors of soil zinc to the growth and zinc uptake of rice crop. A supply parameter integrating the quantity, intensity and buffering capacity factors into a single unifying term was computed from the data on Zn adsorption in these soils. A green house experiment was conducted with three soils providing a matrix of different values of supply parameter of Zn to determine the optimum value of this parameter for the proper growth and zinc nutrition of rice crop. Results indicated that a value of this parameter around unity is optimum for sustaining proper growth and zinc nutrition of rice in these soils. The variations in dry matter yield and zinc uptake of rice in different soils may be related to the differences in the physical and chemical properties of the soils.  相似文献   

5.
Abstract. Calcium is the soluble cation that occurs in largest amount in most soils. It does not take part directly in the proton transfer reactions involved in pH-buffering, but it provides the cation charge balance for these reactions. It is also the complementary cation in formulations of chemical potential for many other ions in soils. The presence of free calcium carbonate in calcareous soils. The presence of free calcium carbonate in calcareous soils ensures a very high soil buffer capacity; d AB/ d pH ≃ 1000 Eq. m−3.
In acid mineral soils, dissolution and precipitation of aluminium ions contribute to the buffering processes, but most of the buffering in non-calcareous soils is caused by specific ion adsorption at variable-charge sites, in particular those associated with the dissociation of humus acids. Typical buffer capacity values of non-calcareous soils vary from 10 Eq. m−3 for sandy soils to 100 Eq. m−3 for peats. The pH changes associated with buffering are produced by leaching of calcium from soil, or by adding calcium to soil in liming materials.  相似文献   

6.
We sought to explain rice (Oryza sativa) genotype differences in tolerance of zinc (Zn) deficiency in flooded paddy soils and the counter‐intuitive observation, made in earlier field experiments, that Zn uptake per plant increases with increasing planting density. We grew tolerant and intolerant genotypes in a Zn‐deficient flooded soil at high and low planting densities and found (a) plant Zn concentrations and growth increased with planting density and more so in the tolerant genotype, whereas the concentrations of other nutrients decreased, indicating a specific effect on Zn uptake; (b) the effects of planting density and genotype on Zn uptake could only be explained if the plants induced changes in the soil to make Zn more soluble; and (c) the genotype and planting density effects were both associated with decreases in dissolved CO2 in the rhizosphere soil solution and resulting increases in pH. We suggest that the increases in pH caused solubilization of soil Zn by dissolution of alkali‐soluble, Zn‐complexing organic ligands from soil organic matter. We conclude that differences in venting of soil CO2 through root aerenchyma were responsible for the genotype and planting density effects.  相似文献   

7.
A mixture is described which has a buffering capacity which is essentially independent of pH in the range pH 4.0-9.0. It is shown how this buffer mixture may be used to determine the force-flux relationship of proton transfer between two aqueous phases separated by a phospholipid bilayer in vesicular systems and so demonstrate that this relationship is linear over a wide range of delta mu approximately H+. The buffer mixture can, furthermore, be employed to determine the volume enclosed within a vesicular preparation.  相似文献   

