首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Block P  Weskamp N  Wolf A  Klebe G 《Proteins》2007,68(1):170-186
Since protein-protein interactions play a pivotal role in the communication on the molecular level in virtually every biological system and process, the search and design for modulators of such interactions is of utmost importance. In recent years many inhibitors for specific protein-protein interactions have been developed, however, in only a few cases, small and druglike molecules are able to interfere in the complex formation of proteins. On the other hand, there are several small molecules known to modulate protein-protein interactions by means of stabilizing an already assembled complex. To achieve this goal, a ligand is binding to a pocket, which is located rim-exposed at the interface of the interacting proteins, for example as the phytotoxin Fusicoccin, which stabilizes the interaction of plant H+-ATPase and 14-3-3 protein by nearly a factor of 100. To suggest alternative leads, we performed a virtual screening campaign to discover new molecules putatively stabilizing this complex. Furthermore, we screen a dataset of 198 transient recognition protein-protein complexes for cavities, which are located rim-exposed at their interfaces. We provide evidence for high similarity between such rim-exposed cavities and usual ligands accommodating active sites of enzymes. This analysis suggests that rim-exposed cavities at protein-protein interfaces are druggable binding sites. Therefore, the principle of stabilizing protein-protein interactions seems to be a promising alternative to the approach of the competitive inhibition of such interactions by small molecules.  相似文献   

2.
Optimization of surface exposed charge-charge interactions in the native state has emerged as an effective means to enhance protein stability; but the effect of electrostatic interactions on the kinetics of protein folding is not well understood. To investigate the kinetic consequences of surface charge optimization, we characterized the folding kinetics of a Fyn SH3 domain variant containing five amino acid substitutions that was computationally designed to optimize surface charge-charge interactions. Our results demonstrate that this optimized Fyn SH3 domain is stabilized primarily through an eight-fold acceleration in the folding rate. Analyses of the constituent single amino acid substitutions indicate that the effects of optimization of charge-charge interactions on folding rate are additive. This is in contrast to the trend seen in folded state stability, and suggests that electrostatic interactions are less specific in the transition state compared to the folded state. Simulations of the transition state using a coarse-grained chain model show that native electrostatic contacts are weakly formed, thereby making the transition state conducive to nonspecific, or even nonnative, electrostatic interactions. Because folding from the unfolded state to the folding transition state for small proteins is accompanied by an increase in charge density, nonspecific electrostatic interactions, that is, generic charge density effects can have a significant contribution to the kinetics of protein folding. Thus, the interpretation of the effects of amino acid substitutions at surface charged positions may be complicated and consideration of only native-state interactions may fail to provide an adequate picture.  相似文献   

3.
To examine the interactions between Src homology,domains and the tyrosine kinase catalytic domain of v-Src, various combinations of domains have been expressed in bacteria as fusion proteins. Constructs containing the isolated catalytic domain, SH2 + catalytic domain, and SH3 + SH2 + catalytic domains were active in autophosphorylation assays. For the catalytic domain of v-Src, but not for v-Abl, addition of exogenous Src SH3-SH2 domains stimulated the autophosphorylation activity. In contrast to results for autophosphorylation, constructs containing Src homology domains were more active towards a synthetic peptide substrate than the isolated catalytic domain. The ability of the SH2 and SH3 domains of v-Src to stabilize an active enzyme conformation was also confirmed by refolding after denaturation in guanidinium hydrochloride. Collectively the data suggest that, in addition to their roles in intermolecular protein-protein interactions, the Src homology regions of v-Src exert a positive influence on tyrosine kinase function, potentially by maintaining an active conformation of the catalytic domain.  相似文献   

4.
Multidomain proteins account for over two-thirds of the eukaryotic genome. Although there have been extensive studies into the biophysical properties of isolated domains, few have investigated how the domains interact. Spectrin is a well-characterized multidomain protein with domains linked in tandem array by contiguous helices. Several of these domains have been shown to be stabilized by their neighbors. Until now, this stabilization has been attributed to specific interactions between the natural neighbors, however we have recently observed that nonnatural neighboring domains can also induce a significant amount of stabilization. Here we investigate this nonnative stabilizing effect. We created spectrin-titin domain pairs of both spectrin R16 and R17 with a single titin I27 domain at either the N- or the C-terminus and found that spectrin domains are significantly stabilized, through slowed unfolding, by nonnative interactions at the C-terminus only. Of particular importance, we show that specific interactions between natural folded neighbors at either terminus confer even greater stability by additionally increasing the folding rate constants. We demonstrate that it is possible to distinguish between natural stabilizing interactions and nonspecific stabilizing effects through examination of the kinetics of well chosen mutant proteins. This work adds to the complexity of studying multidomain proteins.  相似文献   

