首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
INTRODUCTION: Tumor necrosis factor-alpha (TNFalpha) is a major mediator of insulin resistance. On the other hand, it has been suggested that TNFalpha may facilitate glucose uptake through GLUT 1 expression. We recently found that physical exercise prevented the progression to type 2 diabetes mellitus in diabetes prone Psammomys obesus (sand rat). AIM: The aim of the present study was to characterize the influence of physical exercise on the expression of TNFalpha, its receptor R1 and GLUT 1 in muscle tissue of this animal model. METHODS: Animals were assigned for 4 weeks to four groups: high-energy diet (HC), high-energy diet and exercise (HE), low-energy diet (LC), low-energy diet and exercise (LE). TNFalpha, R1 and GLUT 1 expression were analyzed using Western blot technique. RESULTS: None of the animals in the HE group became diabetic while all the animals in the HC group became diabetic. TNFalpha, its receptor (R1) and GLUT 1 expressions were significantly higher in the two exercising groups (LE and HE) and significantly lower in the HC group compared to the control LC group. CONCLUSIONS: Physical exercise augments the expression of TNFalpha, its receptor R1 and the glucose transporter GLUT 1 in muscle tissue. We suggest that this mechanism may improve glucose uptake through pathways parallel and unrelated to insulin signaling that may include MAPK and/or NO. These biochemical processes contribute to the beneficial effects of physical exercise on the prevention of type 2 diabetes mellitus.  相似文献   

2.
Animal models for insulin resistance and type 2 diabetes are required for the study of the mechanism of these phenomena and for a better understanding of diabetes complications in human populations. Type 2 diabetes is a syndrome that affects 5-10% of the adult population. Hyperinsulinaemia, hypertriglyceridaemia, decreased high-density lipoprotein (HDL) cholesterol levels, obesity and hypertension, all form a cluster of risk factors that increase the risk of coronary artery disease, and are known as insulin resistance syndrome or syndrome X. The gerbil, Psammomys obesus is characterized by primary insulin resistance and is a well-defined model for dietary induced type 2 diabetes. Weanling Psammomys and Albino rats were held individually for several weeks on high energy (HE) and low energy (LE) diets in order to determine the development of metabolic changes leading to diabetes. Feeding Psammomys on HE diet resulted in hyperglycaemia (303 +/- 40 mg/dl), hyperinsulinaemia (194 +/- 31 microU/ml) and a moderate elevation in body weight, obesity and plasma triglycerides. Albino rats on HE diet demonstrated an elevation in plasma insulin (30 +/- 4 microU/ml), hypertriglyceridaemia (170 +/- 11 mg/dl), an elevation in body weight and obesity, but maintained normoglycaemia (98 +/- 6 mg/dl). Psammomys represent a model that is similar to human populations, with primary insulin resistance expressed in young age, which leads to a high percentage of adult type 2 diabetes. Examples for such populations are the Pima Indians, Australian Aborigines and many other Third World populations. The results indicate that the metabolism of Psammomys is well adapted towards life in a low energy environment, where Psammomys takes advantage of its capacity for a constant accumulation of adipose tissue that will serve for maintenance and breeding in periods of scarcity. This metabolism known as 'thrifty metabolism', is compromised at a high nutrient intake.  相似文献   

3.
Albert Renold strived to gain insight into the abnormalities of human diabetes by defining the pathophysiology of the disease peculiar to a given animal. He investigated the Israeli desert-derived spiny mice (Acomys cahirinus), which became obese on fat-rich seed diet. After a few months hyperplasia and hypertrophy of β-cells occurred leading to a sudden rupture, insulin loss and ketosis. Spiny mice were low insulin responders, which is probably a characteristic of certain desert animals, protecting against insulin oversecretion when placed on an abundant diet. We have compared the response to overstimulation of several mutant diabetic species and nutritionally induced nonmutant animals when placed on affluent diet. Some endowed with resilient β-cells sustain long-lasting oversecretion, compensating for the insulin resistance, without lapsing into overt diabetes. Some with labile beta cells exhibit apoptosis and lose their capacity of coping with insulin resistance after a relatively short period. The wide spectrum of response to insulin resistance among different diabetes prone species seems to represent the varying response of human beta cells among the populations. In search for the molecular background of insulin resistance resulting from overnutrition we have studied the Israeli desert gerbil Psammomys obesus (sand rat), which progresses through hyperinsulinemia, followed by hyperglycemia and irreversible beta cell loss. Insulin resistance was found to be the outcome of reduced activation of muscle insulin receptor tyrosine kinase by insulin, in association with diminished GLUT4 protein and DNA content and overexpression of PKC isoenzymes, notably of PKCε. This overexpression and translocation to the membrane was discernible even prior to hyperinsulinemia and may reflect the propensity to diabetes in nondiabetic species and represent a marker for preventive action. By promoting the phosphorylation of serine/threonine residues on certain proteins of the insulin signaling pathway, PKCε exerts a negative feedback on insulin action. PKCε was also found to attenuate the activity of PKB and to promote the degradation of insulin receptor, as determined by co-incubation in HEK 293 cells. PKCε overexpression was related to the rise in muscle diacylglycerol and lipid content, which are prevalent on lascivious nutrition especially if fat-rich. Thus, Psammomys illustrates the probable antecedents of the development of worldwide diabetes epidemic in human populations emerging from food scarcity to nutritional affluence, inappriopriate to their metabolic capacity.  相似文献   

