首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Two studies tested the hypothesis that eicosapentaenoic (20:5omega3; EPA), docosahexaenoic acids (22:6omega3; DHA) or linoleic acid (C18:2omega6; LIN) reduced bovine endometrial and trophoblast prostaglandin F(2alpha) (PGF(2alpha)) and prostaglandin E(2) (PGE(2)) release during short-term culture. In Study 1, endometrial tissues were collected from non-lactating, non-pregnant cows and endometrial plus trophoblast tissues from pregnant cows 16 days post-insemination. In Study 2, endometrial and trophoblast tissues were collected on day 17 of pregnancy, from cows synchronised using a double prostaglandin (PG) or Ovagentrade mark synchronisation. Tissues were incubated in medium only (M) or media supplemented with fatty acids: eicosapentaenoic (20:5omega3; EPA), docosahexaenoic acids (22:6omega3; DHA) or linoleic acid (C18:2omega6; LIN). In Study 1, PGE(2) release from 'pregnant' endometria was higher (P=0.094) than from 'non-pregnant' endometria, while PGF(2alpha) concentrations were similar. Fatty acids treatment had no effect on PGF(2alpha) or PGE(2) release from either pregnant or non-pregnant endometria. Individual fatty acid treatments had no effect on the ratio of PGF(2alpha) to PGE(2) from trophoblast tissues, but when the data from the 3 fatty acid treatments were combined (EPA, DHA and LIN treatment groups) the ratio of PGF(2alpha) to PGE(2) was reduced (P=0.026) when compared to medium only. In Study 2, PGE(2) concentrations were higher (P=0.013) from the trophoblast collected from Ovagentrade mark cows as compared to that of the PG synchrony group. When the data from the 3-omega fatty acids were combined (DHA and EPA treatment groups), the 3-omega treatments decreased (P<0.05) PGE(2) biosynthesis from both endometrial and trophoblast tissues from animals synchronised following PG synchrony but not Ovagentrade mark synchrony. Short-term culture with low concentrations of 3-omega fatty acids tended to reduce prostaglandin release from trophoblast collected 16 days after insemination, with the type of synchrony modifying PGE(2) production from the trophoblast tissues collected 17 days after insemination. The ability of exogenous fatty acids to modify embryonic prostaglandin release needs to be examined in the context of supplementing dairy cows with different sources of fats. Synchronisation method altered trophoblast PGE(2) release, highlighting the importance of the hormonal environment in modifying embryonic prostaglandin synthesis and release.  相似文献   

2.
Second generation rats depleted in long-chain polyunsaturated omega3 fatty acids display several features of the metabolic syndrome, including visceral obesity, liver steatosis, insulin resistance, hypertension, and cardiac hypertrophy. In the framework of an extensive study on such metabolic, hormonal and functional perturbations, the phospholipid fatty acid pattern and ex vivo metabolism of D-glucose were recently investigated in the soleus muscle of these omega3-depleted rats. The present study deals with the triglyceride fatty acid content and pattern of the soleus muscle in control animals and omega3-depleted rats. Some of the latter rats were injected intravenously 60-120 minutes before sacrifice with either an omega3 fatty acid-rich medium-chain triglyceride/fish oil emulsion (omega3-FO rats) or a control medium-chain triglyceride/olive oil emulsion (omega3-OO rats). The total fatty acid content of triglycerides was comparable in control and omega3-depleted rats and, in both cases, inversely related to their C20:4omega6 relative content. At variance with the situation found in control rats, no long-chain polyunsaturated omega3 fatty acid (C18:3omega3, C20:5omega3, C22:5omega3, C22:6omega3) was detected in the omega3-depleted rats. Unexpectedly, the triglyceride content in most long-chain polyunsaturated omega6 fatty acids (C18:2omega6, C20:3omega6, C20:4omega6 and C22:4omega6) had also decreased in the latter rats. Moreover, the activity of Delta9-desaturase was apparently increased in the omega3-depleted rats, as judged from the C16:1omega7/C16:0 and C18:1omega9/C18:0 ratios. The omega3-FO rats differed from omega3-OO rats by a lower contribution of C18:2omega6 metabolites (C18:3omega6, C20:3omega6, C20:4omega6 and C22:4omega6). These findings indicate that the prior injection of the medium-chain triglyceride/fish oil emulsion, known to increase the muscle phospholipid content in long-chain polyunsaturated omega3 fatty acids, may nevertheless accentuate the depletion in long-chain polyunsaturated omega6 fatty acids otherwise found in the triglycerides of omega3-depleted rats. Such a dual effect is reminiscent of that observed, under the same experimental conditions, for selected variables in D-glucose metabolism in the soleus muscle.  相似文献   