5.
The ability of certain Src homology 3 (SH3) domains to bind specifically both type I and type II polyproline ligands is perhaps the best characterized, but also the worst understood, example in the family of protein-interaction modules. A detailed analysis of the structural variations in SH3 domains, with respect to ligand-binding specificity, together with mutagenesis of SH3 Fyn tyrosine kinase, reveal the structural basis for types I and II binding specificity by SH3 domains. The conserved Trp in the SH3 binding pocket can adopt two different orientations that, in turn, determine the type of ligand (I or II) able to bind to the domain. The only exceptions are ligands with Leu at positions P(-1) and P(2), that deviate from standard poly-Pro angles. The motion of the conserved Trp depends on the presence of certain residues located in a key position (132 for Fyn), near the binding pocket. SH3 domains placing aromatic residues in this key position are promiscuous. By contrast, those presenting beta-branched or long aliphatic residues block the conserved Trp in one of the two possible orientations, preventing binding in a type I orientation. This is experimentally demonstrated by a single mutation in Fyn SH3 (Y132I) that abolishes type I ligand binding, while preserving binding to type II ligands. Thus, simple conformational changes, governed by simple rules, can have profound effects on protein-protein interactions, highlighting the importance of structural details to predict protein-protein interactions.  相似文献   

6.
Src homology-3 (SH3) domains mediate important protein-protein interactions in a variety of normal and pathological cellular processes, thus providing an attractive target for the selective interference of SH3-dependent signaling events that govern these processes. Most SH3 domains recognize proline-rich peptides with low affinity and poor selectivity, and the goal to design potent and specific ligands for various SH3 domains remains elusive. Better understanding of the molecular basis for SH3 domain recognition is needed in order to design such ligands with potency and specificity. In this report, we seek to define a clear recognition preference of the specificity pocket of the Abl SH3 domain using targeted synthetic peptide libraries. High-resolution affinity panning coupled with mass spectrometric readout allows for quick identification of Trp as the preferred fourth residue in the decapeptide ligand APTWSPPPPP, which binds to Abl SH3 four times stronger than does the decapeptide containing Tyr or Phe in the fourth position. This finding is in contrast to several reports that Tyr is the only residue selected from phage displayed peptide libraries that interacts with the specificity pocket of Abl SH3. This simple, unbiased approach can fine-tune the affinity and selectivity of both natural and unnatural SH3 ligands whose consensus binding sequence has been pre-defined by combinatorial library methods.  相似文献   

7.
We have characterized the thermodynamic stability of the SH3 domain from the Saccharomyces cerevisiae Abp1p protein and found it to be relatively low compared to most other SH3 domains, with a Tm of 60 degrees C and a deltaGu of 3.08 kcal/mol. Analysis of a large alignment of SH3 domains led to the identification of atypical residues at eight positions in the wild-type Abp1p SH3 domain sequence that were subsequently replaced by the residue seen most frequently at that position in the alignment. Three of the eight mutants constructed in this way displayed increases in Tm ranging from 8 to 15 degrees C with concomitant increases in deltaGu of up to 1.4 kcal/mol. The effects of these substitutions on folding thermodynamics and kinetics were entirely additive, and a mutant containing all three was dramatically stabilized with a Tm greater than 90 degrees C and a deltaGu more than double that of the wild-type domain. The folding rate of this hyperstable mutant was 10-fold faster than wild-type, while its unfolding rate was fivefold slower. All of the stabilized mutants were still able to bind a target peptide with wild-type affinity. We have analyzed the stabilizing amino acid substitutions isolated in this study and several other similar sequence alignment based studies. In approximately 25% of cases, increased stability can be explained by enhanced propensity of the substituted residue for the local backbone conformation at the mutagenized site.  相似文献   

