首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Objective: We showed glucose‐dependent lipolytic oscillations in adipocytes that are modulated by free fatty acids (FFAs). We hypothesized that the oscillations are driven by oscillatory glucose metabolism that leads to oscillatory formation of α‐glycerophosphate (α‐GP), oscillatory removal of long‐chain coenzyme A (LC‐CoA) by α‐GP to form triglycerides, and oscillatory relief of LC‐CoA inhibition of triglyceride lipases. This study examined the effect of insulin on this hypothesis. Research Methods and Procedures: Samples were collected every minute from perifused rat adipocytes during the basal state followed by insulin (±glucose) or isoproterenol (±insulin; n = 4 each). Results: Insulin caused a significant increase in glycerol release (18%), with a concomitant significant decrease in FFA release (38%). Without glucose, insulin had no effect on glycerol release while still decreasing FFA release (35%). Insulin (5 μU/mL) attenuated the response of lipolysis to isoproterenol (~3‐fold increase with isoproterenol vs. 2‐fold increase with insulin + isoproterenol). However, 1 mU/mL insulin amplified the lipolytic response (~5‐fold increase in glycerol release with insulin + isoproterenol), with a concomitant increase in FFA reesterification (no increase in FFA release compared with isoproterenol alone). Discussion: We interpret these results to be due to insulin's ability to increase glucose uptake and conversion to α‐GP, thus removing LC‐CoA inhibition of triglyceride lipases. While the physiological importance of lipolytic oscillations remains to be determined, we hypothesize that such an oscillation may play an important role in the delivery of FFAs to the liver, β cells, and other tissues.  相似文献   

2.
Free‐fatty acids (FFAs) are well‐characterized factor for causing production of inflammatory factors and insulin resistance in adipocytes. Using cultured adipocytes, we demonstrate that FFAs can activate endoplasmic reticulum (ER) stress pathway by examination of ER stress sensor activation and marker gene expression. Chemical chaperone tauroursodeoxycholic acid (TUDCA) can reduce FFA‐induced adipocyte inflammation and improve insulin signaling whereas overexpression of spliced X‐box protein 1 (XBP‐1s) only attenuates FFA‐induced inflammation. PKR‐like eukaryotic initiation factor 2α kinase (PERK) is one of the three major ER stress sensor proteins and deficiency of PERK alleviates FFA‐induced inflammation and insulin resistance. The key downstream target of FFA‐induced ER stress is IκB kinase β (IKKβ), a master kinase for regulating expression of inflammatory genes. Deficiency of PERK attenuates FFA‐induced activation of IKKβ and deficiency of IKKβ alleviates FFA‐induced inflammation and insulin resistance. Consistently, overexpression of IKKβ in 3T3‐L1 CAR adipocytes causes inflammation and insulin resistance. In addition, IKKβ overexpression has profound effect on adipocyte lipid metabolism, including inhibition of lipogenesis and promotion of lipolysis. Furthermore, increased endogenous IKKβ expression and activation is also observed in isolated primary adipocytes from mice injected with lipids or fed on high‐fat diet (HFD) acutely. These results indicate that ER stress pathway is a key mediator for FFA‐induced inflammation and insulin resistance in adipocytes with PERK and IKKβ as the critical signaling components.  相似文献   

3.
The adipocytokine adiponectin is released by adipocytes upon activation of the peroxisome proliferator-activated receptor gamma (PPAR gamma). PPAR gamma has binding sites for thiazolidinediones and free fatty acids (FFAs). To evaluate if adiponectin serum concentrations are synergistically regulated by FFAs and thiazolidinediones IN VIVO plasma FFAs were acutely elevated in healthy subjects pre-treated with rosiglitazone or placebo. Sixteen healthy male subjects (23-37 years) were included in this double-blind, randomized, placebo-controlled parallel-group study. Rosiglitazone 8 mg or placebo was administered daily for 21 days. On the last day plasma FFA concentrations were increased by an intravenous triglyceride/heparin infusion. Blood for determination of adiponectin, C-reactive protein (CRP), leptin, resistin, FFAs, glucose, and insulin was drawn at baseline and on day 21 before and after 5 hours of triglyceride/heparin infusion. Adiponectin concentrations increased and FFA levels decreased in subjects receiving rosiglitazone (all p<0.05 VS. baseline). Lipid infusion significantly increased FFA plasma concentrations, with an attenuated elevation in rosiglitazone-treated subjects. However, adiponectin concentrations were only increased in subjects on rosiglitazone (p=0.018 VS. before lipid infusion), but not in controls. Leptin increased during lipid infusion in subjects receiving placebo but not in those on rosiglitazone. CRP and resistin were not affected by rosiglitazone or FFAs. The acute increase in circulating adiponectin concentrations during acutely elevated FFA depends on PPAR gamma activation in healthy subjects.  相似文献   