4.
Fucoxanthin (Fx) isolated from Undaria pinnatifida suppresses the development of hyperglycemia and hyperinsulinemia of diabetic/obese KK-A(y) mice after 2 weeks of feeding 0.2% Fx-containing diet. In the soleus muscle of KK-A(y) mice that were fed Fx, glucose transporter 4 (GLUT4) translocation to plasma membranes from cytosol was promoted. On the other hand, Fx increased GLUT4 expression levels in the extensor digitorum longus (EDL) muscle, although GLUT4 translocation tended to increase. The expression levels of insulin receptor (IR) mRNA and phosphorylation of Akt, which are in upstream of the insulin signaling pathway regulating GLUT4 translocation, were also enhanced in the soleus and EDL muscles of the mice fed Fx. Furthermore, Fx induced peroxisome proliferator activated receptor γ coactivator-1α (PGC-1α), which has been reported to increase GLUT4 expression, in both soleus and EDL muscles. These results suggest that in diabetic/obese KK-A(y) mice, Fx improves hyperglycemia by activating the insulin signaling pathway, including GLUT4 translocation, and inducing GLUT4 expression in the soleus and EDL muscles, respectively, of diabetic/obese KK-A(y) mice.  相似文献   

5.
Insulin resistance is a major pathologic feature of human obesity and diabetes. Understanding the fundamental mechanisms underlying this insulin resistance has been advanced by the recent cloning of the genes encoding a family of facilitated diffusion glucose transporters which are expressed in characteristic patterns in mammalian tissues. Two of these transporters, GLUT1 and GLUT4, are present in muscle and adipose cells, tissues in which glucose transport is markedly stimulated by insulin. To understand the mechanisms underlying in vivo insulin resistance, regulation of these transporters is being investigated. Studies reveal divergent changes in the expression of GLUT1 and GLUT4 in a single cell type as well as tissue specific regulation. Importantly, alterations in glucose transport in rodent models of diabetes and in human obesity and diabetes cannot be entirely explained by changes in glucose transporter expression. This suggests that defects in glucose transporter function such as impaired translocation, fusion with the plasma membrane, or activation probably contribute importantly to in vivo insulin resistance.  相似文献   

6.
The current study was aimed to study the effect of curcumin on the expression levels of brain glucose transporter 1 protein (GLUT1) and femoral muscle glucose transporter 4 protein (GLUT4), in addition to study its possible therapeutic role in ameliorating insulin resistance and the metabolic disturbance in the obese and type 2 diabetic male albino Wistar rat model. Diabetes was induced by a high-fat (HF) diet with low dose streptozotocin (STZ). Curcumin was administered intragastrically for 8 weeks (80 mg/kg BW/day). The HF-diet group developed obesity, hyperglycemia, hyperinsulinemia, reduced liver glycogen content with significant dyslipidemia. In the diabetic control group, hyperglycemia and insulin resistance high calculated homeostasis model assessment (HOMA-IR-index score) were pronounced, with reductions in liver and muscle glycogen contents, concomitant with dyslipidemia and significantly elevated malondialdehyde levels in liver and pancreas. GLUT1 and GLUT4 were down-regulated in the obese and the diabetic control groups, respectively. Curcumin, showed glucose-lowering effect and decreased insulin resistance, dyslipidemia and malondialdehyde levels in both tissues, it increased liver & muscle glycogen contents, compared to the diabetic control. Curcumin significantly up-regulated GLUT4 gene expression, compared to the diabetic control group. In conclusions, these results indicate a therapeutic role of curcumin in improving the diabetic status, obesity and enhancing the expression of GLUT4 gene.  相似文献   