8.
Abstract

Chemical fractions of soil Zn namely: water soluble (WS), exchangeable (EX), Pb displaceable (Pb-disp.), acid soluble (AS), Mn oxide occluded (MnOX), organically bound (OB), amorphous Fe oxide occluded (AFeOX), crystalline Fe oxide occluded (CFeOX), residual (RES) were determined in 20 surface (0–15 cm) samples of acidic soils from the provinces of Uttarakhand and Uttar Pradesh, India. The chemical fractions of soil Zn in acidic soils were found to be in the following descending order of Zn concentration: RES > CFeOX > Pb-Disp. > AFeOX > MnOX > AS > OB > EX > WS. These soil samples were also extracted by: DTPA (pH 7.3), DTPA (pH 5.3), AB-DTPA (pH 7.6), Mehlich 3 (pH 2.0), Modified Olsen, 0.01 N CaCl2, 1 M MgCl 2 and ion exchange resins. Chemical fractions and the soil extractable content of Zn estimated by different soil extractants were significantly correlated with some general soil properties. Maize (cv. Pragati) plants were grown in these soils for 35 days after emergence and Zn uptake by plants was compared with the amount of Zn extracted by different soil extractants and chemical fractions of Zn. Among chemical fractions of soil Zn, Pb-displaceable and acid soluble chemical fractions of soil Zn showed a significant and positive correlation with Zn uptake by maize. Path coefficient analysis also revealed that the acid soluble Zn fraction showed the highest positive and direct effect on Zn uptake (P=0.960). Among different multinutrient soil extractants evaluated for their suitability to assess Zn availability in acidic soils, DTPA (pH=5.3) was most suitable soil extractant, as the quantity of soil Zn extracted by this extractant showed a significant and positive correlation with the dry matter yield, Zn concentration and uptake by maize plants.  相似文献   

9.
Heijs  Sander K.  van Gemerden  Hans 《Hydrobiologia》2000,437(1-3):121-131
Microbiological and environmental variables involved in the removal of free sulfide were studied along an eutrophication transect in the Bassin d'Arcachon (France). At four sites, analyses were carried out on reduced sulfur compounds, iron species and total numbers of viable sulfur bacteria (sulfide-producing bacteria, colorless sulfur bacteria and purple sulfur bacteria). In addition, the chemical buffering capacity towards free sulfide and the potential microbiological sulfide oxidation rates were determined.In the ecosystem, no free sulfide occurs in the top layers of the sediment at all four sites, despite a high nutrient load and hence favourable conditions for sulfide-producing bacteria. The explanation of this apparent discrepancy was shown to be the high biological sulfide oxidizing capacity in combination with a high chemical buffering capacity.The data presented illustrate that the buffering capacity of sediments towards free sulfide is the combined result of the chemical and biological processes. The ratio between these were found to depend on the degree of eutrophication. It was shown that the chemical buffering capacity towards sulfide is severely overestimated when based on the pool of chemically reactive iron, a more realistic value is obtained by estimating the total amount of sulfide that can be added before free sulfide can be detected. A clear difference was observed between the numbers of colorless sulfur bacteria and the activity of the entire population. For a proper quantification of the sulfide buffering capacity of sediments, it is essential to estimate the concentration of iron and sulfur compounds that actually can react with sulfide, as well as to analyze the activities of sulfide-oxidizing microbes.  相似文献   

10.
Durand  Rémi  Bellon  Nicole  Jaillard  Benoît 《Plant and Soil》2001,229(2):305-318
The net flux of charge released by maize, i.e. the strong ion exchange balance between the roots and their environment, was determined in acidic and alkaline solutions, i.e. solutions with a low and a high pH buffering capacity, respectively. The work was based on direct measurement of total alkalinity in culture solutions over a period of several days.The results show there was little difference in the net flux of charge released by maize in acidic and alkaline solutions: In both cases, approximately –1 molc (kg DM)–1 s–1. As the maize was grown in a non-limiting nitrate solution, the charge flux was negative, corresponding to a net release of hydroxyls into the rhizosphere. In contrast, the change in the amounts of free protons in the solution was approximately 1 nmol (kg DM)–1 s–1, i.e. 3 orders of magnitude lower than the net charge flux. Moreover, it was negative in acidic media , i.e. the solution pH increased, and positive in alkaline media, i.e. the solution pH decreased. This decrease probably resulted from the release of inorganic carbon by the roots. The effect on the change in solution pH was only slight in acidic conditions but considerable in alkaline conditions, where it reduced the pH even though the culture solution was alkalinised by the roots.The difference in the way that acidic and alkaline solutions function demonstrates the importance of the pH buffering capacity of the solution in determining the net flux of charge released by the plants. It underlines the difficulty of estimating the net charge flux from pH change measurements in the rhizosphere.  相似文献   