4.
Objective: Acetyl CoA carboxylase (ACC) is a key enzyme in energy balance. It controls the synthesis of malonyl‐CoA, an allosteric inhibitor of carnitine palmitoyltransferase‐1 (CPT‐I). CPT‐I is the gatekeeper of free fatty acid (FFA) oxidation. To test the hypothesis that both enzymes play critical roles in regulation of FFA partitioning in adipocytes, we compared enzyme mRNA expression and specific activity from fed, fasted, and diabetic rats. Research Methods and Procedures: Direct effects of nutritional state, insulin, and FFAs on CPT‐I and ACC mRNA expression were assessed in adipocytes, liver, and cultured adipose tissue explants. We also determined FFA partitioning in adipocytes from donors exposed to different nutritional conditions. Results: CPT‐I mRNA and activity decreased in adipocytes but increased in liver in response to fasting. ACC mRNA and activity decreased in both adipocytes and liver during fasting. These changes were not caused directly by fasting‐associated changes in plasma insulin and FFA concentrations because insulin suppressed CPT‐I mRNA and did not affect ACC mRNA in vitro, whereas exogenous oleate had no effect on either. Despite the decrease in adipocyte CPT‐I mRNA and specific activity, CO2 production from endogenous FFAs increased, suggesting increased FFA transport through CPT‐I for β‐oxidation. Discussion: Stimulation of FFA transport through CPT‐I occurs in both tissues, but CPT‐I mRNA and specific activity correlate with FFA transport in liver and not in adipocytes. We conclude that the mechanism responsible for increasing FFA oxidation in adipose tissue during fasting involves mainly allosteric regulation, whereas altered gene expression may play a central role in the liver.  相似文献   

5.
Novel form of lipolysis induced by leptin.   总被引:14,自引:0,他引:14  
Hyperleptinemia causes disappearance of body fat without a rise in free fatty acids (FFA) or ketones, suggesting that leptin can deplete adipocytes of fat without releasing FFA. To test this, we measured FFA and glycerol released from adipocytes obtained from normal lean Zucker diabetic fatty rats (+/+) and incubated for 0, 3, 6, or 24 h in either 20 ng/ml recombinant leptin or 100 nM norepinephrine (NE). Whereas NE increased both FFA and glycerol release from adipocytes of +/+ rats, leptin increased glycerol release in +/+ adipocytes without a parallel increase in FFA release. In adipocytes of obese Zucker diabetic fatty rats (fa/fa) with defective leptin receptors, NE increased both FFA and glycerol release, but leptin had no effect on either. Leptin significantly lowered the mRNA of leptin and fatty acid synthase of adipocytes (FAS) (p < 0.05), and up-regulated the mRNA of peroxisome proliferator-activated receptor (PPAR)-alpha, carnitine palmitoyl transferase-1, (CPT-1), and acyl CoA oxidase (ACO) (p < 0.05). NE (100 nM) also lowered leptin mRNA (p < 0.05) but did not affect FAS, PPARalpha, ACO, or CPT-1 expression. We conclude that in normal adipocytes leptin directly decreases FAS expression, increases PPARalpha and the enzymes of FFA oxidation, and stimulates a novel form of lipolysis in which glycerol is released without a proportional release of FFA.  相似文献   

6.