8.
Src homology 2 (SH2) domains mediate phosphotyrosine (pY)-dependent protein:protein interactions involved in signal transduction pathways. We have found that the SH2 domains of the 85-kDa alpha subunit (p85) of phosphatidylinositol 3-kinase (PI3 kinase) bind directly to the serine/threonine kinase A-Raf. In this report we show that the p85 SH2:A-Raf interaction is phosphorylation-independent. The affinity of the p85 C-SH2 domain for A-Raf and phosphopeptide pY751 was similar, raising the possibility that a p85:A-Raf complex may play a role in the coordinated regulation of the PI3 kinase and Raf-MAP kinase pathways. We further show that the p85 C-SH2 domain contains two distinct binding sites for A-Raf; one overlapping the phosphotyrosine-dependent binding site and the other a separate phosphorylation-independent site. This is the first evidence for a second binding site on an SH2 domain, distinct from the phosphotyrosine-binding pocket.  相似文献   

9.
Human gammaD crystallin (HgammaD-Crys), a major protein of the human eye lens, is a primary component of cataracts. This 174-residue primarily beta-sheet protein is made up of four Greek keys separated into two domains. Mutations in the human gene sequence encoding HgammaD-Crys are implicated in early-onset cataracts in children, and the mutant protein expressed in Escherichia coli exhibits properties that reflect the in vivo pathology. We have characterized the unfolding, refolding, and competing aggregation of human wild-type HgammaD-Crys as a function of guanidinium hydrochloride (GuHCl) concentration at neutral pH and 37 degrees C, using intrinsic tryptophan fluorescence to monitor in vitro folding. Wild-type HgammaD-Crys exhibited reversible refolding above 1.0 M GuHCl. The GuHCl unfolded protein was more fluorescent than its native counterpart despite the absence of metal or ion-tryptophan interactions. Aggregation of refolding intermediates of HgammaD-Crys was observed in both equilibrium and kinetic refolding processes. The aggregation pathway competed with productive refolding at denaturant concentrations below 1.0 M GuHCl, beyond the major conformational transition region. Atomic force microscopy of samples under aggregating conditions revealed the sequential appearance of small nuclei, thin protofibrils, and fiber bundles. The HgammaD-Crys fibrous aggregate species bound bisANS appreciably, indicating the presence of exposed hydrophobic pockets. The mechanism of HgammaD-Crys aggregation may provide clues to understanding age-onset cataract formation in vivo.  相似文献   

10.
Src homology 3 (SH3) domains are small non-catalytic protein modules capable of mediating protein-protein interactions by binding to proline-X-X-proline (P-X-X-P) motifs. Here we demonstrate that the SH3 domain of the integral peroxisomal membrane protein Pex13p is able to bind two proteins, one of which, Pex5p, represents a novel non-P-X-X-P ligand. Using alanine scanning, two-hybrid and in vitro interaction analysis, we show that an alpha-helical element in Pex5p is necessary and sufficient for SH3 interaction. Sup pressor analysis using Pex5p mutants located in this alpha-helical element allowed the identification of a unique site of interaction for Pex5p on the Pex13p-SH3 domain that is distinct from the classical P-X-X-P binding pocket. On the basis of a structural model of the Pex13p-SH3 domain we show that this interaction probably takes place between the RT- and distal loops. Thus, the Pex13p-SH3-Pex5p interaction establishes a novel mode of SH3 interaction.  相似文献   

11.
The SH3 domain folding transition state structure contains two well-ordered turn regions, known as the diverging turn and the distal loop. In the Src SH3 domain transition state, these regions are stabilized by a hydrogen bond between Glu30 in the diverging turn and Ser47 in the distal loop. We have examined the effects on folding kinetics of amino acid substitutions at the homologous positions (Glu24 and Ser41) in the Fyn SH3 domain. In contrast to most other folding kinetics studies which have focused primarily on non-disruptive substitutions with Ala or Gly, here we have examined the effects of substitutions with diverse amino acid residues. Using this approach, we demonstrate that the transition state structure is generally tolerant to amino acid substitutions. We also uncover a unique role for Ser at position 41 in facilitating folding of the distal loop, which can only be replicated by Asp at the same position. Both these residues appear to accelerate folding through the formation of short-range side-chain to backbone hydrogen bonds. The folding of the diverging turn region is shown to be driven primarily by local interactions. The diverging turn and distal loop regions are found to interact in the transition state structure, but only in the context of particular mutant backgrounds. This work demonstrates that studying the effects of a variety of amino acid substitutions on protein folding kinetics can provide unique insights into folding mechanisms which cannot be obtained by standard Phi value analysis.  相似文献   