3.
Rats depleted in long-chain polyunsaturated omega3 fatty acids (omega3-depleted rats) display several features of the metabolic syndrome including hypertension and cardiac hypertrophy. This coincides with alteration of the cardiac muscle phospholipid and triacylglycerol fatty acid content and/or pattern. In the present study, the latter variables were measured in the cardiac endothelium of normal and omega3-depleted rats. Samples derived from four rats each were obtained from 16 female normal fed rats and three groups of 36-40 female fed omega3-depleted rats each aged 8-9, 15-16 and 22-23 weeks. At comparable mean age, the ratio between the square root of the total fatty acid content of phospholipids and cubic root of the total fatty acid content of triacylglycerols was lower in omega3-depleted rats than in control animals. The total fatty acid content of triacylglycerols was inversely related to their relative content in C20:4omega6. Other differences between omega3-depleted rats and control animals consisted in a lower content of long-chain polyunsaturated omega3 fatty acids in both phospholipids and triacylglycerols, higher content of long-chain polyunsaturated omega6 fatty acids in phospholipids, higher activity of delta9-desaturase (C16:0/C16:1omega7 and C18:0/C18:1omega9 ratios) and elongase [(C16:0 + C16:1omega7)/(C18:0 + C18:1omega9) and C20:4omega6/C22:4omega6 ratios], but impaired generation of C22:6omega3 from C22:5omega3 in the former rats. These findings support the view that cardiovascular perturbations previously documented in the omega3-depleted rats may involve impaired heart endothelial function.  相似文献   

4.
The incorporation of acetate-1-(14)C into the polyunsaturated fatty acids of glycerophosphatides of chick embryonic brain has been studied. After the injection of acetate-1-(14)C into the yolk sac, differences were found in the degree of labeling of the major fatty acids of the omega3 and omega6 series. Arachidonic acid (20:4omega6) showed a high degree of radioactivity while docosahexaenoic acid (22:6omega3) was poorly labeled, at a period of brain development when both fatty acids were being actively deposited. Evidence is presented to indicate that the low activity in docosahexaenoic acid is not explicable on the basis of either a low or high rate of turnover of this polyenoic acid. Similar results were obtained whether the rapid early or slower late stage of brain development was examined. It is suggested that the elongation of omega3 and omega6 series acids may be under the control of different regulatory mechanisms.  相似文献   

5.
The ability of derivatives of the essential fatty acids linoleic acid (C18:2, omega 6) and alpha-linolenic acid (C18:3, omega 3) to stimulate rates of protein synthesis and degradation was investigated in isolated intact muscles from fasted rabbits. Both omega 6 derivatives examined, arachidonic acid (C20:4, omega 6) and dihomo-gamma-linolenic acid (C20:3, omega 6), when added at concentrations up to 1 microM, stimulated the rate of protein synthesis and the release of prostaglandin F2 alpha (PGF2 alpha). Metabolites of the omega 6 series, namely eicosapentaenoic acid (C20:5, omega 3) and docosahexaenoic acid (C22:6, omega 3), were without effect on the rate of protein synthesis and resulted in a decrease in the release of PGF2 alpha. None of the fatty acids had a significant effect on the rate of protein degradation. Although insulin (100 mu units/ml) also stimulated rates of protein synthesis when added alone, none of the omega 3 or omega 6 fatty acids, when added with insulin at concentrations of 0.2 microM, potentiated the effect of the hormone.  相似文献   

