首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Limitations in the availability of oxygen restrict aerobic biodegradation of chloroaromatic compounds in groundwater ecosystems. In this context the activity of ring-cleaving chlorocatechol dioxygenases (CC12O) is crucial for effective mineralization. Previously we demonstrated that oxygen-related enzyme characteristics of CC12O can vary widely among the Proteobacteria (Balcke et al. submitted). Here, we investigated how strains with different ability to transform intermediary 3-chlorocatechol integrate into biodegradation of chlorobenzene (CB) under low or high oxygen availability. Pseudomonas veronii UFZ B549 and Acidovorax facilis UFZ B530, which had differing oxygen affinities for CC12O, were mixed together at different proportions (20:80; 80:20), and compared for degradation of chlorobenzene under oxic (215 μM O2) and hypoxic (11 μM O2) conditions. Changes in community composition in binary mixed cultures were determined and compared with an indigenous groundwater community, cultivated under comparable conditions. Community shifts were determined by FISH (fluorescent in situ hybridization) in our model system and SSCP (single stranded conformation polymorphism) fingerprinting in the groundwater community, as well as by analysis of respiratory quinones of taxonomic value. Hypoxia led to enrichment of Acidovoracae in the groundwater and binary cultures. Under hypoxic conditions cis,cis-2-chloromuconate released to the medium by A. facilis allowed for concomitant growth of P. veronii, although its low-affinity type CC12O would not imply growth on CB. Vice versa, increasing abundance of P. veronii induced intermediary 3-chlorocatechol accumulation, which was reduced by growth of A. facilis. Thus, reduced oxygen availability caused syntrophic rather than competitive interactions.  相似文献   

2.
Pseudomonas veronii strain UFZ B549, Acidovorax facilis strain UFZ B530, and a community of indigenous groundwater bacteria, adapted to oxygen limitation, were cultivated on chlorobenzene and its metabolites 2-chloro-cis,cis-muconate and acetate/succinate under hypoxic and denitrifying conditions. Highly sensitive approaches were used to maintain defined low oxygen partial pressures in an oxygen-re-supplying headspace. With low amounts of oxygen available all cultures converted chlorobenzene, though the pure strains accumulated 3-chlorocatechol and 2-chloro-cis,cis-muconate as intermediates. Under strictly anoxic conditions no chlorobenzene transformation was observed, while 2-chloro-cis,cis-muconate, the fission product of oxidative ring cleavage, was readily degraded by the investigated chlorobenzene-degrading cultures at the expense of nitrate as terminal electron acceptor. Hence, we conclude that oxygen is an obligatory reactant for initial activation of chlorobenzene and fission of the aromatic ring, but it can be partially replaced by nitrate in respiration. The tendency to denitrify in the presence of oxygen during growth on chlorobenzene appeared to depend on the oxygen availability and the efficiency to metabolize chlorobenzene under oxygen limitation, which is largely regulated by the activity of the intradiol ring fission dioxygenase. Permanent cultivation of a groundwater consortium under reduced oxygen levels resulted in enrichment of a community almost exclusively composed of members of the β-Proteobacteria and Bacteroidetes. Thus, it is deduced that these strains can still maintain high activities of oxygen-requiring enzymes that allow for efficient CB transformation under hypoxic conditions.  相似文献   

3.
好氧氯苯降解菌的分离鉴定   总被引:3,自引:0,他引:3  
【目的】分离好氧氯苯降解菌,并通过研究降解特性为应用提供理论依据。【方法】利用富集培养技术分离菌株,通过形态、生理生化反应特征及16S rRNA基因序列分析鉴定菌株,测定培养液中氯苯、其它氯苯类化合物和氯离子的浓度以及菌体细胞的密度和菌体细胞粗提液中邻苯二酚双加氧酶的活性,研究菌株的降解特性。【结果】16S rRNA基因序列相似性比较表明,分离出的菌株与乙酸钙不动杆菌(Acinetobacter calcoaceticus)的相似性高达98.5%。以初始浓度为50mg/L的氯苯为唯一碳源和能源时,120h内菌株对氯苯的降解率高达98.2%,氯离子净释放量和氯苯降解量的摩尔比范围为1:1.85-1:1.39,菌体细胞粗提液中邻苯二酚1,2-双加氧酶的平均活性为0.538U/mg蛋白质。加入葡萄糖后,菌体细胞数量和氯离子浓度明显增加,但单位细胞的氯苯降解能力明显下降。在二氯苯和三氯苯共存时,菌株对氯苯的降解能力受到明显的抑制作用,但对二氯苯有一定的降解作用,降解能力大小顺序为:1,3-二氯苯1,2-二氯苯1,4-二氯苯。【结论】分离出的好氧氯苯降解菌属于Acinetobacter属菌株,该菌株对氯苯和二氯苯均具有降解作用,可能通过邻位裂环途径降解氯苯,氯苯对菌株的降解能力和邻苯二酚1,2-双加氧酶的活性具有明显的增强作用。  相似文献   

