首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Effects of glucose, ammonium ions and phosphate on avilamycin biosynthesis in Streptomyces viridochromogenes AS4.126 were investigated. Twenty grams per liter of glucose, 10 mmol/L ammonium ions, and 10 mmol/L phosphate in the basal medium stimulated avilamycin biosynthesis. When the concentrations of glucose, ammonium ions, and phosphate in the basal medium exceeded 20 g/L, 10 mmol/L, and 10 mmol/L, respectively, avilamycin biosynthesis greatly decreased. When 20 g/L glucose was added at 32 h, avilamycin yield decreased by 70.2%. Avilamycin biosynthesis hardly continued when 2-deoxy-glucose was added into the basal medium at 32 h. There was little influence on avilamycin biosynthesis with the addition of the 3-methyl-glucose (20 g/L) at 32 h. In the presence of excess (NH4)2SO4 (20 mmol/L), the activities of valine dehydrogenase and glucose-6-phosphate dehydrogenase were depressed 47.7 and 58.3%, respectively, of that of the control at 48 h. The activity of succinate dehydrogenase increased 49.5% compared to the control at 48 h. The intracellular adenosine triphosphate level and 6-phosphate glucose content of S. viridochromogenes were 128 and 129%, respectively, of that of the control at 48 h, with the addition of the 40 mmol/L of KH2PO4. As a result, high concentrations of glucose, ammonium ions, and inorganic phosphate all led to the absence of the precursors for avilamycin biosynthesis and affected antibiotic synthesis.  相似文献   

5.
Two types of extracellular acid phosphatases are synthesized by Aspergillus ficuum NRRL 3135: a nonspecific orthophosphoric monoester phosphohydrolase (EC 3.1.3.2) with an optimum pH of 2.0, and an enzyme with restricted specificity, a mesoinositol-hexaphosphate phosphohydrolase (EC 3.1.3.8; phytase) with an optimum pH of 5.5. Although the pH 5.5 enzyme is termed a phytase, both enzymes hydrolyze phytin. Synthesis of the enzymes is repressed by high orthophosphate concentrations in the fermentation medium. The highest total level for each enzyme is synthesized in low orthophosphate medium. In high orthophosphate medium, more pH 5.5 enzyme is produced than pH 2.0 enzyme. In low orthophosphate medium, more pH 5.5 enzyme is produced than pH 2.0 enzyme during the early stages of growth, but the reverse occurs after 5 days. The enzymes are differentiated by heat denaturation at acid and alkaline pH levels. They are separated into two distinct fractions on Sephadex G-100 followed by carboxymethylcellulose column chromatography. This indicates that the two enzymes are structurally different. The K(m) for both enzymes is 1.25 mm when calcium phytate is the substrate. Orthophosphate competitively inhibits the pH 2.0 (K(i) = 1.1 x 10(-2)m) but not the pH 5.5 phosphatase. Neither enzyme is denatured by 50% (w/v) urea or inhibited by 0.01 m tartrate. Thus, they differ from human prostatic phosphatase.  相似文献   

6.
The regulation of the activity of blowfly flight-muscle phosphorylase b kinase by P(i) and Ca(2+) was studied, and the actions of these effectors on the kinases from insect flight and rabbit leg muscles were compared. Preincubation of blowfly kinase with P(i) increased activity severalfold. The effect was concentration-dependent, with an apparent K(m) of about 20mm, and time-dependent, requiring at least 10min for maximal activation. Neither ATP nor cyclic AMP was needed, suggesting that a protein kinase may not be involved. Maximal activation of the insect kinase required Mg(2+) in addition to P(i). The apparent K(m) for Mg(2+) was 3mm. Rabbit leg-muscle phosphorylase b kinase was slightly inhibited, rather than stimulated, by P(i), and was strongly inhibited by K(+), Na(+) and Li(+). At physiological concentrations, Ca(2+) activated the phosphorylase b kinases from both blowfly flight and rabbit leg muscles. However, the responses to Ca(2+) of the enzymes from the two tissues were different. The mammalian kinase had virtually no activity in the absence of Ca(2+), and showed a large increase in activity over a narrow range of Ca(2+) concentrations. Flight-muscle kinase had appreciable activity in the absence of Ca(2+), and had a smaller increase over a wide range of Ca(2+) concentration. The concentrations of Ca(2+) required for half-activation were 0.1 and 1mum for the blowfly and rabbit enzymes respectively. The pH-activity profiles of the non-activated, phosphate- and Ca(2+)-activated kinase revealed considerable enhancement of activity with little, if any, increase in the ratio of activities at pH6.8 to those at 8.2. These results are discussed in relation to the mechanism coupling contraction to glycogenolysis and to the biochemical distinction between asynchronous and synchronous types of muscle.  相似文献   

