首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
《Glycobiology》1997,7(6):725
The following corrections pertain to the legends of Figures1 and 4: Disulfated disaccharide standards in Figure 1B are:peak 6, DiE-PA; peak 7, DiD-PA. DiB-PA co-elutes with DiE-PAunder the chromatographic conditions described (data not shown).Accordingly, in Figure 4H, peak 8 (39.5 min) eluted in the positionof DiD-PA and not DiB-PA.  相似文献   

2.
A sensitive and selective HPLC method for the determination of the disaccharides of chondroitin sulfate in horse and dog plasma was validated. Chondroitin sulfate is degraded by chondroitinase ABC to three primary unsaturated disaccharides, (1) 2-acetamido-2-deoxy-3-O-(beta-D-gluco-4-enepyranosyluronic acid)-D-galactose, (2) 2-acetamido-2-deoxy-3-O-(beta-D-gluco-4-enepyranosyluronic acid)-4-O-sulfo-D-galactose, and (3) 2-acetamido-2-deoxy-3-O-(beta-D-gluco-4-enepyranosyluronic acid)-6-O-sulfo-D-galactose, when treated with chondroitinase. Plasma samples (0.5 ml) were treated with 50 mU of chondroitinase ABC in 50 microl of 1 mM sodium phosphate buffer (pH 7.0) at 37 degrees C for 6 h. The samples were extracted with 25% trifluoroacetic acid in ethanol. The resultant samples were derivatized with 1% dansylhydrazine in ethanol at 40 degrees C for 3 h. The chromatographic conditions consisted of fluorescence detection (excitation at 350 nm and emission at 530 nm), mu-Bondapack NH(2) (300 x 3.9 mm), and mobile phase of acetonitrile:100 mM acetate buffer, pH 5.6 (76:24), pumped at 1.0 ml/min. The standard curves for each chondroitin disaccharide showed linearity over the selected concentration range (r > or = 0.99). The intraday percentage relative standard deviation was < or =9.5% and the interday precision was < or =6.9% or less. The relative intraday and interday error ranged from -7.3 to 6.6% for each chondroitin disaccharide in the plasma. The extraction recovery was found to be in the range of 90-96%. The validated method accurately quantitated the disaccharides of chondroitin sulfate after administration to dogs and horses.  相似文献   

3.
Shaya D  Hahn BS  Park NY  Sim JS  Kim YS  Cygler M 《Biochemistry》2008,47(25):6650-6661
Chondroitin sulfate ABC lyase (ChonABC) is an enzyme with broad specificity that depolymerizes via beta-elimination chondroitin sulfate (CS) and dermatan sulfate (DS) glycosaminoglycans (GAGs). ChonABC eliminates the glycosidic bond of its GAG substrates on the nonreducing end of their uronic acid component. This lyase possesses the unusual ability to act on both epimers of uronic acid, either glucuronic acid present in CS or iduronic acid in DS. Recently, we cloned, purified, and determined the three-dimensional structure of a broad specificity chondroitin sulfate ABC lyase from Bacteroides thetaiotaomicron (BactnABC) and identified two sets of catalytic residues. Here, we report the detailed biochemical characterization of BactnABC together with extensive site-directed mutagenesis resulting in characterization of the previously identified active site residues. BactnABC's catalysis is stimulated by Ca(2+) and Mg(2+) cations, particularly against DS. It displays extremely low activity toward hyaluronic acid and no activity toward heparin/heparan sulfate. Degradation of CS and DS by BactnABC yields only disaccharide products, pointing to an exolytic mode of action. The kinetic evaluations of the active-site mutants indicate that CS and DS substrates bind in the same active site, which is accompanied by a conformational change bringing the two sets of active site residues together. Conservative replacements of key residues suggest that His345 plays the role of a general base, initiating the degradation by abstracting the C5 bound proton from DS substrates, whereas either Tyr461 or His454 perform the equivalent role for CS substrates. Tyr461 is proposed, as well, to serve as general acid, completing the degradation of both CS and DS by protonating the leaving group.  相似文献   