4.
Summary Several bacterial strains that can oxidize mono- and dichlorinated biphenyls with one unsubstituted ring have already been described. The major route for this biodegradation leads ultimately to the corresponding chlorobenzoic acid, but several other minor chlorinated metabolites that might possibly be of concern for the environment have also been described previously. Since none of the bacterial strains that are able to oxidize these chlorinated biphenyls in pure culture are known to degrade chlorobenzoic acid, the oxidation of these substrates by axenic cultures always generates chlorobenzoates plus several other metabolites. In the present study, we have estimated the biodegradation of 4-chlorobiphenyl (4CB) by a two-membered bacterial culture containing one strain able to grow on 4CB and to transform it into 4-chlorobenzoate (4CBA) and one strain able to degrade 4CBA. The results were encouraging, since it was shown that the degradation of 4CB was more rapid and complete with the double bacterial culture.  相似文献   

5.
The availability of oxygen (O(2)) in aerated (i.e., water-unsaturated) soils affects the metabolic activities of aerobic and anaerobic soil prokaryotes that degrade plant-derived saccharides. Fluctuating availabilities of O(2) were imposed on agricultural soil slurries supplemented with cellobiose. Slurries were subjected to oxic conditions (48 h), followed by an anoxic period (120 h) and a final oxic period (24 h). Redox potential was stable at 500 mV during oxic periods but decreased rapidly (within 10 h) under anoxic conditions to -330 mV. The consumption of cellobiose occurred without apparent delay at all redox potentials. The metabolic activities of seven previously identified saccharolytic family-level taxa of the investigated soil were measured with newly designed quantitative PCR assays targeting the 16S rRNA. Four taxa responded to the experimental conditions. The amounts of rRNAs of Micrococcaceae and Cellulomonadaceae (Actinobacteria) increased under oxic conditions. In contrast, the RNA contents of Clostridiaceae (cluster I, Firmicutes) and two uncultured family-level-taxa, i.e., "Cellu" and "Sphingo" (both Bacteroidetes) increased under anoxic conditions. That the degradation of cellobiose was independent of the availability of O(2) and that redox potentials decreased in response to anaerobic activities indicated that the degradation of cellobiose was linked to functionally redundant cellobiose-degrading taxa capable of altering redox conditions.  相似文献   

6.
A chemostat coculture of the sulfate-reducing bacterium Desulfovibrio oxyclinae together with a facultative aerobe heterotroph tentatively identified as Marinobacter sp. strain MB was grown under anaerobic conditions and then exposed to a stepwise-increasing oxygen influx (0 to 20% O(2) in the incoming gas phase). The coculture consumed oxygen efficiently, and no residual oxygen was detected with an oxygen supply of up to 5%. Sulfate reduction persisted at all levels of oxygen input, even at the maximal level, when residual oxygen in the growth vessel was 87 microM. The portion of D. oxyclinae cells in the coculture decreased gradually from 92% under anaerobic conditions to 27% under aeration. Both absolute cell numbers and viable cell counts of the organism were the same as or even higher than those observed in the absence of oxygen input. The patterns of consumption of electron donors and acceptors suggest that aerobic incomplete oxidation of lactate to acetate is performed by D. oxyclinae under high oxygen input. Both organisms were isolated from the same oxic zone of a cyanobacterial mat where they have to adapt to daily shifts from oxic to anoxic conditions. This type of syntrophic association may occur in natural habitats, enabling sulfate-reducing bacteria to cope with periodic exposure to oxygen.  相似文献   