7.
Molecular target structures in alloxan-induced diabetes in mice   总被引:4,自引:0,他引:4  
Type 1 diabetes results from irreversible damage of insulin-producing beta-cells. In laboratory animals, diabetes can be induced with alloxan (ALX), a 2,4,5,6-tetraoxopyrimidine. ALX is a potent generator of reactive oxygen species (ROS), which can mediate beta-cell toxicity. However, the initial lesions on essential beta-cell structures are not known. In this study, we report that the glucose transporter 2 (GLUT2) and glucokinase (GK) are target molecules for ALX. Ex vivo, a gradual decrement of both GLUT2 and GK mRNA expression was found in islets isolated from ALX-treated C57BL/6 mice. This reduction was more pronounced for GLUT2 than for GK. The mRNA expression of beta-actin was also slightly affected with time after ALX exposure, the proinsulin mRNA, however, remained unaffected as well as the pancreatic total insulin content. Pretreatment with D-glucose (D-G) protected the mRNA expression of GLUT2 and GK against ALX toxicity and prevented diabetes. Yet, in these euglycemic mice, an impaired oral glucose tolerance persisted. Pretreatment with 5-thio-D-glucose (5-T-G) failed to prevent ALX diabetes, administration of zinc sulfate (Zn(2+))-enriched drinking water, however, reduced ALX-induced hyperglycemia. In conclusion, ALX exerted differential toxicity on beta-cell structures similar to in vitro results reported from this laboratory. Furthermore, the present results differ from those reported for the diabetogen streptozotocin (STZ). Injections of multiple low doses (MLD) of STZ reduced GLUT2 expression only, but failed to affect expression of GK and proinsulin as well as beta-actin as internal control. MLD-STZ diabetes was prevented by pretreatment with both D-G and 5-T-G and administration of Zn(2+)-enriched drinking water. Apparently, ALX and MLD-STZ exert diabetogenicity by different pathways requiring different interventional schedules for prevention.  相似文献   

8.
9.
The effect of insulin on [3H]oleate binding to delipidated liver cytosolic proteins was studied in four groups of animals: untreated rats, streptozotocin induced diabetic rats, Psammomys obesus fed salt bush diet, and Psammomys obesus fed ordinary laboratory chow. The distribution of the protein bound [3H]oleate between low and high molecular weight cytosolic proteins in Psammomys differed from the distribution found in rats. Diet induced high insulin diabetes in Psammomys and streptozotocin induced low insulin diabetes in rats, modulated [3H]oleate binding in the same manner.  相似文献   

10.
During insulin resistance, glucose homeostasis is maintained by an increase in plasma insulin via increased secretion and/or decreased first-pass hepatic insulin extraction. However, the relative importance of insulin secretion vs. clearance to compensate for insulin resistance in obesity has yet to be determined. This study utilizes the fat-fed dog model to examine longitudinal changes in insulin secretion and first-pass hepatic insulin extraction during development of obesity and insulin resistance. Six dogs were fed an isocaloric diet with an approximately 8% increase in fat calories for 12 wk and evaluated at weeks 0, 6, and 12 for changes in 1) insulin sensitivity by euglycemic-hyperinsulinemic clamp, 2) first-pass hepatic insulin extraction by direct assessment, and 3) glucose-stimulated insulin secretory response by hyperglycemic clamp. We found that 12 wk of a fat diet increased subcutaneous and visceral fat as assessed by MR imaging. Consistent with increased body fat, the dogs exhibited a approximately 30% decrease in insulin sensitivity and fasting hyperinsulinemia. Although insulin secretion was substantially increased at week 6, beta-cell sensitivity returned to prediet levels by week 12. However, peripheral hyperinsulinemia was maintained because of a significant decrease in first-pass hepatic insulin extraction, thus maintaining hyperinsulinemia, despite changes in insulin release. Our results indicate that when obesity and insulin resistance are induced by an isocaloric, increased-fat diet, an initial increase in insulin secretion by the beta-cells is followed by a decrease in first-pass hepatic insulin extraction. This may provide a secondary physiological mechanism to preserve pancreatic beta-cell function during insulin resistance.  相似文献   