12.
High-throughput screening of protein-protein and protein-peptide interactions is of high interest both for biotechnological and pharmacological applications. Here, we propose the use of the noncoded amino acids o-nitrotyrosine and p-iodophenylalanine as spectroscopic probes in combination with circular dichroism and fluorescence quenching techniques (i.e., collisional quenching and resonance energy transfer) as a means to determine the peptide orientation in complexes with SH3 domains. Proline-rich peptides bind SH3 modules in two alternative orientations, according to their sequence motifs, classified as class I and class II. The method was tested on an SH3 domain from a yeast myosin that is known to recognize specifically class I peptides. We exploited the fluorescence quenching effects induced by o-nitrotyrosine and p-iodophenylalanine on the fluorescence signal of a highly conserved Trp residue, which is the signature of SH3 domains and sits directly in the binding pocket. In particular, we studied how the introduction of the two probes at different positions of the peptide sequence (i.e., N-terminally or C-terminally) influences the spectroscopic properties of the complex. This approach provides clear-cut evidence of the orientation of the binding peptide in the SH3 pocket. The chemical strategy outlined here can be easily extended to other protein modules, known to bind linear sequence motifs in a highly directional manner.  相似文献   

13.
Myosins play essential roles in migration, cytokinesis, endocytosis, and adhesion. They are composed of a large N-terminal motor domain with ATPase and actin binding sites and C-terminal neck and tail regions, whose functional roles and structural context in the protein are less well characterized. The tail regions of myosins I, IV, VII, XII, and XV each contain a putative SH3 domain that may be involved in protein-protein interactions. SH3 domains are reported to bind proline-rich motifs, especially "PxxP" sequences, and such interactions serve regulatory functions. The activity of Src, PI3, and Itk kinases, for example, is regulated by intramolecular interactions between their SH3 domain and internal proline-rich sequences. Here, we use NMR spectroscopy to reveal the structure of a protein construct from Dictyostelium myosin VII (DdM7) spanning A1620-T1706, which contains its SH3 domain and adjacent proline-rich region. The SH3 domain forms the signature beta-barrel architecture found in other SH3 domains, with conserved tryptophan and tyrosine residues forming a hydrophobic pocket known to bind "PxxP" motifs. In addition, acidic residues in the RT or n-Src loops are available to interact with the basic anchoring residues that are typically found in ligands or proteins that bind SH3 domains. The DdM7 SH3 differs in the hydrophobicity of the second pocket formed by the 3(10) helix and following beta-strand, which contains polar rather than hydrophobic side chains. Most unusual, however, is that this domain binds its adjacent proline-rich region at a surface remote from the region previously identified to bind "PxxP" motifs. The interaction may affect the orientation of the tail without sacrificing the availability of the canonical "PxxP"-binding surface.  相似文献   

14.
Structural database-derived propensities for amino acids to adopt particular local protein structures, such as alpha-helix and beta-strand, have long been recognized and effectively exploited for the prediction of protein secondary structure. However, the experimental verification of database-derived propensities using mutagenesis studies has been problematic, especially for beta-strand propensities, because local structural preferences are often confounded by non-local interactions arising from formation of the native tertiary structure. Thus, the overall thermodynamic stability of a protein is not always altered in a predictable manner by changes in local structural propensity at a single position. In this study, we have undertaken an investigation of the relationship between beta-strand propensity and protein folding kinetics. By characterizing the effects of a wide variety of amino acid substitutions at two different beta-strand positions in an SH3 domain, we have found that the observed changes in protein folding rates are very well correlated to beta-strand propensities for almost all of the substitutions examined. In contrast, there is little correlation between propensities and unfolding rates. These data indicate that beta-strand conformation is well formed in the structured portion of the SH3 domain transition state, and that local structure propensity strongly influences the stability of the transition state. Since the transition state is known to be packed more loosely than the native state and likely lacks many of the non-local stabilizing interactions seen in the native state, we suggest that folding kinetics studies may generally provide an effective means for the experimental validation of database-derived local structural propensities.  相似文献   