7.
Abstract The phototrophic purple sulfur bacterium Thiocapsa roseopersicina was grown in sulfide-limited continuous cultures exposed to oxic/anoxic regimens in continuous light. Synthesis of bacteriochlorophyll a (BChl a ) did not occur during the oxic periods, but started immediately upon the creation of anoxic conditions. In contrast, protein synthesis continued during both oxic and anoxic periods. Consequently, the specific content of BChla fluctuated. Despite the presence of oxygen and the fluctuating BChl a content, growth occurred predominantly in a phototrophic mode and respiration was virtually zero.
BChl a synthesis continued at high rates during anoxic periods, thus compensating for the lack of synthesis during oxic periods. When cultivated under regimens with oxic periods shorter than 12 h the highest specific BCh a content was 27 μg·mg protein. In contrast, when cultivated under regimens with oxic periods longer than 12 h the specific BChl a content was always lower than 27μg·mg length of the oxic periods. During the anoxic periods, BChl a synthesis occurred at the maximal velocity of 1.2 μg·mg−1 protein·h, but the length of the anoxic periods was not sufficient to allow the BChl a content to reach the maximum level.
Cultivation under continuously oxic conditions eventually resulted in pigmentless cells growing chemolithotrophically. The BChl a synthesizing ability was not lost during prolonged exposure to oxygen.
It was concluded that T. roseopersicina is very well adapted to oxic/anoxic cycles.  相似文献   

8.
青虾“软壳综合症”病原及其特性   总被引:8,自引:1,他引:7  
从患软壳综合症的濒死青虾体内分离到一株细菌QXL0711B, 经人工感染试验, 其对青虾的半数致死浓度(LC50)为1.47×106 CFU/mL, 具有较强毒力。API 32E系统鉴定及16S rRNA序列分析, 该病原菌为维罗纳气单胞菌温和生物变种(Aeromonas veronii biovar sobria, 登录号: FJ808727)。其系统发育分析表明, 菌株QXL0711B与维罗纳气单胞菌(登录号: X71120)和维罗纳气单胞菌温和生物变种(登录号: AY987729)的亲缘关系最近,  相似文献   

9.
A facultatively anaerobic bacterium, strain P-88, was enriched selectively under dual limitation by glutamate and oxygen in a chemostat. The new strain is a gram-negative motile rod. The mol% guanine plus cytosine of the DNA is 51.4±0.6 mol%. The organism grows on citrate as a sole source of carbon and energy, does not form acetoin, does not induce lysine decarboxylase and was thus classified as a species of the genus Citrobacter. A remarkable characteristic of the new isolate is its ability to grow on several amino acids with either a respiratory or a fermentative type of metabolism. Under strictly anoxic conditions glutamate was fermented to acetate, H2, CO2 and ammonia. Asparagine, aspartate and serine could also be fermented. Furthermore, all type strains of the genus Citrobacter were shown to have the same fermentative abilities. Based on enzyme activities determined in cell-free extracts a combination of the methylaspartate pathway and the mixed acid fermentation of Enterobacteriaceae is proposed to explain the glutamate fermentation pattern observed in cultures of strain P-88. Analysis of the growth of strain P-88 in continuous culture with various degrees of oxygen supply, demonstrated that the bacterium can rapidly switch between oxic and anoxic metabolism. Cultures of strain P-88 grown under oxygen limitation simultaneously respire and ferment glutamate, suggesting that the organism is particularly well adapted to growth in microoxic environments.  相似文献   

10.
Complex chromosome aberrations (CCA) are described, occurring spontaneously in low frequency, in numerous mammalian cell lines. These aberrations appear similar to those reported in leukocyte cultures of some Yanamama Indians. In some cell lines the frequency of CCA is increased by the administration of cytochalasin B (CB) a drug which prevents cytoplasmic division. The frequency of CCA may also be increased by the protease inhibitor tosyl lysyl chloro methyl ketone (TLCK). TLCK may also produce binucleate cells but unlike CB does not result in high degrees of multinucleation. In one cell line, 3T12, the simultaneous administration of CB and TLCK resulted in high frequencies of CCA. Thus the induction of CCA in cell culture is reproducible. However the etiology of CCA remains unknown.  相似文献   