11.
Insulin resistance impairs postprandial glucose uptake through glucose transporter type 4 (GLUT4) and is the primary defect preceding type 2 diabetes. We previously generated an insulin-resistant mouse model with human GLUT4 promoter-driven insulin receptor knockout (GIRKO) in the muscle, adipose, and neuronal subpopulations. However, the rate of diabetes in GIRKO mice remained low prior to 6 months of age on normal chow diet (NCD), suggesting that additional factors/mechanisms are responsible for adverse metabolic effects driving the ultimate progression of overt diabetes. In this study, we characterized the metabolic phenotypes of the adult GIRKO mice acutely switched to high-fat diet (HFD) feeding in order to identify additional metabolic challenges required for disease progression. Distinct from other diet-induced obesity (DIO) and genetic models (e.g., db/db mice), GIRKO mice remained leaner on HFD feeding, but developed other cardinal features of insulin resistance syndrome. GIRKO mice rapidly developed hyperglycemia despite compensatory increases in β-cell mass and hyperinsulinemia. Furthermore, GIRKO mice also had impaired oral glucose tolerance and a limited glucose-lowering benefit from exendin-4, suggesting that the blunted incretin effect contributed to hyperglycemia. Secondly, GIRKO mice manifested severe dyslipidemia while on HFD due to elevated hepatic lipid secretion, serum triglyceride concentration, and lipid droplet accumulation in hepatocytes. Thirdly, GIRKO mice on HFD had increased inflammatory cues in the gut, which were associated with the HFD-induced microbiome alterations and increased serum lipopolysaccharide (LPS). In conclusion, our studies identified important gene/diet interactions contributing to diabetes progression, which might be leveraged to develop more efficacious therapies.  相似文献   

12.
13.
Hyperglycemia and skeletal muscle insulin resistance coexist in uncontrolled type 2 diabetes mellitus. Similar defects in insulin action were observed in glucose-infused, normal rats, a model of glucose toxicity. In these rats insulin-stimulated glucose uptake by skeletal muscle was decreased due to a post-receptor defect. We investigated whether the impaired glucose uptake resulted from a decrease in the abundance of the predominant muscle glucose transporter (GLUT4) mRNA and/or protein. GLUT4 protein abundance in the hyperglycemic rats was not different from the control group despite a 50% decrease in muscle glucose uptake. GLUT4 mRNA abundance was 2.5-fold greater in the hyperglycemic rats as compared to the control animals. We conclude that the coexistence of hyperglycemia and hyperinsulinemia results in (1) a defect in GLUT4 compartmentalization and/or functional activity and (2) a divergence between GLUT4 mRNA levels and translation.  相似文献   

14.
Failure of pancreatic beta-cells is the common characteristic of type 1 and type 2 diabetes. Type 1 diabetes mellitus is induced by destruction of pancreatic beta-cells which is mediated by an autoimmune mechanism and consequent inflammatory process. Various inflammatory cytokines and oxidative stress are produced during this process, which has been proposed to play an important role in mediating beta-cell destruction. The JNK pathway is also activated by such cytokines and oxidative stress, and is involved in beta-cell destruction. Type 2 diabetes is the most prevalent and serious metabolic disease, and beta-cell dysfunction and insulin resistance are the hallmark of type 2 diabetes. Under diabetic conditions, chronic hyperglycemia gradually deteriorates beta-cell function and aggravates insulin resistance. This process is called "glucose toxicity". Under such conditions, oxidative stress is provoked and the JNK pathway is activated, which is likely involved in pancreatic beta-cells dysfunction and insulin resistance. In addition, oxidative stress and activation of the JNK pathway are also involved in the progression of atherosclerosis which is often observed under diabetic conditions. Taken together, it is likely that oxidative stress and subsequent activation of the JNK pathway are involved in the pathogenesis of type 1 and type 2 diabetes.  相似文献   