Objective

Excess dietary lipids result in the accumulation of lipid metabolites including ceramides that can attenuate insulin signaling. There is evidence that a botanical extract of Urtica dioica L. (stinging nettle) improves insulin action, yet the precise mechanism(s) are not known. Hence, we examined the effects of Urtica dioica L. (UT) on adipocytes.

Research Design

We investigated the effects of an ethanolic extract of UT on free fatty acid (palmitic acid) induced inhibition of insulin-stimulated Akt serine phosphorylation and modulation of ceramidase expression in 3T3-L1 adipocytes. Adipocytes were exposed to excess FFAs in the presence or absence of UT. Effects on adiponectin expression, ceramidase expression, ceramidase activity, ceramide accumulation and insulin signaling were determined.

Results

As expected, FFAs reduced adiponectin expression and increased the expression of ceramidase enzymes but not their activity. FFA also induced the accumulation of ceramides and reduced insulin-stimulated phosphorylation of Akt in adipocytes. The effects of FFA were partially reversed by UT. UT enhanced adiponectin expression and ceramidase activity in the presence of excess FFAs. UT abated ceramide accumulation and increased insulin sensitivity via enhanced Akt phosphorylation. A siRNA knockdown of adiponectin expression prevented UT from exerting positive effects on ceramidase activity but not Akt phosphorylation.

Conclusions

In adipocytes, the ability of UT to antagonize the negative effects of FFA by modulating ceramidase activity and ceramide accumulation is dependent on the presence of adiponectin. However, the ability of UT to enhance Akt phosphorylation is independent of adiponectin expression. These studies demonstrate direct effects of UT on adipocytes and suggest this botanical extract is metabolically beneficial.  相似文献   

7.
Objective: Glucose‐dependent insulinotropic polypeptide (GIP) is an incretin released from intestinal K‐cells during the postprandial period. Previous studies have suggested that GIP may play an etiologic role in obesity; thus, the GIP receptor may represent a target for anti‐obesity drugs. The present studies were conducted to elucidate mechanisms by which GIP might promote obesity by examining the effect of GIP on both glycerol release (indicative of lipolysis) and free fatty acid (FFA) release (indicative of both lipolysis and reesterification), as well as the ability of a GIP‐specific receptor antagonist (ANTGIP) to attenuate these effects. Research Methods and Procedures: Isolated rat adipocytes were perifused on a column with 10 nM GIP alone or in combination with 10 μU/mL insulin, 1 μM isoproterenol, or 1 μM ANTGIP. Samples were collected every minute and assayed for FFA, glycerol, and lactate. Results: GIP significantly increased FFA reesterification (decreased FFA release by 25%), stimulated lipolysis (increased glycerol release by 22%), and attenuated the lipolytic response to isoproterenol by 43%. These properties were similar to those of insulin in vitro, suggesting that GIP possesses insulin‐like lipogenic effects on adipocytes. Finally, ANTGIP reversed the effects of GIP on both basal and stimulated adipocyte metabolism. Discussion: These studies provide further evidence for an important physiological role for GIP in lipid homeostasis and possibly in the pathogenesis of obesity. They also suggest that the GIP receptor may represent an excellent target for the prevention and treatment of obesity and obesity‐related type 2 diabetes.  相似文献   

8.
9.
脂肪组织甘油三酯水解酶参与脂肪分解调控   总被引:2,自引:0,他引:2  
Xu C  Xu GH 《生理科学进展》2008,39(1):10-14
循环中游离脂肪酸增高与肥胖、胰岛素抵抗和2型糖尿病密切相关,其主要来源于脂肪细胞内甘油三酯水解.调控脂肪分解的脂肪酶主要包括激素敏感脂肪酶(hormone-sensitive lipase,HSL)和最近发现的脂肪组织甘油三酯水解酶(adipose triglyceride lipase,ATGL),后者主要分布在脂肪组织,特异水解甘油三酯为甘油二酯,其转录水平受多种因素调控.CGI-58(属于α/β水解酶家族蛋白),可以活化ATGL,基础条件下该蛋白和脂滴包被蛋白(perilipin)紧密结合于脂滴表面,蛋白激酶A激活刺激脂肪分解时,CGI-58与perilipin分离,进而活化ATGL.  相似文献   