11.
Bacterial isolates were obtained from groundwater and soils contaminated with chlorobenzene (CB). The isolates were tested to determine whether the natural community could remove the groundwater contaminants. These isolates were identified and characterized as to their ability to grow on CB and related aromatic compounds. The complete consortium could mineralize approximately 54% of the CB within 7 days, with no accumulation of 3-chlorocatechol. Metabolic pathways were evaluated for several isolates. One phenotype was characterized by the ability to degrade CB by the modified ortho pathway. One strain also degraded p-dichlorobenzene by using the same pathway. Isolates exhibiting a second phenotype degraded p-cresol, benzene, and phenol by the classical ortho pathway and accumulated 3-chlorocatechol when grown in the presence of CB. Strains of the third phenotype grew on complex media in the presence of CB but did not transform any of the aromatic compounds tested. The results suggest that the indigenous microbial community at the contaminated site would be able to degrade CB if provided with the appropriate conditions.  相似文献   

12.

Background

High intracellular levels of unbound iron can contribute to the production of reactive oxygen species (ROS) via the Fenton reaction, while depletion of iron limits the availability of iron-containing proteins, some of which have important functions in defence against oxidative stress. Vice versa increased ROS levels lead to the damage of proteins with iron sulphur centres. Thus, organisms have to coordinate and balance their responses to oxidative stress and iron availability. Our knowledge of the molecular mechanisms underlying the co-regulation of these responses remains limited. To discriminate between a direct cellular response to iron limitation and indirect responses, which are the consequence of increased levels of ROS, we compared the response of the α-proteobacterium Rhodobacter sphaeroides to iron limitation in the presence or absence of oxygen.

Results

One third of all genes with altered expression under iron limitation showed a response that was independent of oxygen availability. The other iron-regulated genes showed different responses in oxic or anoxic conditions and were grouped into six clusters based on the different expression profiles. For two of these clusters, induction in response to iron limitation under oxic conditions was dependent on the OxyR regulatory protein. An OxyR mutant showed increased ROS production and impaired growth under iron limitation.

Conclusion

Some R. sphaeroides genes respond to iron limitation irrespective of oxygen availability. These genes therefore reflect a “core iron response” that is independent of potential ROS production under oxic, iron-limiting conditions. However, the regulation of most of the iron-responsive genes was biased by oxygen availability. Most strikingly, the OxyR-dependent activation of a subset of genes upon iron limitation under oxic conditions, including many genes with a role in iron metabolism, revealed that elevated ROS levels were an important trigger for this response. OxyR thus provides a regulatory link between the responses to oxidative stress and to iron limitation in R. sphaeroides.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-794) contains supplementary material, which is available to authorized users.  相似文献   

13.
We previously established B cell hybridomas between M12.4.1 B lymphoma of BALB/c mice and normal B cell of C57BL/6 (B6) mice. These hybridomas express Iab, Iad, and IgM molecules on the cell membrane, and can induce the generation of IgM secretion when treated with purified goat anti-mouse-mu antibody (anti-mu) without T cell factors. In this study, TH2.54, a subclone of a B cell hybridoma, was treated with cytochalasin B (CB), a fungal product that disrupts microfilaments, and the direct effect of CB on the proliferation and differentiation of TH2.54 was examined. CB considerably suppressed the spontaneous proliferation of hybrid cells. This product, however, did not inhibit the generation of IgM secretion by TH2.54 treated with anti-mu. Surprisingly, CB could directly induce the development of IgM-secreting cells by TH2.54 at a relatively high frequency. Among cytochalasins, dihydrocytochalasin B (H2CB), cytochalasin C (CC), and cytochalasin D (CD) showed marked effects on the induction of IgM secretion as well as CB. In addition, the differentiative effect of CB was greatly inhibited by N6, O2-dibutyryladenosine 3':5'-cyclic monophosphate (dbc-AMP), but not by N2, O2-dibutyrylguanosine 3':5'-cyclic monophosphate (dbc-GMP). Analysis by flow microfluorometry (FMF), cytotoxicity assays, and quantitative absorption tests demonstrated that CB treatment of TH2.54 resulted in a significant decrease in the expression of Iab, Iad, and IgM molecules on the cell membrane. In contrast, parental M12.4.1 neither generated any IgM secretion nor changed Iad expression on the cell membrane under the same conditions. The present study suggests very strongly that microfilament-microtubule systems are not involved in the differentiative process of TH2.54 induced by anti-mu. The results also indicate that CB can provide the initiative signal for differentiation of TH2.54 into the maturation lineage; this is followed by a significant change in the expression of Ia and IgM molecules on the cell membrane.  相似文献   