6.
The major phosphoglycerides in grey and white matter from the brain of the koala have been separated and examined. The major polyunsaturated fatty acids present in both the diacyl- and alk-1-enyl acylglycerophosphorylethanolamines from grey matter were 22:6 omega 3, 20:4 omega 6, and 22:4 omega 6. In both grey and white matter, 22:6 omega 3 and 20:4 omega 6 were concentrated in the 2-position of diacylglycerophosphorylethanolamines and 22:4 omega 6 in the 2-position of alk-1-enylacylglycerophosphorylethanolamines; polyunsaturated fatty acid levels were higher in diacylglycerophosphorylethanolamines. Ethanolamine phosphoglyceride fractions from grey matter were enriched in polyunsaturated fatty acids compared with those from white matter. The acyl groups 18:0, 18:1, and 16:0 and their alk-1-enyl analogues were prominent in grey and white matter ethanolamine phosphoglycerides; 18:1 was dominant in white matter alk-1-enylacylglycerophosphorylethanolamines. The plasmalogen composition of ethanolamine phosphoglycerides was 55% in grey matter and 76% in white matter. Choline phosphoglycerides contained negligible plasmalogen and low polyunsaturated fatty acid levels. Diacylglycerophosphorylcholine was characterized by high levels of 16:0 and 18:1. Similar acyl group distributions were estimated in the 1-position in both grey and white matter, 16:0 being present at greater than 50%. The presence of the molecular species 18:0/22:6 omega 3 was indicated in grey matter diacylglycerophosphorylethanolamine, 18:1/18:1 in white matter alk-1-enylcylglycerophosphorylethanolamine, and 16:0/18:1 in white matter diacylglycerophosphorylcholine.  相似文献   

7.
Diet and postnatal age effect the fatty acid composition of plasma and tissue lipids. This work was designed as a transversal study to evaluate the changes in the fatty acid composition of plasma phospholipids, cholesteryl esters, triglycerides and free fatty acids in preterm infants (28-35 weeks gestational age), fed human milk (HM) and milk formula (MF) from birth to 1 month of life. Sixteen blood samples were obtained from cord, and 19 at 6-8 h after birth, 14 at 1 week and 9 at 4 weeks from HM-fed infants and 18 at 1 week and 14 at 4 weeks from MF-fed ones. Groups had similar mean birth weight, gestational age and sex ratio. The MF provided 69 kcal/dl and contained 16% of linoleic acid and 1.3% of alpha-linolenic acid on the total fat. Plasma lipid fractions were extracted and separated by thin-layer chromatography and fatty acid methyl esters were quantitated by gas liquid chromatography. In plasma phospholipids, linoleic acid (18:2 omega 6) continuously increased from birth to 1 month of age, but no changes were seen as related to type of diet; polyunsaturated fatty acids greater than 18 carbon atoms of both the omega 6 and omega 3 series (PUFA omega 6 greater than 18 C and omega 3 greater than 18 C) dropped from birth to 1 week and continued to decrease in MF-fed infants until 1 month; eicosatrienoic (20:3 omega 6), arachidonic (20:4 omega 6) and docosahexaenoic (22:6 omega 3) were the fatty acids implicated. In cholesteryl esters palmitoleic (16:1 omega 7) and oleic (18:1 omega 9) acids decreased from birth to 1 month and linoleic acid increased and arachidonic acid dropped, especially in MF fed infants. In triglycerides, palmitic, palmitoleic and stearic acid (18:0) decreased during the first month of life; oleic acid remained constant and linoleic acid increased in all infants, but arachidonic acid decreased only in those fed formula. Free fatty acids showed a similar behavior in fatty acids and in plasma triglycerides. Preterm neonates seem to have special requirements of long-chain PUFA and adapted MF should contain these fatty acids in similar amounts to those of HM to allow the maintenance of an adequate tissue structure and physiology.  相似文献   

8.
The skin displays a highly active metabolism of polyunsaturated fatty acids (PUFA). Dietary deficiency of linoleic acid (LA), an 18-carbon (n-6) PUFA, results in characteristic scaly skin disorder and excessive epidermal water loss. Although arachidonic acid (AA), a 20-carbon (n-6) PUFA, is metabolized via cyclooxygenase pathway into predominantly prostaglandin E2 (PGE2) and PGF2alpha. The 15-lipoygenase is very active in this tissue and catalyzes the transformation of 20-carbon AA into predominantly 15-hydroxyeicosatetraenoic acid (15-HETE). Similarly, the epidermal 15-lipoxygenase also catalyzes the transformation of 18-carbon LA and 20-carbon dihomo-gamma-linolenic acid (DGLA) to 13-hydroxyoctadecadienoic acid (13-HODE) and 15-hydroxyeicosatrienoic acid (15-HETrE), respectively. The monohydroxy fatty acids are incorporated in phospholipids which undergo catalysis to yield substituted-diacylglycerols (13-HODE-DAG) and 15-HETrE-DAG) which exert anti-inflammatory/antiproliferative effects on the skin.  相似文献   