10.
The detrimental effect of elevated free fatty acids (FFAs) on insulin sensitivity can be improved by thiazolidinediones (TZDs) in patients with type 2 diabetes mellitus. It is unknown whether this salutary action of TZD is associated with altered release of the insulin-mimetic adipocytokine visfatin. In this study, we investigated whether visfatin concentrations are altered by FFA and TZD treatment. In a randomized, double-blind, placebo-controlled, parallel-group study 16 healthy volunteers received an infusion of triglycerides/heparin to increase plasma FFA after 3 wk of treatment with rosiglitazone (8 mg/day, n = 8) or placebo (n = 8), and circulating plasma visfatin was measured. As a corollary, human adipocytes were incubated with synthetic fatty acids and rosiglitazone to assess visfatin release in vitro. The results were that rosiglitazone treatment increased systemic plasma visfatin concentrations from 0.6 +/- 0.1 to 1.7 +/- 0.2 ng/ml (P < 0.01). Lipid infusion caused a marked elevation of plasma FFA but had no effect on circulating visfatin in controls. In contrast, elevated visfatin concentrations in subjects receiving rosiglitazone were normalized by lipid infusion. In isolated adipocytes, visfatin was released into supernatant medium by acute addition and long-term treatment of rosiglitazone. This secretion was blocked by synthetic fatty acids and by inhibition of phosphatidylinositol 3-kinase or Akt. In conclusion, release of the insulin-mimetic visfatin may represent a major mechanism of metabolic TZD action. The presence of FFA antagonizes this action, which may have implications for visfatin bioactivity.  相似文献   

11.
Free fatty acids (FFAs) are energy-generating nutrients that act as signaling molecules in various cellular processes. Several orphan G protein-coupled receptors (GPCRs) that act as FFA receptors (FFARs) have been identified and play important physiological roles in various diseases. FFA ligands are obtained from food sources and metabolites produced during digestion and lipase degradation of triglyceride stores. FFARs can be grouped according to ligand profiles, depending on the length of carbon chains of the FFAs. Medium- and long-chain FFAs activate FFA1/GPR40 and FFA4/GPR120. Short-chain FFAs activate FFA2/GPR43 and FFA3/GPR41. However, only medium-chain FFAs, and not long-chain FFAs, activate GPR84 receptor. A number of pharmacological and physiological studies have shown that these receptors are expressed in various tissues and are primarily involved in energy metabolism. Because an impairment of these processes is a part of the pathology of obesity and type 2 diabetes, FFARs are considered as key therapeutic targets. Here, we reviewed recently published studies on the physiological functions of these receptors, primarily focusing on energy homeostasis.  相似文献   

12.
In vivo fatty acid synthesis and the pathways of glycerol-3-phosphate (G3P) production were investigated in brown adipose tissue (BAT) from rats fed a cafeteria diet for 3 weeks. In spite of BAT activation, the diet promoted an increase in the carcass fatty acid content. Plasma insulin levels were markedly increased in cafeteria diet-fed rats. Two insulin-sensitive processes, in vivo fatty acid synthesis and in vivo glucose uptake (which was used to evaluate G3P generation via glycolysis) were increased in BAT from rats fed the cafeteria diet. Direct glycerol phosphorylation, evaluated by glycerokinase (GyK) activity and incorporation of [U-14C]glycerol into triacylglycerol (TAG)-glycerol, was also markedly increased in BAT from these rats. In contrast, the cafeteria diet induced a marked reduction of BAT glyceroneogenesis, evaluated by phosphoenolpyruvate carboxykinase-C activity and incorporation of [1-14C]pyruvate into TAG-glycerol. BAT denervation resulted in an approximately 50% reduction of GyK activity, but did not significantly affect BAT in vivo fatty acid synthesis, in vivo glucose uptake, or glyceroneogenesis. The data suggest that the supply of G3P for BAT TAG synthesis can be adjusted independently from the sympathetic nervous system and solely by reciprocal changes in the generation of G3P via glycolysis and via glyceroneogenesis, with no participation of direct phosphorylation of glycerol by GyK.  相似文献   