15.
In order to investigate the regulation of glucose transporter gene expression in the altered metabolic conditions of obesity and diabetes, we have measured mRNA levels encoding GLUT2 in the liver and GLUT4 in the gastrocnemius muscle from various insulin resistant animal models, including Zucker fatty, Wistar fatty, and streptozocin(STZ)-treated diabetic rats. Northern blot analysis revealed that GLUT2 mRNA levels were significantly (P less than 0.001) elevated in 14 wk Zucker fatty and Wistar fatty rats relative to lean littermates but were similar in these two groups at 5 wk of age. Furthermore, there was significant increase (P less than 0.01) in GLUT2 mRNA levels in STZ diabetic rats at 3 wk after treatment. GLUT4 mRNA levels were not significantly different between control and insulin resistant rats in all animal models. These results indicate that neither hyperinsulinemia nor hyperglycemia affects GLUT4 mRNA levels in the muscle. However, GLUT2 mRNA levels in the liver were elevated in obesity and diabetes, although this regulatory event occurred independently from circulating insulin or glucose concentrations.  相似文献   

16.
Backgrounds and aimsType 2 diabetes mellitus (T2D) is a chronic disease characterized by insulin resistance and hyperglycemia. To investigate T2D, genetic and chemical induced hyper-obese rodent models have been experimentally developed. However, establishment of moderate-obese diabetes model will confer diverse opportunities for translational studies. In this study, we found the chemical, GLUTFOURINH® (GFI), induces post-translational degradation of glucose transporter 4 (GLUT4). We aimed to establish novel diabetic model by using GFI.Methods and resultsLow plasma membrane GLUT4 (pmGLUT4) levels by GFI resulted in reduction of intracellular glucose uptake and TG, and increase of intracellular FFA in A204 cells. Likewise, GFI treatment decreased intracellular TG and increased intracellular FFA levels in Hep3B and 3T3-L1 cells. Mice were administered with GFI (16 mg/kg) for short-term (3-day) and long-term (28- and 31-day) to compared with vehicle injection, HFD model, and T2D model, respectively. Short-term and long-term GFI treatments induced hyperglycemia and hyperinsulinemia with low pmGLUT4 levels. Compared to HFD model, long-term GFI with HFD reduced adipose weight and intracellular TG accumulation, but increased plasma FFA. GFI treatment resulted in insulin resistance by showing low QUICKI and high HOMA-IR values, and low insulin response during insulin tolerance test. Additionally, low pmGLUT4 by GFI heightened hyperglycemia, hyperinsulinemia, and insulin resistance compared to T2D model.ConclusionsIn summary, we report GLUT4 degradation by novel chemical (GFI) induces moderate-obese diabetes representing hyperglycemia, insulin resistance and low intracellular lipid accumulation. The GLUT4 degradation by GFI has translational value for studying diseases related to moderate-obese diabetes.  相似文献   

17.
Derangements in skeletal muscle fatty acid (FA) metabolism associated with insulin resistance in obesity appear to involve decreased FA oxidation and increased accumulation of lipids such as ceramides and diacylglycerol (DAG). We investigated potential lipid-related mechanisms of metformin (Met) and/or exercise for blunting the progression of hyperglycemia/hyperinsulinemia and skeletal muscle insulin resistance in female Zucker diabetic fatty rats (ZDF), a high-fat (HF) diet-induced model of diabetes. Lean and ZDF rats consumed control or HF diet (48 kcal %fat) alone or with Met (500 mg/kg), with treadmill exercise, or with both exercise and Met interventions for 8 wk. HF-fed ZDF rats developed hyperglycemia (mean: 24.4 +/- 2.1 mM), impairments in muscle insulin-stimulated glucose transport, increases in the FA transporter FAT/CD36, and increases in total ceramide and DAG content. The development of hyperglycemia was significantly attenuated with all interventions, as was skeletal muscle FAT/CD36 abundance and ceramide and DAG content. Interestingly, improvements in insulin-stimulated glucose transport and increased GLUT4 transporter expression in isolated muscle were seen only in conditions that included exercise training. Reduced FA oxidation and increased triacylglycerol synthesis in isolated muscle were observed with all ZDF rats compared with lean rats (P < 0.01) and were unaltered by therapeutic intervention. However, exercise did induce modest increases in peroxisome proliferator-activated receptor-gamma coactivator-1alpha, citrate synthase, and beta-hydroxyacyl-CoA dehydrogenase activity. Thus reduction of skeletal muscle FAT/CD36 and content of ceramide and DAG may be important mechanisms by which exercise training blunts the progression of diet-induced insulin resistance in skeletal muscle.  相似文献   