7.
Y Tamai  A Toh-e    Y Oshima 《Journal of bacteriology》1985,164(2):964-968
A kinetic study of Pi transport with 32Pi revealed that Saccharomyces cerevisiae has two systems of Pi transport, one with a low Km value (8.2 microM) for external Pi and the other with a high Km value (770 microM). The low-Km system was derepressed by Pi starvation, and the activity was expressed under the control of a genetic system which regulates the repressible acid and alkaline phosphatases. The function of the PHO2 gene, which is essential for the derepression of repressible acid phosphatase but not for the derepression of repressible alkaline phosphatase, was also indispensable for the derepression of the low-Km system.  相似文献   

8.
9.
10.
11.
A set of glycosylinositol-phosphoceramides, belonging to a family of glycosylphosphatidyl-inositols (GPIs) synthesized in a cell-free system prepared from the free-living protozoan Paramecium primaurelia has been described. The final GPI precursor was identified and structurally characterized as: ethanolamine-phosphate-6Man alpha 1-2Man alpha 1-6(mannosylphosphate) Man alpha 1-4glucosamine-inositol-phospho-ceramide. During our investigations on the biosynthesis of the acid-labile modification, the additional mannosyl phosphate substitution, we observed that the use of the nucleotide triphosphate analogue GTP gamma S (guanosine 5-O-(thiotriphosphate)) blocks the biosynthesis of the mannosylated GPI glycolipids. We show that GTP gamma S inhibits the synthesis of dolichol-phosphate-mannose, which is the donor of the mannose residues for GPI biosynthesis. Therefore, we investigated the role of GTP binding regulatory 'G' proteins using cholera and pertussis toxins and an intracellular second messenger cAMP analogue, 8-bromo-cAMP. All the data obtained suggest the involvement of classical heterotrimeric G proteins in the regulation of GPI-anchor biosynthesis through dolichol-phosphate-mannose synthesis via the activation of adenylyl cyclase and protein phosphorylation. Furthermore, our data suggest that GTP gamma S interferes with synthesis of dolichol monophosphate, indicating that the dolichol kinase is regulated by the heterotrimeric G proteins.  相似文献   

12.
During the growth cycle of normal fibroblasts and of fibroblasts deficient in glucose-6-phosphate dehydrogenase activity, the concentration of 5-phosphoribosyl-1-pyrophosphate and of Pi, as well as the activity of 5-phosphoribosyl-1-pyrophosphate synthetase, decreased to stable values in confluent cultures. A high degree of correlation (0.89 and 0.91 for two normal and 0.69 for one glucose-6-phosphate dehydrogenase-deficient cell strain, respectively) was shown between intracellular Pi and 5-phosphoribosyl-1-pyrophosphate concentrations under varying culture and incubation conditions. 5-phosphoribosyl-1-pyrophosphate concentrations were elevated in normal fibroblasts incubated with methylene blue only if intracellular Pi levels were high. Neither methylene blue nor 6-aminonicotinamide, singly, affected intracellular Pi concentrations. However, when normal cells were pretreated with 6-aminonicotinamide and then with methylene blue, intracellular Pi decreased, 5-phosphoribosyl-1-pyrophosphate was depleted, and its rate of generation decreased. Under similar conditions, glucose-6-phosphate dehydrogenase-deficient fibroblasts maintained unaltered Pi levels, and 5-phosphoribosyl-1-pyrophosphate concentration and generation were slightly increased. The decrease in intracellular Pi in normal cells after the combined treatment was commensurate with an accumulation of 6-phosphogluconate, which did not take place in mutant cells. The changes in 5-phosphoribosyl-1-pyrophosphate synthesis, whether due to the stage of growth or various experimental manipulations, were always concordant with changes in intracellular Pi level. The regulatory role of Pi is consistent with the known enzymic properties of 5-phosphoribosyl-1-pyrophosphate synthetase.  相似文献   

13.
14.
For cells to obtain inorganic phosphate, ectoenzymes in the plasma membrane, which contain a catalytic site facing the extracellular environment, hydrolyze phosphorylated molecules. In this study, we show that increased Pi levels in the extracellular environment promote a decrease in ecto-phosphatase activity, which is associated with Pi-induced oxidative stress. High levels of Pi inhibit ecto-phosphatase because Pi generates H2O2. Ecto-phosphatase activity is inhibited by H2O2, and this inhibition is selective for phospho-tyrosine hydrolysis. Additionally, it is shown that the mechanism of inhibition of ecto-phosphatase activity involves lipid peroxidation. In addition, the inhibition of ecto-phosphatase activity by H2O2 is irreversible. These findings have new implications for understanding ecto-phosphatase regulation in the tumor microenvironment. H2O2 stimulated by high Pi inhibits ecto-phosphatase activity to prevent excessive accumulation of extracellular Pi, functioning as a regulatory mechanism of Pi variations in the tumor microenvironment.  相似文献   