15.
Lee SY  Fujitsuka Y  Kim DH  Takada S 《Proteins》2004,55(1):128-138
Protein-folding mechanisms of two small globular proteins, IgG binding domain of protein G and alpha spectrin SH3 domain are investigated via Brownian dynamics simulations with a model made of coarse-grained physical energy functions responsible for sequence-specific interactions and weak Gō-like energies. The folding pathways of alpha spectrin SH3 are known to be mainly controlled by the native topology, while protein G folding is anticipated to be more sensitive to the sequence-specific effects than native topology. We found in the folding of protein G that the C terminal beta hairpin is formed earlier and is rigid, once ordered, in the presence of an intact C terminal turn. The alpha helix is found to exhibit repeated partial formations/deformations during folding and to be stabilized via the tertiary contact with preformed beta sheets. This predicted scenario is fully consistent with experimental phi value data. Moreover, we found that the folding route is critically affected when the hydrophobic interaction is excluded from physical energy terms, suggesting that the hydrophobicity critically contributes to the folding propensity of protein G. For the folding of alpha spectrin SH3, we found that the distal beta hairpin and diverging turn are parts formed early, fully in harmony with previous results of simple Gō-like and experimental analysis, supporting that the folding route of SH3 domain is robust and coded by the native topology. The hybrid method provides useful tools for analyzing roles of physical interactions in determining folding mechanisms.  相似文献   

16.
SH2 domains provide fundamental recognition sites in tyrosine kinase-mediated signaling pathways which, when aberrant, give rise to disease states such as cancer, diabetes, and immune deficiency. Designing specific inhibitors that target the SH2 domain-binding site, however, have presented a major challenge. Despite well over a decade of intensive research, clinically useful SH2 domain inhibitors have yet to become available. A better understanding of the structural, dynamic, and thermodynamic contributions to ligand binding of individual SH2 domains will provide some insight as to whether inhibitor development is possible. We report the first high resolution solution structure of the apo-v-Src SH2 domain. This is accompanied by the analysis of backbone dynamics and pK(a) values within the apo- and peptide-bound states. Our results indicate that the phosphotyrosine (pY) pocket is tightly structured and hence not adaptable to exogenous ligands. On the other hand, the pocket which accommodates residues proximal and C-terminal of the pY (pY + 3) or so-called specificity determining region, is a large dynamic-binding surface. This appears to allow a high level of promiscuity in binding. Binding of a series of synthetic, phosphotyrosyl, peptidomimetic compounds designed to explore interactions in the pY + 3 pocket further demonstrates the ability of the SH2 domain to accommodate diverse ligands. The thermodynamic parameters of these interactions show dramatic enthalpy/entropy compensation. These data suggest that the v-Src SH2 domain does not have a highly specific secondary-binding site, which clearly presents a major hurdle to design selective inhibitors.  相似文献   

17.
The ABL and ARG tyrosine kinases regulate many pivotal cellular processes and are implicated in the pathogenesis of several forms of leukemia. We have modelled the previously uncharacterized core domain (SH3-SH2-tyrosine kinase) and C-terminal actin-binding domain of ARG. We have also investigated the structural arrangement of the ABL and ARG Cap region and of the long multifunctional region located downstream of the tyrosine kinase domain. We report that the ARG core domain is homologous to the corresponding ABL region, therefore suggesting that ARG catalytic activity is likely regulated by the same SH3-SH2 clamp described for ABL. We also report that the Cap of both ABL and ARG is natively unfolded. Hence, biological events determining the folding of the Cap are critical to allow its interaction with the tyrosine kinase C-lobe. Furthermore, our results show that, with the exception of the C-terminal actin-binding domain, the entire region encoded by the ABL and ARG last exon is natively unfolded. Phosphorylation events or protein-protein interactions regulating the folding of this region will therefore modulate the activity of its numerous functional domains. Finally, our analyses show that the C-terminal actin-binding domain of ARG displays a four-helix bundle structure similar to the one reported for the corresponding ABL region. Our findings imply that many biological activities attributed to ABL, ARG, and their oncogenic counterparts are regulated by natively unfolded regions.  相似文献   