9.
It is generally agreed that arachidonic acid (20: 4 omega 6) can stimulate platelet aggregation after conversion to prostaglandin G2 and H2 and thence to thromboxane A2. This action is prevented by cyclooxygenase inhibitors. Washed platelets were isolated on metrizamide gradient and resuspended in a Ca2+-free buffer. Their stimulation by C 20: 4 6 was followed by 14C serotonin (5HT) release, thromboxane (TX) synthesis and an increase of light transmission, not dependent on aggregation, accompanied by slight lysis (14%). The addition of extrinsic Ca2+ suppressed lysis and allowed the formation of aggregates. Under these conditions, cyclooxygenase inhibitors such as acetyl salicylic acid, indomethacin or flurbiprofen totally suppressed TX synthesis without preventing platelet aggregation or [14C]-5HT release. Other C 20 polyunsaturated fatty acids could not substitute for C 20: 4 omega 6 in inducing aggregation, and Ca2+ was found to be a prerequisite for protection of the cell against lysis as well as for aggregation in the absence or TX formation. The use of the lipoxygenase inhibitor BW 755 C did not prevent C 20: 4 omega 6-induced aggregation of aspirin-treated platelets, suggesting that the phenomenon was independent of this pathway also. The total suppression of oxidative metabolism with these inhibitors was verified by the analysis of icosanoids using glass capillary column gas chromatography. It is suggested that under these conditions, C 20: 4 omega 6-induced platelet aggregation might be due to an increased membrane permeability to Ca2+ induced by this fatty acid in the absence of oxidation.  相似文献   

10.
Omega 3 polyunsaturated fatty acids are promoted as beneficial in the prevention of metabolic and cardiovascular diseases. In general, dietary omega 3 fatty acids are derived from plant sources as linolenic acid (LNA, C18:3 omega3) the precursor to eicosapentaenoic acid (EPA, C20:5 omega3) and docosahexaenoic acid (DHA, C22:6 omega3). However, it remains unclear if the polyunsaturated fatty acid (PUFA) LNA can provide the same health benefits as the very long chain highly unsaturated fatty acids (HUFA) EPA and DHA generally derived from oily fish. In this study, mice were fed synthetic diets containing lard (low in PUFA and HUFA), canola oil (to supply PUFA), or a mixture of menhaden and arasco (fish and fungal) oils (to supply HUFA) for 8 weeks. The diets were neither high in calories nor fat, which was supplied at 6%. The lard and canola oil diets resulted in high levels of hepatic triglycerides and cholesterol and elevation of lipogenic gene expression. By comparison livers from mice fed the fish/fungal oil diet had low levels of lipid accumulation and more closely resembled livers from mice fed standard laboratory chow. SREBP1c and PPARgamma gene and protein expression were high in livers of animals fed diets containing lard or canola oil compared with fish/fungal oil. Hepatic fatty acid analyses indicated that dietary PUFA were efficiently converted to HUFA regardless of source. Therefore, differences in hepatic lipid levels and gene expression between dietary groups were due to exogenous fatty acid supplied rather than endogenous pools. These results have important implications for understanding the regulation of hepatic lipogenesis by dietary fatty acids.  相似文献   

11.
The availability of the fatty acids which are precursors of prostaglandins is affected by dietary intake. We have studied, in particular, the effects of dietary intake of lipids with different amounts of precursor and derivative fatty acids on the synthesis of prostaglandin E2 (PGE2) in rat liver, kidney and lung. Fifteen-month-old rats were fed for 3 months diets containing different amounts of oleic, linoleic, alpha linolenic, gamma linolenic and stearidonic acids. The fatty acid compositions of total phospholipids and prostaglandin E2 levels of liver, kidney and lung were investigated. In the organs studied, the intake of lipids at different amount of precursor/derivative fatty acids caused variations in the fatty acid composition of phospholipids. PGE2 showed different values which did not seem directly affected by tissue availability of arachidonate but by the effect of dietary lipids on the metabolic pool of polyunsaturated fatty acids (PUFAs).  相似文献   