15.
16.
Kidby DK 《Plant physiology》1966,41(7):1139-1144
Activation by orthophosphate of a plant invertase from root nodules of Lupinus luteus L. has been demonstrated. The activation affects an increase in maximum velocity (V(max)) of the reaction. Activation was also achieved with a number of similar anions and it has been possible to infer a broad classification of anions capable of serving as activators. The possibility of orthophosphate activation in vivo has been considered, and there is some evidence to suggest that this could regulate invertase activity under physiological conditions.  相似文献   

17.
Inhibition of Na++K+-dependent ATPase activity by Pi was maximal in the pH range of 6.1-7, but decreased with increasing pH in the range of 7-8.5. Ki of Pi was 2.8 mM at pH 7.1, and 12 mM at pH 7.8. K+-dependent phosphorylation of the enzyme by Pi, which is thought to be responsible for inhibition of ATPase activity, also decreased with increasing pH. The data suggest that (a) previously observed requirement of high Pi concentrations for inhibition of ATPase activity and associated pump fluxes may have been due to high pH of the assays; (b) at normal values of intracellular pH the pump may be partially inhibited by intracellular Pi; and (c) this effect of Pi may be amplified or dampened with alterations in intracellular pH and ATP/Pi ratio.  相似文献   

18.
Summary Glucose, 2-deoxy glucose and inorganic phosphate inhibited tylosin production and fatty acid oxidation in Streptomyces T 59–235. Glucose-6-phosphate was accumulated in high-phosphate cultures. The possible function of glucose phosphate as a common mediator of both glucose and phosphate effects is discussed.  相似文献   

19.
 The production of the 16-membered macrolide antibiotic, spiramycin, in Streptomyces ambofaciens is inhibited by glucose, 2-deoxyglucose and inorganic phosphate. The role of intracellular ATP content and phosphorylated metabolites as common regulating signals of both glucose and phosphate inhibitory effects is discussed. Two enzymatic targets of the effect of phosphate on spiramycin biosynthesis were studied. Valine dehydrogenase, the first enzyme of valine catabolism (supplier of aglycone spiramycin precursors), and alkaline phosphatase, which cleaves phosphorylated intermediates, were repressed in the presence of excess phosphate. Received: 2 May 1995/Received revision: 28 July 1995/Accepted: 4 August 1995  相似文献   

20.
1. By digitonin lysis of penicillin spheroplasts of Escherichia coli a particulate fraction P1 was previously obtained that supported the sustained synthesis of alkaline phosphatase when supplied with amino acids, nucleotide triphosphates and other cofactors. This P1 fraction, when subjected to mild ultrasonic treatment in the presence of sucrose and Mg2+, yielded the P1(S) fraction, consisting of integrated particulate subcellular particles containing DNA and RNA. 2. The P1(S) fraction from E. coli K10 wild type (R+1R+2P+) grown under repressed conditions supported the immediate synthesis of alkaline phosphatase in vitro. The synthesis occurred in phases. The first was followed by a lag, and then there was a linear rapid phase that continued for at least 3hr. Actinomycin D inhibited the appearance of the second phase. It was concluded that the particles are programmed to synthesize enzyme even when prepared from repressed cells, and therefore that synthesis of the specific messenger RNA for alkaline phosphatase in vivo was not inhibited when the bacteria were grown in an excess of inorganic phosphate. 3. Phosphate inhibited synthesis of enzyme to the same extent with the P1(S) fractions of two constitutive strains as with the P1(S) fraction of the wild-type strain. 4. Inorganic phosphate inhibited amino acid incorporation with the P1(S) fraction and also inhibited enzyme synthesis in vitro. The effect on amino acid incorporation could be partially overcome by adding Mn2+ to the incubation mixtures. However, Mn2+ inhibited the synthesis of alkaline phosphatase. Also, inhibition of the incorporation of [32P]CTP into RNA was overcome by Mn2+. The effect of phosphate on amino acid uptake was most probably due to a phosphorolysis of RNA by polynucleotide phosphorylase, also present in the P1(S) fraction. This phosphorolysis may be responsible for the instability of messenger RNA in vitro and in vivo. 5. Phosphate also specifically inhibited the formation of alkaline phosphatase, since it did not affect markedly the induced formation of β-galactosidase by the same P1(S) fraction. The specific effect is attributed to the prevention of formation of the enzymically active dimer from precursors, a Zn2+-dependent reaction. It is suggested that the repression of the synthesis of alkaline phosphatase in vivo in the wild-type strain was the sum of these two effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号