13.
Obesity is associated with a state of chronic, low‐grade inflammation. It is considered that the paracrine loop involving free fatty acid (FFA) and tumor necrosis factor (TNF)α between adipocytes and macrophages establishes an inflammatory vicious cycle that augments the inflammatory changes and insulin resistance in obese adipose tissue. Paeoniflorin (PF), one of the major components of Paeony root, has been shown to have anti‐inflammatory effects in vivo. We investigated the effect of PF on the production of FFA and TNFα in the interaction between adipocytes and macrophages. Coculture of 3T3‐L1 adipocytes and RAW 264.7 macrophages markedly enhanced the production of TNFα and FFA compared with the control cultures, however, treatment with PF dose‐dependently inhibited the production. We further examined the effects of PF on TNFα‐stimulated adipocyte lipolysis and on FFA‐induced macrophage TNFα expression. PF inhibited TNFα‐stimulated adipocyte lipolysis in a dose‐dependent manner, which was compatible with suppressed phosphorylation of TNFα‐activated ERK1/2 and preserved downregulation of perilipin. Palmitate, one of the most important saturated FFAs, induced macrophage TNFα upexpression, but PF partially attenuated the effect. These results indicate that PF exhibits anti‐inflammatory properties by inhibiting the vicious cycle between adipocytes and macrophages. PF may be useful for ameliorating the inflammatory changes in obese adipose tissue. J. Cell. Biochem. 113: 2560–2566, 2012. © 2009 Wiley Periodicals, Inc.  相似文献   

14.
A role for glucagon-like peptide 1 (GLP-1) has been suggested in stimulating beta-cell lipolysis via elevation of cAMP and activation of protein kinase A, which in turn may activate hormone-sensitive lipase (HSL), thereby contributing to fatty acid generation (FFA) from intracellular triglyceride stores. FFAs may then be metabolized to a lipid signal, which is required for optimal glucose-stimulated insulin secretion. Since HSL is expressed in islet beta-cells, this effect could contribute to the stimulation of insulin secretion by GLP-1, provided that a lipid signal of importance for insulin secretion is generated. To examine this hypothesis, we have studied the acute effect of GLP-1 on isolated mouse islets from normal mice and from mice with high-fat diet induced insulin resistance. We found, however, that although GLP-1 (100 nM) markedly potentiated glucose-stimulated insulin secretion from islets of both feeding groups, the peptide was not able to stimulate islet palmitate oxidation or increase lipolysis measured as glycerol release. This indicates that a lipid signal does not contribute to the acute stimulation of insulin secretion by GLP-1. To test whether lipolysis might be involved in the islet effects of long-term GLP-1 action, mice from the two feeding groups were chronically treated with exendin-4, a peptide that lowers blood glucose by interacting with GLP-1 receptors, in order to stimulate insulin secretion, for 16 days before isolation of the islets. The insulinotropic effects of GLP-1 and forskolin were exaggerated in isolated islets from exendin-4 treated mice given a high-fat diet, with a augmented palmitate oxidation as well as islet lipolysis at high glucose levels in these islets. Exendin-4 treatment had less impact on mice fed a normal diet. From these results we conclude that while GLP-1 does not seem to induce beta-cell lipolysis acutely in mouse islets, the peptide affects beta-cell fat metabolism after long-term adaptation to GLP-1 receptor stimulation.  相似文献   