14.
P Unrau 《Radiation research》1987,111(1):92-100
Mitotic gene conversion was induced in the diploid yeast strain D7.rad6 which lacks "error-prone repair" and thus does not mutate. Neutrons (14.5 MeV), 60Co gamma rays, and 150 kVp X rays delivered under oxic or anoxic conditions were compared for their ability to induce gene conversion. Doses were chosen to minimize cell killing. A lack of induced mutation in this strain at the ilv1-92 allele was confirmed. Gene conversion of the trp5-27/trp5-12 alleles was induced with a linear dose response, and the yield of convertants per gray was significantly enhanced over yields reported previously for a wild-type stain. The relative biological effectiveness (RBE) of neutrons relative to low-LET radiations was found to be about 2.2 for either oxic or anoxic radiation in contrast to wild-type where the oxic RBE was 1.7 and the anoxic RBE 2.7. Absence of the rad6 function was therefore associated with an altered RBE for the conversional end point. The oxygen enhancement ratio (OER) for gene conversion was found to be about 1.7 for all radiations in contrast to the wild type where the OER for neutrons was 1.7, but for low-LET radiations it was 2.7. As repair of ionizing damage in the rad6 strain did not lead to mutation, owing to the loss of "error-prone repair," the changes in yield, RBE, and OER were consistent with the hypothesis that some of the lesions processed by wild type to generate mutations could, in the rad6 strain, lead instead to gene conversion.  相似文献   

15.
Chlorobenzene (CB), a dense nonaqeuous phase liquid (DNAPL), is categorized as a priority pollutant by the US EPA. It enters into ecosystems via solid and liquid waste discharge. Bioremediation is a key technique to remediate such contaminated sites. The present study aimed to isolate a chlorobenzene-degrading bacterium, determine the metabolic pathway for chlorobenzene degradation, and characterize biosurfactant production. Microbacterium sp. strain TAS1CB was isolated from contaminated sites and identified by 16S rRNA gene sequencing. Cells possessing positive chemotaxis for CB indicated their ability to degrade CB. Cells degraded CB via production of chlorobenzene dioxygenase, which converted CB to chlorocatechol. Chlorobenzene dioxygenase production was higher at 7 pH and 30°C. Intermediate metabolite analysis by UV scanning, HPLC, and GC-MS analysis revealed production of chlorocatechol and cis-cis muconate. Thus, Microbacterium was able to degrade CB via an ortho-cleavage pathway. In addition to chlorobenzene dioxygenase production, cells also produced biosurfactant which pseudosolubilized CB and increased degradation rate. Chemical characterization showed it to be a glycolipid-type biosurfactant. A phytotoxity study showed 60% of toxicity decreased after 72 hrs of degradation by isolate.  相似文献   