11.
Summary This experiment examined the feasibility of predicting K uptake in white clover by the use of simple and relatively rapid tests that would dispense with the need of knowing the quantity of plant available potassium. Potassium uptake was found to correlate highly (R=>0.9) in linear bivariate regressions using K concentration in the soil solution displaced by centrifuging and an empirical estimate of potassium retention. There was no advantage in determining activity ratios because in at least some of the soils used the ratio law did not apply. Exchangeable potassium alone correlated rather poorly with uptake except at very low soil potassium status. This was not because nonexchangeable potassium was an important source of this nutrient to white clover but because of the large differences in the retention of K amongst the soils used.  相似文献   

12.
Baicu SC  Taylor MJ 《Cryobiology》2002,45(1):33-48
Control of acidity and preventing intracellular acidosis are recognized as critical properties of an effective organ preservation solution. Buffer capacity and efficiency are therefore important for comparing the relative merits of preservation fluids for optimum hypothermic storage, but these parameters are not available for the variety of organ preservation solutions of interest in transplantation today. Moreover, buffer capacity is dependent upon both concentration and pH such that buffer capacity is not easily predicted for a complex solution containing multiple buffer species. Using standard electrometric methods to measure acid dissociation constants, this study was undertaken to determine the maximum and relative buffer capacities of a variety of new and commonly used hypothermic preservation solutions as a function of temperature. The reference data provided by these measurements show that comparative buffer capacity and efficiency vary widely between the commonly used solutions. Moreover, the fluids containing zwitterionic sulfonic acid buffers such as Hepes possess superior buffering for alpha-stat pH regulation in the region of physiological importance.  相似文献   

13.
Recently, it has been reported that serum zinc binding capacity (ZnBC) is a very important criterion to evaluate body zinc (Zn) status. It has been shown that chronic Zn deficiency occur in the patients with thalassemia major (TM). Zn deficiency in TM may cause hyperzincuria, high ferritin levels, hepatic iron load, hepatic dysfunction. This study was undertaken to determine serum Zn levels and ZnBC in different thalassemia forms and sickle cell disease (SCD). The study has been carried out on 30 Thalassemia Major (TM), 34 Thalassemia Intermedia (TI), 31 Thalassemia Trait (TT) and 10 SCD. As control group,13 healthy children and 20 adults were included. Serum Zn and ZnBC were determined by atomic absorption, then saturation index (SI%: serum Zn/ZnBC x 100) was calculated. Serum Zn levels in all patients were lower than control (p < 0.01). Serum ZnBC was at a normal level in patients with TT and TI but it was found to be lower in TM and SCD than control (p < 0.01). While serum Zn levels decrease and ZnBC increase in nutritionaL Zn deficiency, serum Zn levels decrease but ZnBC doesn't increase in patients with thalassemia.  相似文献   

14.
Nutrient mobility in variable- and permanent-charge soils   总被引:5,自引:2,他引:3  
Variable-charge (v-c) and permanent-charge (p-c) soils differ fundamentally with regard to many nutrient-cycling processes. Variable-charge soils are more common in the tropics than in temperature zones because their formation requires desilication, which proceeds fastest in warm, moist climates. The dynamics of nutrient mobility tend to be more complex in v-c than in p-c soils. For example, theory predicts that, as pH of v-c soils decreases, cation exchange capacity (CEC) also decreases and anion exchange capacity (AEC) increases. If AEC exceeds CEC, cations such as ammonium and potassium will be more mobile than anions such as nitrate; this is the reverse of the situation in p-c soils, on which most of our knowledge of nutrient cycling is based. Variable-charge surfaces sorb phosphorus, creating plant nutritional problems throughout large areas of the humid tropics. Desilication, the same process that creates v-c surfaces, results also in stable aggregation, creating soils that retain water, yet drain rapidly and resist erosion. The Soil Taxonomy system incorporates information on mineralogy, texture, and organic matter content, and therefore provides insights into patterns of charge chemistry and nutrient cycling across a wide range of soil types.  相似文献   