15.
16.
17.
18.
Our previous work identified a genetic mutation in the gene encoding angiopoietin-like protein 3 (Angptl3) in KK/Snk mice (previously KK/San), a mutant strain of KK obese mice. KK/Snk had significantly lower plasma triglyceride and free fatty acid (FFA) than KK mice. Human ANGPTL3 treatment increased both plasma triglyceride and FFA. ANGPTL3 inhibited the activity of lipoprotein lipase, which accounted for the increase of plasma triglyceride. The mechanism how ANGPTL3 affects plasma FFA has not been known. The current study reveals that ANGPTL3 targets on adipose cells and induces lipolysis. Both plasma FFA and glycerol decreased in KK/Snk and increased by the treatment of human ANGPTL3. Specific bindings of ANGPTL3 to adipose cells were shown using fluorescence-labeled protein visually and 125I-labeled protein by the binding analysis. Furthermore, ANGPTL3 activated the lipolysis to stimulate the release of FFA and glycerol from adipocytes. We conclude that ANGPTL3 is a liver-derived lipolytic factor targeting on adipocyte.  相似文献   

19.
雌激素受体关联受体α 调节脂肪细胞甘油三酯分解   总被引:2,自引:0,他引:2  
雌激素受体关联受体a (Estrogen-related receptor a,ERRα) 是调控机体能量代谢的关键转录调控因子,也是脂肪生成的关键调控者。为研究ERRα对脂肪细胞甘油三酯分解的影响及其分子机制,分化的猪脂肪细胞在PKA (Protein kinase A) 或/和ERK (Extracellular signal-related kinase) 抑制剂预处理和不处理的情况下,再用Ad-ERRα侵染或XCT790处理48 h。通过测定脂肪细胞中甘油三酯浓度和培养液中的甘油释放量分析脂肪细胞的脂解变化;Western blotting方法检测PPARγ (Peroxisome proliferator-activated receptor γ,PPARγ)、perilipin A、p-perilipin A、HSL (Hormone sensitive lipase,HSL) 和ATGL (Adipose triglyceride lipase,ATGL) 蛋白表达。结果显示,ERRα显著促进猪脂肪细胞分化及甘油三酯积累,同时促进了甘油三酯水解;分别及同时阻断PKA和ERK通路并不影响ERRα对脂肪细胞甘油释放的促进作用;ERRα显著上调HSL、ATGL、PPARγ及perilipin A蛋白表达,但p-perilipin A水平并未发生变化。推测过量表达ERRα可能导致HSL和ATGL蛋白表达上调并促进甘油三酯水解,从而为脂肪细胞分化提供更多的游离脂肪酸 (Free fat acid,FFA) 作为甘油三酯合成周转的底物。  相似文献   

20.
Insulin receptor substrate (IRS) has been suggested as a molecular target of free fatty acids (FFAs) for insulin resistance. However, the signaling pathways by which FFAs lead to the inhibition of IRS function remain to be established. In this study, we explored the FFA-signaling pathway that contributes to serine phosphorylation and degradation of IRS-1 in adipocytes and in dietary obese mice. Linoleic acid, an FFA used in this study, resulted in a reduction in insulin-induced glucose uptake in 3T3-L1 adipocytes. This mimics insulin resistance induced by high-fat diet in C57BL/6J mice. The reduction in glucose uptake is associated with a decrease in IRS-1, but not IRS-2 or GLUT4 protein abundance. Decrease in IRS-1 protein was proceeded by IRS-1 (serine 307) phosphorylation that was catalyzed by serine kinases inhibitor kappaB kinase (IKK) and c-JUN NH2-terminal kinase (JNK). IKK and JNK were activated by linoleic acid and inhibition of the two kinases led to prevention of IRS-1 reduction. We demonstrate that protein kinase C (PKC) theta is expressed in adipocytes. In 3T3-L1 adipocytes and fat tissue, PKCtheta was activated by fatty acids as indicated by its phosphorylation status, and by its protein level, respectively. Activation of PKCtheta contributes to IKK and JNK activation as inhibition of PKCtheta by calphostin C blocked activation of the latter kinases. Inhibition of either PKCtheta or IKK plus JNK by chemical inhibitors resulted in protection of IRS-1 function and insulin sensitivity in 3T3-L1 adipocytes. These data suggest that: 1) activation of PKCtheta contributes to IKK and JNK activation by FFAs; 2) IKK and JNK mediate PKCtheta signals for IRS-1 serine phosphorylation and degradation; and 3) this molecular mechanism may be responsible for insulin resistance associated with hyperlipidemia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号