4.
Streptococcus pneumoniae hyaluronate lyase is a surface enzyme of this Gram-positive bacterium. The enzyme degrades hyaluronan and chondroitin/chondroitin sulfates by cleaving the beta1,4-glycosidic linkage between the glycan units of these polymeric substrates. This degradation helps spreading of this bacterial organism throughout the host tissues and facilitates the disease process caused by pneumococci. The mechanism of this degradative process is based on beta-elimination, is termed proton acceptance and donation, and involves selected residues of a well defined catalytic site of the enzyme. The degradation of hyaluronan alone is thought to proceed through a processive mode of action. The structures of complexes between the enzyme and chondroitin as well as chondroitin sulfate disaccharides allowed for the first detailed insights into these interactions and the mechanism of action on chondroitins. This degradation of chondroitin/chondroitin sulfates is nonprocessive and is selective for the chondroitin sulfates only with certain sulfation patterns. Chondroitin sulfation at the 4-position on the nonreducing site of the linkage to be cleaved or 2-sulfation prevent degradation due to steric clashes with the enzyme. Evolutionary studies suggest that hyaluronate lyases evolved from chondroitin lyases and still retained chondroitin/chondroitin sulfate degradation abilities while being specialized in the degradation of hyaluronan. The more efficient processive degradation mechanism has come to be preferred for the unsulfated substrate hyaluronan.  相似文献   

5.
Dermatan sulfate was extracted and purified from bovine intestinal mucosa, pig intestinal mucosa and pigskin. Small differences in Mr, charge density and constituent disaccharides were detected for the three purified natural dermatan sulfates. Bovine intestinal mucosa dermatan sulfate was depolymerized by a controlled free-radical process mediated by cupric ions in the presence of hydrogen peroxide. Different low-molecular-mass dermatan sulfate fractions were produced and analysed by high-performance size-exclusion chromatography and polyacrylamide gel electrophoresis. The results obtained by this last technique strongly support the hypothesis that the free-radical process proceeds essentially via the destruction of dissacharide units. The partial degradation of dermatan sulfates by cupric-ion-mediated free-radical treatment reduces or even eliminates the capacity of chrondroitin ABC lyase to depolymerize these derivatives. This was confirmed by polyacrylamide gel electrophoresis and the time curves of enzymatic treatments evaluated by spectrophotometry.  相似文献   

6.
Chondroitin Sulfate ABC lyase I from Proteus vulgaris is an endolytic, broad-specificity glycosaminoglycan lyase, which degrades chondroitin, chondroitin-4-sulfate, dermatan sulfate, chondroitin-6-sulfate, and hyaluronan by beta-elimination of 1,4-hexosaminidic bond to unsaturated disaccharides and tetrasaccharides. Its structure revealed three domains. The N-terminal domain has a fold similar to that of carbohydrate-binding domains of xylanases and some lectins, the middle and C-terminal domains are similar to the structures of the two-domain chondroitin lyase AC and bacterial hyaluronidases. Although the middle domain shows a very low level of sequence identity with the catalytic domains of chondroitinase AC and hyaluronidase, the residues implicated in catalysis of the latter enzymes are present in chondroitinase ABC I. The substrate-binding site in chondroitinase ABC I is in a wide-open cleft, consistent with the endolytic action pattern of this enzyme. The tryptophan residues crucial for substrate binding in chondroitinase AC and hyaluronidases are lacking in chondroitinase ABC I. The structure of chondroitinase ABC I provides a framework for probing specific functions of active-site residues for understanding the remarkably broad specificity of this enzyme and perhaps engineering a desired specificity. The electron density map showed clearly that the deposited DNA sequence for residues 495-530 of chondroitin ABC lyase I, the segment containing two putative active-site residues, contains a frame-shift error resulting in an incorrectly translated amino acid sequence.  相似文献   

7.
Protocols for analyzing the fine structure of hyaluronan and chondroitin sulfate using fluorophore-assisted carbohydrate electrophoresis of 2-aminoacridone-derivatized hyaluronidase/chondroitinase digestion products were adapted for direct analysis of previously characterized cartilage-derived samples. The chondroitin sulfate disaccharide compositions for fetal and 68 year human aggrecan from FACE analyses were DeltaDi4S (50%), DeltaDi6S (43%), and DeltaDi0S (7%); and DeltaDi4S (3%), DeltaDi6S (96%), and DeltaDi0S (1%), respectively. The nonreducing terminal structures included predominantly 4S-galNAc with minor amounts of 6S-galNAc and Di6S for the fetal aggrecan sample and, in addition, included 4,6S-galNAc in the 68 year aggrecan sample. FACE analysis of a proteinase K digest of rat chondrosarcoma tissue gave an internal disaccharide composition for its chondroitin sulfate chains of DeltaDi0S (7%) and DeltaDi4S (93%) with no DeltaDi6S and DeltaDi4, 6S detected, while DeltaDiHA from hyaluronan was 5% of the total. Analysis of nonreducing terminal structures indicated the presence of 4S-galNAc (51%), galNAc (27%), and Di4S (22%) with no 4,6S-galNAc or Di6S detected. Unexpectedly, FACE analysis detected putative linkage oligosaccharide structures from the chondroitin sulfate chains including both unsulfated (85%) and 4-sulfated (15%) linkage oligosaccharides. Finally, the number averaged chain length estimated from the ratio of the molar fluorescence of the Deltadisaccharides to that of the nonreducing termini or the linkage oligosaccharide structures was calculated as approximately 16 kDa. A tissue glucose concentration of 0.72 g/l was also measured. These results for both samples as determined by FACE analysis were similar to results previously reported, using more labor and time intensive procedures, validating the FACE protocols.  相似文献   