18.
The 68 kDa Src substrate associated during mitosis (Sam68) is an RNA binding protein with Src homology (SH) 2 and 3 domain binding sites. We have recently found that Sam68 is a substrate of the insulin receptor (IR) that translocates from the nucleus to the cytoplasm and that Tyr-phosphorylated Sam68 associates with the SH2 domains of p85 PI3K and GAP, in vivo and in vitro. In the present work, we have further demonstrated the cytoplasmic localization of Sam68, which is increased in cells overexpressing IR. Besides, we sought to further study the association of Sam68 with the Ras-GAP pathway by assessing the interactions with SH3 domains of Grb2. We employed GST-fusion proteins containing the SH3 domains of Grb2 (N or C), and recombinant Sam68 for in vitro studies. In vivo studies of protein-protein interaction were assessed by co-immunoprecipitation experiments with specific antibodies against Sam68, GAP, Grb2, SOS, and phosphotyrosine; and by affinity precipitation with the fusion proteins (SH3-Grb2). Insulin stimulation of HTC-IR cells promotes phosphorylation of Sam68 and its association with the SH2 domains of GAP. Sam68 is constitutively associated with the SH3 domains of Grb2 and it does not change upon insulin stimulation, but Sam68 is Tyr-phosphorylated and promotes the association of GAP with the Grb2-SOS complex. In vitro studies with fusion proteins showed that Sam68 association with Grb2 is preferentially mediated by the C-terminal SH3 domains of Grb2. In conclusion, Sam68 is a substrate of the IR and may have a role as a docking protein in IR signaling, recruiting GAP to the Grb2-SOS complex, and in this way it may modulate Ras activity.  相似文献   

19.
The SR (arginine-serine rich) protein ASF/SF2 (also called human alternative splicing factor), an essential splicing factor, contains two functional modules consisting of tandem RNA recognition motifs (RRMs; RRM1-RRM2) and a C-terminal arginine-serine repeat region (RS domain, a domain rich in arginine-serine repeats). The SR-specific protein kinase (SRPK) 1 phosphorylates the RS domain at multiple serines using a directional (C-terminal-to-N-terminal) and processive mechanism—a process that directs the SR protein to the nucleus and influences protein-protein interactions associated with splicing function. To investigate how SRPK1 accomplishes this feat, the enzyme-substrate complex was analyzed using single-turnover and multiturnover kinetic methods. Deletion studies revealed that while recognition of the RS domain by a docking groove on SRPK1 is sufficient to initiate the processive and directional mechanism, continued processive phosphorylation in the presence of building repulsive charge relies on the fine-tuning of contacts with the RRM1-RRM2 module. An electropositive pocket in SRPK1 that stabilizes newly phosphorylated serines enhanced processive phosphorylation of later serines. These data indicate that SRPK1 uses stable, yet highly flexible protein-protein interactions to facilitate both early and late phases of the processive phosphorylation of SR proteins.  相似文献   

20.
We address the question of whether or not the positions of protein-binding sites on homologous protein structures are conserved irrespective of the identities of their binding partners. First, for each domain family in the Structural Classification of Proteins (SCOP), protein-binding sites are extracted from our comprehensive database of structurally defined binary domain interactions (PIBASE). Second, the binding sites within each family are superposed using a structural alignment of its members. Finally, the degree of localization of binding sites within each family is quantified by comparing it with localization expected by chance. We found that 72% of the 1847 SCOP domain families in PIBASE have binding sites with localization values greater than expected by chance. Moreover, 554 (30%) of these families have localizations that are statistically significant (i.e., more than four standard deviations away from the mean expected by chance). In contrast, only 144 (8%) families have significantly low localization. The absence of a significant correlation of the binding site localization with the average sequence and structural conservations in a family suggests that localization can be helpful for describing the functional diversity of protein-protein interactions, complementing measures of sequence and structural conservation. Consideration of the binding site localization may also result in spatial restraints for the modeling of protein assembly structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号