15.
滇苦菜(Picris divaricata Vant.)对锌的吸收和富集特性   总被引:3,自引:0,他引:3  
通过野外调查和营养液培养,研究Zn对滇苦菜(Picris divaricata Vant.)生长的影响及其吸收富集Zn的特性.野外调查发现,铅锌矿区土壤Zn全量范围为1724~134973 mg·kg-1,平均为61495 mg·kg-1.滇苦菜地上部Zn含量范围为1214~18339 mg·kg-1,平均为5911 mg·kg-1,且转运系数(S/R)的平均值为2.21,大于1.在营养液培养条件下,当Zn浓度达到80 mg·L-1时,滇苦菜生长开始出现明显的中毒症状,随着Zn处理的增加,植物地上部与根部的生物量呈下降趋势,Zn含量呈上升趋势,且地上部与根部在160 mg·L-1时Zn含量达最高值,分别为12472 mg·kg-1和14026 mg·kg-1,体内Zn富集量也达最高值1518 μg ·株-1,并且整个植株富集的Zn有75%~91%分布在地上部.结果表明滇苦菜具有很强的忍耐、吸收和富集Zn的能力,是我国境内发现的又一种Zn超富集植物.  相似文献   

16.
Controlling rumen fermentation using buffering agents could contribute to enhancing ruminant productivity and performance. This study was realized to investigate the effect of dietary supplementation of AcidBuf, sodium bicarbonate, calseapowder and WMC seaweed (Utva Lactuca extra) on the animal performance, volatile fatty acids, rumen pH, rumen histology and carcass characteristics of growing male Awassi lambs. A total of 60 lambs was divided into five groups. One group served as a control and fed only on a concentrate diet without any buffering, whereas the other four groups were fed the concentrate diet supplemented with 0.4% AcidBuf (Buf1), 0.4% AcidBuf plus sodium bicarbonate, 50 : 50 (Buf2), 0.4% calseapowder (Buf3) or 0.4% WMC Seaweed (Buf4) for 98 days. The feed conversion ratio was (P<0.05) improved in Buf2 compared to the control and other treatment groups. The propionic acid decreased, whereas butyric acid was increased in the treatment groups (P<0.05) compared to the control. The pH of the rumen fluid and the length of submucosa were (P<0.05) higher in Buf4 and Buf1, respectively, compared to the control. Hot and cold carcass weights were (P<0.05) higher in Buf4 compared to Buf1. Lean meat percentage and rib eye area were (P<0.05) higher in Buf4; while the fat percentage was (P<0.05) lower in Buf2 and Buf4 groups compared to the control. The lightness and yellowness of meat were (P<0.05) higher in Buf1 and Buf4 compared to the control. The meat pH was (P<0.05) higher in Buf3 and Buf4 compared to Buf2 (at 1 h) and control (at 24 h). The visceral depot fat (%) was reduced with Buf3 and Buf4 compared to the control. The results indicated that dietary supplementation of different buffering agents improved feed efficiency, rumen pH, carcass characteristics and decreased the body fat in growing Awassi lambs.  相似文献   

17.
The phytotoxicity of aluminium (Al) ions can be alleviated by ammonium (NH4+) in rice and this effect has been attributed to the decreased Al accumulation in the roots. Here, the effects of different nitrogen forms on cell wall properties were compared in two rice cultivars differing in Al tolerance. An in vitro Al‐binding assay revealed that neither NH4+ nor NO3? altered the Al‐binding capacity of cell walls, which were extracted from plants not previously exposed to N sources. However, cell walls extracted from NH4+‐supplied roots displayed lower Al‐binding capacity than those from NO3?‐supplied roots when grown in non‐buffered solutions. Fourier‐transform infrared microspectroscopy analysis revealed that, compared with NO3?‐supplied roots, NH4+‐supplied roots possessed fewer Al‐binding groups (‐OH and COO‐) and lower contents of pectin and hemicellulose. However, when grown in pH‐buffered solutions, these differences in the cell wall properties were not observed. Further analysis showed that the Al‐binding capacity and properties of cell walls were also altered by pHs alone. Taken together, our results indicate that the NH4+‐reduced Al accumulation was attributed to the altered cell wall properties triggered by pH decrease due to NH4+ uptake rather than direct competition for the cell wall binding sites between Al3+ and NH4+.  相似文献   