8.
Heparan sulfate (HS) and chondroitin sulfate (CS) are highly sulfated polysaccharides with a wide range of biological functions. Heparan sulfate 2-O-sulfotransferase (HS-2OST) transfers the sulfo group from 3'-phosphoadenosine 5'-phosphosulfate (PAPS) to the 2-OH position of the hexauronic acid that is adjacent to N-sulfated glucosamine, whereas chondroitin sulfate 2-O-sulfotransferase (CS-2OST) transfers the sulfo group to the hexauronic acid that is adjacent to N-acetylated galactosamine. Here we report a systematic mutagenesis study of HS-2OST and CS-2OST based on their structural homology to estrogen sulfotransferase and HS 3-O-sulfotransferase isoform 3 (3-OST3), for which crystal structures exist. We have identified six residues possibly involved in binding to PAPS. HS-2OST carrying mutations of these residues lacks sulfotransferase activity and the ability to bind 3'-phosphoadenosine 5'-phosphate, a PAPS analogue, as determined by isothermal titration calorimetry. Similar residues involved in binding to PAPS were also identified in CS-2OST. Additional residues that participate in carbohydrate substrate binding were also identified in both enzymes. Mutations at these residues led to the loss of sulfotransferase activity but maintained the ability to bind to phosphoadenosine 5'-phosphate. The catalytic function of HS-2OST appears to involve two histidine residues (His140 and His142), whereas only one histidine (His168) of CS 2-OST is likely to be critical. This unique feature of HS 2-OST catalytic residues directed us to characterize the Drosophila heparan sulfate 2-O-sulfotransferase. The results from this study provide insight into the differences and similarities various residues play in the biological roles of the HS-2OST and CS-2OST enzymes.  相似文献   

9.
Chondroitin sulphate forms noncovalent electrostatic biocatalyst-glycosaminoglycan complexes in the solutions of enzymes. Chondroitin sulphate also interacts with enzymes developing complexes after carbodiimide activation of its carboxylic groups. Relatively low-molecular weight of biocatalysts (chymotrypsin, superoxide dismutase) forms stable noncovalent conjugates with the additional interaction as compared with electrostatic complexes. High-molecular weight of enzymes (acid phosphatase) develops covalent conjugates. Chondroitin sulphate is proposed for covalent binding of large proteins and multi-enzymatic complexes to obtain their stabilized derivatives for medical application.  相似文献   

10.
Bacteroides thetaiotaomicron produces two inducible chondroitin lyases (I and II) when it is grown on chondroitin sulfate. Both enzymes have very similar biochemical properties. To determine whether both enzymes are required for growth on chondroitin sulfate, we constructed a Bacteroides suicide vector, pE3-1, and used it to create an insertional mutation that interrupts the chondroitin lyase II gene of Bacteroides thetaiotaomicron. pE3-1 contains a 4.4-kilobase cryptic B. eggerthii plasmid (pB8-51), the Escherichia coli cloning vector pBR328, and the EcoRI D fragment from the conjugative B. fragilis plasmid pBF4. A 0.8-kilobase fragment from the center of the B. thetaiotaomicron chondroitin lyase II gene was inserted in pE3-1 to create pEG817. Although, pEG817 is stably maintained in E. coli and can be mobilized into B. thetaiotaomicron by the IncP plasmid R751, pEG817 is not maintained as a plasmid in Bacteroides spp. When pEG817 was mobilized into B. thetaiotaomicron, with selection for a drug marker on pEG817, transconjugants were obtained which had pEG817 inserted into the chondroitin lyase II gene. Western blot analysis was used to confirm that intact chondroitin lyase II is not produced in the mutant. The mutant was able to utilize chondroitin sulfate as a sole source of carbon, although no active chondroitin lyase II was produced. Thus chondroitin lyase I alone appears to be sufficient for growth on chondroitin sulfate. The mutant also had some minor changes in its outer membrane protein profile. However, there was no evidence that any of the major chondroitin sulfate-associated polypeptides in the outer membrane were affected by the insertion in the chondroitin lyase II gene.  相似文献   

