首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
Structure and transcriptional regulation of the mouse ferrochelatase gene   总被引:2,自引:0,他引:2  
Taketani S  Mohri T  Hioki K  Tokunaga R  Kohno H 《Gene》1999,227(2):117-124
Ferrochelatase (EC.4.99.1.1), the final step in the biosynthesis of heme, is widely expressed in various tissues and is induced in erythroid cells. We determined the structure of the mouse ferrochelatase gene after isolation and characterization of lambda phage clones mapping discrete regions of the cDNA. The gene spans about 25 kb and consists of 11 exons. The exon/intron boundary sequences conform to consensus acceptor (GTn)/donor (nAG) sequences, and exons in the gene encode functional protein domains. The promoter region contains multiple Sp1 sites, a CACCC box and GATA-1 binding sites. Function analysis of the promoter by transient transfection assay demonstrated that one Sp1 binding site located at -37/-32 is essential for basic expression of the ferrochelatase gene in both mouse erythroleukemia (MEL) and non-erythroid EL4 cells. In addition, the region (-66/-51) containing a CACCC box and the neighboring GC box partly contributes to the inducible activity of the reporter in MEL cells upon induction with dimethylsulfoxide. It appears that at least two promoter regions of the mouse ferrochelatase gene function in basic and inducible expression.  相似文献   

12.
13.
14.
15.
16.
17.
18.
Chromatin structure was examined at the 3′-boundary region of the human β-globin locus control region hypersensitive site-2 (LCR HS-2) using several footprinting agents. Erythroid K562 cells (possessing HS-2) were damaged by the footprinting agents: hedamycin, bleomycin and four nitrogen mustard analogues. Purified DNA and non-erythroid HeLa cells (lacking HS-2) were also damaged as controls for comparison with K562 cells. The comparison between intact cells and purified DNA showed several protected regions in K562 cells. A large erythroid-specific protected region of 135 bp was found at the boundary of HS-2. The length of this protected region (135 bp) was close to that of DNA contained in a nucleosome core (146 bp). Another two protected regions were found upstream of the protected region. A 16-bp erythroid-specific footprint co-localised with a GATA-1 motif—this indicated that the GATA-1 protein could be involved in positioning the nucleosome. Further upstream, a 100-bp footprint coincided with an AT-rich region. Thus our footprinting results suggest that the 3′-boundary of LCR HS-2 is flanked by a positioned nucleosome and that an erythroid-specific protein binds to the sequence adjacent to the nucleosome and acts to position the nucleosome at the boundary of the hypersensitive site.  相似文献   

19.
During dimethyl sulfoxide (DMSO)-stimulated differentiation of murine erythroleukemia (MEL) cells, one of the early events is the induction of the heme biosynthetic pathway. While recent reports have clearly demonstrated that GATA-1 is involved in the induction of erythroid cell-specific forms of 5-aminolevulinate synthase (ALAS-2) and porphobilinogen (PBG) deaminase and that cellular iron status plays a regulatory role for ALAS-2, little is known about regulation of the remainder of the pathway. In the current study, we have made use of a stable MEL cell mutant (MEAN-1) in which ALAS-2 enzyme activity is not induced by DMSO, hexamethylene bisacetamide (HMBA), or butyric acid. In this cell line, addition of 2% DMSO to growing cultures results in the normal induction of PBG deaminase and coproporphyrinogen oxidase but not in the induction of the terminal two enzymes, protoporphyrinogen oxidase and ferrochelatase. These DMSO-treated cells did not produce mRNA for beta-globin and do not terminally differentiate. In addition, the cellular level of ALAS activity declines rapidly after addition of DMSO, indicating that ALAS-1 must turn over rapidly at this time. Addition of 75 microM hemin alone to the cultures did not induce cells to terminally differentiate or induce any of the pathway enzymes. However, the simultaneous addition of 2% DMSO and 75 microM hemin caused the cells to carry out a normal program of terminal erythroid differentiation, including the induction of ferrochelatase and beta-globin. These data suggest that induction of the entire heme biosynthetic pathway is biphasic in nature and that induction of the terminal enzymes may be mediated by the end product of the pathway, heme. We have introduced mouse ALAS-2 cDNA into the ALAS-2 mutant cell line (MEAN-1) under the control of the mouse metallothionein promoter (MEAN-RA). When Cd and Zn are added to cultures of MEAN-RA in the absence of DMSO, ALAS-2 is induced but erythroid differentiation does not occur and cells continue to grow normally. In the presence of metallothionein inducers and DMSO, the MEAN-RA cells induce in a fashion similar to that found with the wild-type 270 MEL cells. Induction of the activities of ALAS, PBG deaminase, coproporphyrinogen oxidase, and ferrochelatase occurs. In cultures of MEAN-RA where ALAS-2 had been induced with Cd plus Zn 24 h prior to DMSO addition, onset of heme synthesis occurs more rapidly than when DMSO and Cd plus Zn are added simultaneously. This study reveals that induction of ALAS-2 alone is not sufficient to induce terminal differentiation of the MEAN-RA cells, and it does not appear that ALAS-2 alone is the rate-limiting enzyme of the heme biosynthetic pathway during MEL cell differentiation.  相似文献   

20.
In red blood cells ankyrin (ANK-1) provides the primary linkage between the erythrocyte membrane skeleton and the plasma membrane. We have previously demonstrated that a 271-bp 5'-flanking region of the ANK-1 gene has promoter activity in erythroid, but not non-erythroid, cell lines. To determine whether the ankyrin promoter could direct erythroid-specific expression in vivo, we analyzed transgenic mice containing the ankyrin promoter fused to the human (A)gamma-globin gene. Sixteen of 17 lines expressed the transgene in erythroid cells indicating nearly position-independent expression. We also observed a significant correlation between the level of Ank/(A)gamma-globin mRNA and transgene copy number. The level of Ank/(A)gamma mRNA averaged 11% of mouse alpha-globin mRNA per gene copy at all developmental stages. The addition of the HS2 enhancer from the beta-globin locus control region to the Ank/(A)gamma-globin transgene resulted in Ank/(A)gamma-globin mRNA expression in embryonic and fetal erythroid cells in six of eight lines but resulted in absent or dramatically reduced levels of Ank/(A)gamma-globin mRNA in adult erythroid cells in eight of eight transgenic lines. These data indicate that the minimal ankyrin promoter contains all sequences necessary and sufficient for erythroid-specific, copy number-dependent, position-independent expression of the human (A)gamma-globin gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号