16.
Bacteroids of Bradyrhizobium japonicum strain CB1809, unlike CC705, do not have a high level of constitutive nitrate reductase (NR; EC 1.7.99.4) in the soybean (Glycine max. Merr.) nodule. Ex planta both strains have a high activity of NR when cultured on 5 mM nitrate at 2% O2 (v/v). Nitrite reductase (NiR) was active in cultured cells of bradyrhizobia, but activity with succinate as electron donor was not detected in freshly-isolated bacteroids. A low activity was measured with reduced methyl viologen. When bacteroids of CC705 were incubated with nitrate there was a rapid production of nitrite which resulted in repression of NR. Subsequently when NiR was induced, nitrite was utilized and NR activity recovered. Nitrate reductase was induced in bacteroids of strain CB1809 when they were incubated in-vitro with nitrate or nitrite. Increase in NR activity was prevented by rifampicin (10 g· ml-1) or chloramphenicol (50 g·ml-1). Nitrite-reductase activity in bacteroids of strain CB1809 was induced in parallel with NR. When nitrate was supplied to soybeans nodulated with strain CC705, nitrite was detected in nodule extracts prepared in aqueous media and it accumulated during storage (1°C) and on further incubation at 25°C. Nitrite was not detected in nodule extracts prepared in ethanol. Thus nitrite accumulation in nodule tissue appears to occur only after maceration and although bacteroids of some strains of B. japonicum have a high level of a constitutive NR, they do not appear to reduce nitrate in the nodule because this anion does not gain access to the bacteroid zone. Soybeans nodulated with strains CC705 and CB1809 were equally sensitive to nitrate inhibition of N2 fixation.Abbreviations NR nitrate reductase - NiR nitrite reductase - Tris 2-amino-2-(hydroxymethyl)-1,3-propanediol  相似文献   

17.
In the experiments to be described two congenic inbred lines CB and CC and two recombinant lines CB.R1 and CC.R1 were used. All four lines differ only in regard to the major histocompatibility complex (MHC). To determine the percentage distributions of the two cell subsets in peripheral blood lymphocytes (PBL) in these lines, monoclonal antibodies to these two antigens were used. By FACScan there were more CD4+PBL in CB and CB.R1 lines (share B-F/B-L region, controlling class I/class II antigens with line CB) than CC and CC.R1, while the reverse was true with CD8+ subsets. There were more CD8+ PBL in the CC and CC.R1 lines and less in CB and CB.R1 lines. The ratio of CD4+ to CD8+ in CB chickens was 3.4 +/- 0.2 and in CC chickens 1.6 +/- 0.1.  相似文献   

18.
A collection of 186 heterotrophic bacteria, isolated directly from a continuous-upflow fixed-bed reactor for the denitrification of drinking water, in which poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) granules acted as biofilm carrier, carbon source and electron donor, was studied with regard to taxonomic affiliation and degradation and denitrification characteristics. Two granule samples were taken from a fully operating reactor for enumeration and isolation of heterotrophic bacteria. One sample was drawn from the lower part of the reactor, near the oxic zone, and the other sample from the upper, anoxic part of the fixed bed. Dominant colonies were isolated and the cultures were identified using fatty acid analysis and 16S rDNA sequencing. Their ability to degrade the polymer and 3-hydroxybutyrate and to denitrify in pure culture was assessed. The results show that high numbers of heterotrophic bacteria were present in the biofilms on the polymer granules, with marked differences in taxonomic composition and potential functions between the lower and upper part of the fixed bed. The majority of the isolates were Gram negative bacteria, and most of them were able to reduce nitrate to nitrite or to denitrify, and to utilize 3-hydroxybutyrate as sole source of carbon. Only two groups, one identified as Acidovorax facilis and the other phylogenetically related to Brevundimonas intermedia, could combine denitrification and utilization of poly(3-hydroxybutyrate) (PHB), and were found only in the upper sample. The other groups occurred either in the lower or upper part, or in both samples. They were assigned to Brevundimonas, Pseudomonas, Agrobacterium, Achromobacter, or Phyllobacterium, or were phylogenetically related to Afipia or Stenotrophomonas.  相似文献   

19.
Pootjes, Christine F. (The Pennsylvania State University, University Park), R. B. Mayhew, and B. D. Korant. Isolation and characterization of Hydrogenomonas facilis bacteriophages under heterotrophic growth conditions. J. Bacteriol. 92:1787-1791. 1966.-We have isolated five strains of bacteriophage specific for Hydrogenomonas facilis. The host range of the phage is limited to H. facilis. Morphologically, the phage particles consist of a head 580 A in diameter and a short tail 200 A in length. The particles share a common surface antigen, and all contain deoxyribonucleic acid. The five strains differ from each other in growth characteristics, heat stability, and neutralizing antigens.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号