11.
12.
Previously, we have demonstrated that co-expression of ChSy-1 (chondroitin synthase-1), with ChPF (chondroitin-polymerizing factor) resulted in a marked augmentation of glycosyltransferase activities and the expression of the chondroitin polymerase activity of ChSy-1. These results prompted us to evaluate the effects of co-expression of the recently cloned CSS3 (chondroitin sulfate synthase-3) with ChPF, because ChSy-1 and CSS3 have similar properties, i.e. they possess GalNAcT-II (N-acetylgalactosaminyltransferase-II) and GlcAT-II (glucuronyltransferase-II) activities responsible for the elongation of CS (chondroitin sulfate) chains but cannot polymerize chondroitin chains by themselves. Co-expressed CSS3 and ChPF showed not only substantial GalNAcT-II and GlcAT-II activities but also chondroitin polymerase activity. Interestingly, co-expressed ChSy-1 and CSS3 also exhibited polymerase activity. The chain length of chondroitin formed by the co-expressed proteins in various combinations was different. In addition, interactions between any two of ChSy-1, CSS3 and ChPF were demonstrated by pull-down assays. Moreover, overexpression of CSS3 increased the amount of CS in HeLa cells, while the RNA interference of CSS3 resulted in a reduction in the amount of CS in the cells. Altogether these results suggest that chondroitin polymerization is achieved by multiple combinations of ChSy-1, CSS3 and ChPF. Based on these characteristics, we have renamed CSS3 ChSy-2 (chondroitin synthase-2).  相似文献   

13.
A microsomal preparation from chick embryo epiphyseal cartilage was incubated with UDP-[14C]glucuronic acid and UDP-N-acetylgalactosamine to form [14C] chondroitin-labeled proteoglycan. Two [14C]proteoglycan populations were obtained which differed in size, [14C]glycosaminoglycan content, and susceptibility to alkali. One population of [14C]proteoglycan appeared near the void volume on Sepharose 2B, while the other population was smaller, similar in size to monomer proteoglycan. The larger [14C]proteoglycan contained long [14C]chondroitin chains added to short primers; these chains were in part resistant to alkali cleavage from protein. The smaller [14C]proteoglycan contained mainly [14C]chondroitin chains of intermediate length added to endogenous chondroitin sulfate; these chains were all susceptible to alkali cleavage from protein. The larger [14C]proteoglycan may represent a precursor proteoglycan present at the site of glycosaminoglycan chain synthesis.  相似文献   

14.
Previously, we demonstrated that sog9 cells, a murine L cell mutant, are deficient in the expression of C4ST (chondroitin 4-O-sulfotransferase)-1 and that they synthesize fewer and shorter CS (chondroitin sulfate) chains. These results suggested that C4ST-1 regulates not only 4-O-sulfation of CS, but also the length and amount of CS chains; however, the mechanism remains unclear. In the present study, we have demonstrated that C4ST-1 regulates the chain length and amount of CS in co-operation with ChGn-2 (chondroitin N-acetylgalactosaminyltransferase 2). Overexpression of ChGn-2 increased the length and amount of CS chains in L cells, but not in sog9 mutant cells. Knockdown of ChGn-2 resulted in a decrease in the amount of CS in L cells in a manner proportional to ChGn-2 expression levels, whereas the introduction of mutated C4ST-1 or ChGn-2 lacking enzyme activity failed to increase the amount of CS. Furthermore, the non-reducing terminal 4-O-sulfation of N-acetylgalactosamine residues facilitated the elongation of CS chains by chondroitin polymerase consisting of chondroitin synthase-1 and chondroitin-polymerizing factor. Overall, these results suggest that the chain length of CS is regulated by C4ST-1 and ChGn-2 and that the enzymatic activities of these proteins play a critical role in CS elongation.  相似文献   