18.
Solubility of metal in contaminated soils is a key factor which controls the phytoavailability and toxic effects of metals on soil environment. The chemical equilibria of metal ions between soil solution and solid phases govern the solubility of metals in soil. Hence, an attempt was made to identify the probable solid phases (minerals), which govern the solubility of Zn2+ and Cd2+ in zinc smelter effluent-irrigated soils. Estimation of free ion activities of Zn2+ (pZn2+) and Cd2+ (pCd2+) by Baker soil test indicated that metal ion activities were higher in smelter effluent-irrigated soils as compared to that in tubewell water-irrigated soils. Identification of solid phases further reveals that free ion activity of Zn2+ and Cd2+ in soil highly contaminated with Zn and Cd due to long-term irrigation with zinc smelter effluent is limited by the solubility of willemite (Zn2SiO4) in equilibrium with quartz and octavite (CdCO3), respectively. However, in case of tubewell water-irrigated soil, franklinite (ZnFe2O4) in equilibrium with soil-Fe and exchangeable Cd are likely to govern the activity of Zn2+ and Cd2+ in soil solution, respectively. Formation of highly soluble minerals namely, willemite and octavite indicates the potential ecological risk of Zn and Cd, respectively in smelter effluent irrigated soil.  相似文献   

19.
A mechanistic understanding of perchlorate () entry into plants is important for establishing the human health risk associated with consumption of contaminated produce and for assessing the effectiveness of phytoremediation. To determine whether common soil anions affect uptake and accumulation in higher plants, a series of competition experiments using lettuce (Lactuca sativa L.) were conducted between (50 nM) and (4–12 mM), (1–10 mM), or Cl (5–15 mM) in hydroponic solution. The effects of (0–5 mM) and pH (5.5–7.5) on uptake were also examined. Increasing in solution significantly reduced the amount of taken up by green leaf, butter head, and crisphead lettuces. Sulfate and Cl had no significant effects on uptake in lettuce over the concentrations tested. Increasing pH significantly reduced the amount of taken up by crisphead and green leaf lettuces, whereas increasing significantly reduced uptake in butter head lettuce. The inhibition by across all lettuce genotypes suggests that may share an ion carrier with , and the decrease in uptake with increasing pH or provides macroscopic evidence for cotransport across the plasma membrane.  相似文献   

20.
施肥和增水对弃耕草地土壤酸中和容量的影响   总被引:2,自引:0,他引:2  
大气氮沉降增加是草地土壤酸化的主要原因。土壤酸缓冲性能作为评估土壤酸化的重要指标,对氮输入的响应受到降水与其他限制养分含量的影响。本研究以我国北方温带弃耕草地氮、磷、水添加试验13年后的土壤为对象,利用二次多项式模型拟合酸滴定曲线,计算了土壤酸缓冲容量(ABC)以及以pH 5.0和4.0为参比的土壤酸中和容量(ANC)。结果表明: 不增水处理下,单独加氮和同时添加氮磷均显著降低土壤pH,降低以pH 5.0和4.0为参比时的酸中和容量(ANCpH5.0和ANCpH4.0);单独加磷对土壤pH、ANCpH5.0和ANCpH4.0均无显著影响。增水处理下,加氮及加氮磷显著降低土壤pH、ANCpH5.0和ANCpH4.0;加磷显著降低土壤pH,但增加了ANCpH4.0,而对ANCpH5.0无显著影响。与不增水处理相比,增水处理对土壤pH、酸中和容量均具有显著的正效应。对于初始pH值不同的土壤,采用土壤酸中和容量比酸缓冲容量能更好地指示土壤抗酸化能力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号