18.
Type 2 diabetes is characterized by both peripheral insulin resistance and reduced insulin secretion by beta-cells. The reasons for beta-cell dysfunction in this disease are incompletely understood but may include the accumulation of toxic lipids within this cell type. We examined the role of Abca1, a cellular cholesterol transporter, in cholesterol homeostasis and insulin secretion in beta-cells. Mice with specific inactivation of Abca1 in beta-cells had markedly impaired glucose tolerance and defective insulin secretion but normal insulin sensitivity. Islets isolated from these mice showed altered cholesterol homeostasis and impaired insulin secretion in vitro. We found that rosiglitazone, an activator of the peroxisome proliferator-activated receptor-gamma, which upregulates Abca1 in beta-cells, requires beta-cell Abca1 for its beneficial effects on glucose tolerance. These experiments establish a new role for Abca1 in beta-cell cholesterol homeostasis and insulin secretion, and suggest that cholesterol accumulation may contribute to beta-cell dysfunction in type 2 diabetes.  相似文献   

19.
Although insulin resistance has been traditionally associated with type 2 diabetes, recent evidence in humans and animal models indicates that insulin resistance may also develop in type 1 diabetes. A point mutation of insulin 2 gene in Ins2(Akita) mice leads to pancreatic beta-cell apoptosis and hyperglycemia, and these mice are commonly used to investigate type 1 diabetes and complications. Since insulin resistance plays an important role in diabetic complications, we performed hyperinsulinemic-euglycemic clamps in awake Ins2(Akita) and wild-type mice to measure insulin action and glucose metabolism in vivo. Nonobese Ins2(Akita) mice developed insulin resistance, as indicated by an approximately 80% reduction in glucose infusion rate during clamps. Insulin resistance was due to approximately 50% decreases in glucose uptake in skeletal muscle and brown adipose tissue as well as hepatic insulin action. Skeletal muscle insulin resistance was associated with a 40% reduction in total GLUT4 and a threefold increase in PKCepsilon levels in Ins2(Akita) mice. Chronic phloridzin treatment lowered systemic glucose levels and normalized muscle insulin action, GLUT4 and PKCepsilon levels in Ins2(Akita) mice, indicating that hyperglycemia plays a role in insulin resistance. Echocardiography showed significant cardiac remodeling with ventricular hypertrophy that was ameliorated following chronic phloridzin treatment in Ins2(Akita) mice. Overall, we report for the first time that nonobese, insulin-deficient Ins2(Akita) mice develop type 2 diabetes phenotypes including peripheral and hepatic insulin resistance and cardiac remodeling. Our findings provide important insights into the pathogenesis of metabolic abnormalities and complications affecting type 1 diabetes and lean type 2 diabetes subjects.  相似文献   

20.
We previously reported that insulin receptor substrate-2 (IRS-2)-deficient mice develop diabetes as a result of insulin resistance in the liver and failure of beta-cell hyperplasia. In this study we introduced the IRS-2 gene specifically into the liver of Irs2(-/-) mice with adenovirus vectors. Glucose tolerance tests revealed that the IRS-2 restoration in the liver ameliorated the hyperglycemia, but the improvement in hyperinsulinemia was only partial. Endogenous glucose production (EGP) and the rate of glucose disappearance (Rd) were measured during hyperinsulinemic-euglycemic clamp studies: EGP was increased 2-fold in the Irs2(-/-) mice, while Rd decreased by 50%. Restoration of IRS-2 in the liver suppressed EGP to a level similar to that in wild-type mice, but Rd remained decreased in the Adeno-IRS-2-infected Irs2(-/-) mice. Irs2(-/-) mice also exhibit obesity and hyperleptinemia associated with impairment of hypothalamic phosphatidylinositol 3-kinase activation. Continuous intracerebroventricular leptin infusion or caloric restriction yielded Irs2(-/-) mice whose adiposity was comparable to that of Irs2(+/+) mice, and both the hyperglycemia and the hyperinsulinemia of these mice improved with increased Rd albeit partially. Finally combination treatment consisting of adenovirus-mediated gene transfer of IRS-2 and continuous intracerebroventricular leptin infusion completely reversed the hyperglycemia and hyperinsulinemia in Irs2(-/-) mice. EGP and Rd also became normal in these mice as well as in mice treated by caloric restriction plus adenoviral gene transfer. We therefore concluded that a combination of increased EGP due to insulin signaling defects in the liver and reduced Rd due to obesity accounts for the systemic insulin resistance in Irs2(-/-) mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号