15.
《The Journal of cell biology》1990,111(6):3177-3188
The NG2 chondroitin sulfate proteoglycan is a membrane-associated molecule of approximately 500 kD with a core glycoprotein of 300 kD. Both the complete proteoglycan and a smaller quantity of the 300-kD core are immunoprecipitable with polyclonal and monoclonal antibodies against purified NG2. From some cell lines, the antibodies coprecipitate NG2 and type VI collagen, the latter appearing on SDS- PAGE as components of 140 and 250 kD under reducing conditions. The immunoprecipitation of type VI collagen does not seem to be due to recognition of the collagen by the antibodies, but rather to binding of the collagen to NG2. Studies on the NG2-type VI collagen complex suggest that binding between the two molecules is mediated by protein- protein interactions rather than by ionic interactions involving the glycosaminoglycans. Immunofluorescence double labeling in frozen sections of embryonic rat shows that NG2 and type VI collagen are colocalized in structures such as the intervertebral discs and arteries of the spinal column. In vitro the two molecules are highly colocalized on the surface of several cell lines. Treatment of these cells resulting in a change in the distribution of NG2 on the cell surface also causes a parallel change in type VI collagen distribution. Our results suggest that cell surface NG2 may mediate cellular interactions with the extracellular matrix by binding to type VI collagen.  相似文献   

16.
The Morquio syndrome is a spondyloepiphyseal dysplasia characterized by excretion in urine of excessive amounts of keratan sulfate and chondroitin sulfate. To investigate the enzymic basis of this disease, assays for sulfatase were performed using chick embryo chondroitin sulfate and rat chondrosarcoma chondroitin 4-sulfate as substrates. The data obtained, using skin fibroblasts as an enzyme source, indicate that Morquio's syndrome is a deficiency of chondroitin sulfate N-acetylhexosamine sulfate sulfatase.  相似文献   

17.
We generated a monoclonal antibody (Mab) against a large chondroitin sulfate proteoglycan (CSPG) isolated from bovine aorta. This Mab (941) immunoprecipitates a CSPG synthesized by cultured monkey arterial smooth muscle cells. The immunoprecipitated CSPG is totally susceptible to chondroitinase ABC digestion and possesses a core glycoprotein of Mr approximately 400-500 KD. By use of immunofluorescence light microscopy and immunogold electron microscopy, the PG recognized by this Mab was shown to be deposited in the extracellular matrix of monkey arterial smooth muscle cell cultures in clusters which were not part of other fibrous matrix components and not associated with the cell's plasma membrane. With similar immunolocalization techniques, the CSPG antigen was found enriched in the intima and present in the medial portions of normal blood vessels, as well as in the interstitial matrix of thickened intimal lesions of atherosclerotic vessels. Immunoelectron microscopy revealed that this CSPG was confined principally to the space within the extracellular matrix not occupied by other matrix components, such as collagen and elastic fibers. These results indicate that this particular proteoglycan has a specific but restricted distribution in the extracellular matrix of arterial tissue.  相似文献   

18.
吴秋林  刘立明  陈坚 《生物工程学报》2012,28(11):1281-1293
硫酸软骨素是一种典型的硫酸化糖胺聚糖,具有多种药物活性,广泛应用于药品、保健品及化妆品行业。硫酸软骨素是动物软骨中蛋白聚糖的主要成分和少数几种细菌的荚膜多糖,因此可利用动物提取法和发酵法进行生产。以下综述了硫酸软骨素的发酵生产及其合成机制的研究进展,并对其发展趋势进行了展望。  相似文献   

19.
Infection with Plasmodium falciparum during pregnancy leads to the selective adherence of infected red blood cells (IRBCs) in the placenta causing placental malaria. The IRBC adherence is mediated through the chondroitin 4-sulfate (C4S) chains of unusually low-sulfated chondroitin sulfate proteoglycans (CSPGs) in the placenta. To study the structural interactions involved in C4S-IRBC adherence, various investigators have used CSPGs from different sources. Since the structural characteristics of the polysaccharide chains in CSPGs from various sources differ substantially, the CSPGs are likely to differentially bind IRBCs. In this study, the CSPG purified from bovine trachea, a CSPG form of human recombinant thrombomodulin (TM-CSPG), two CSPG fractions from bovine cornea, and the CSPGs of human placenta, the natural receptor, were studied in parallel for their IRBC binding characteristics. The TM-CSPG and corneal CSPG fractions could bind IRBCs at significantly higher density compared to the placental CSPGs. However, the avidity of IRBC binding by TM-CSPG was considerably low compared to placental CSPGs. The corneal CSPGs have substantially higher binding strengths. The bovine tracheal CSPG bound IRBCs at much lower density and exhibited significantly lower avidity than the placental CSPGs. These data demonstrated that the bovine tracheal CSPG and TM-CSPG are not ideal for studying the fine structural interactions involved in the IRBC adherence to the placental C4S, whereas the bovine corneal CSPGs are better alternatives to the placental CSPGs for determining these interactions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号