12.
We compared the fatty acid composition of the host-coral Montipora digitata with the fatty acid composition in the coral's endosymbiotic dinoflagellates (zooxanthellae). Fatty acids as methyl esters were determined using gas chromatography (GC) and verified by GC-mass spectrometry. We found the main difference between the fatty acids in the host and their symbionts were that zooxanthellae supported higher proportions of polyunsaturated fatty acids. The presence of fatty acids specific to dinoflagellates (i.e. 18:4omega3, 22:5omega3 and 22:6omega3) in the host tissue suggests that zooxanthellae provide the coral host not only with saturated fatty acids, but also with diverse polyunsaturated fatty acids.  相似文献   

13.
Impaired synthesis of DHA in patients with X-linked retinitis pigmentosa   总被引:1,自引:0,他引:1  
Many patients with X-linked retinitis pigmentosa (XLRP) have lower than normal blood levels of the long-chain polyunsaturated omega3 fatty acid docosahexaenoic acid (DHA; 22:6omega3). This clinical trial was designed to test whether down-regulation of DHA biosynthesis might be responsible for these reduced DHA levels. DHA biosynthesis was assessed in five severely affected patients with XLRP and in five age-matched controls by quantifying conversion of [U-(13)C]alpha-linolenic acid (alpha-LNA) to [(13)C]DHA. Following oral administration of [U-(13)C]alpha-LNA, blood samples were collected at designated intervals for 21 days and isotopic enrichment of all omega3 fatty acids was determined by gas chromatography/mass spectroscopy. Activity of each metabolic step in the conversion of alpha-LNA to DHA was determined by comparison of the ratios of the integrated concentration of (13)C-product to (13)C-precursor in plasma total lipid fractions. The ratio of [(13)C]DHA to [(13)C]18:3omega3 (the entire pathway) and that of [(13)C]20:5omega3 to [(13)C]20:4omega3 (Delta(5)-desaturase) were significantly lower in patients versus controls (P = 0.03 and 0.05, respectively). The estimated biosynthetic rates of [(13)C]20:5omega3, [(13)C]22:5omega3, [(13)C]24:5omega3, [(13)C]24:6omega3, and [(13)C]22:6omega3 were significantly lower in XLRP patients (42%, 43%, 31%, 18%, and 32% of control values, respectively; P < 0.04), supporting down-regulation of Delta(5)-desaturase in XLRP. The disappearance of (13)C-labeled fatty acids from plasma was not greater in XLRP patients compared with controls, suggesting that XLRP was not associated with increased rates of fatty acid oxidation or other routes of catabolism.Thus, despite individual variation among both patients and controls, the data are consistent with a lower rate of Delta(5)-desaturation, suggesting that decreased biosynthesis of DHA may contribute to lower blood levels of DHA in patients with XLRP.  相似文献   

14.
Presently an insufficient supply of long-chain polyunsaturated omega3 fatty acid is prevalent in Western populations leading to potential metabolic consequences. Based on this fact, this study deals mainly with various aspects of lipid metabolism in second generation female omega3-depleted rats. The parametrial fat and body weights were higher in omega3-depleted than control animals. This coincided with liver steatosis but did not alter heart triglyceride/phospholipid ratio. The net uptake of [U-14C] palmitate by adipocytes was also higher in omega3-depleted rats than in control animals. The uptake of D-[U- 4C] glucose or [1,2 (-14)C] acetate by adipocytes was lower, however in omega3-depleted than control animals and was unaffected by insulin in the former as distinct from latter animals. Despite comparable basal lipolysis, the increase in glycerol output from adipocytes provoked by theophylline was higher in omega3-depleted than control rats. The fatty acid pattern of lipids in adipose tissue was characterized in the omega3-depleted rats by a much lower omega3 content, higher apparent Delta 9-saturase and elongase activities, lower efficiency for the conversion of C18:2omega6 to C20:4omega6 and higher efficiency for the conversion of C18:3omega3 to C20:5omega3. These features were compared to those prevailing in liver and plasma lipids. The present study thus extends knowledge on the alteration of lipid metabolism resulting from a deficiency in long-chain polyunsaturated omega3 fatty acids.  相似文献   

15.
Very long chain polyunsaturated fatty acids (VLCPUFAs) such as docosahexaenoic acid (DHA, 22:6n-3), arachidonic acid (ARA, 20:4n-6) and eicosapentaenoic acid (EPA, 20:5-n3) are nutritionally important for humans and animals. De novo biosynthesis of these fatty acids mainly occurs in microorganisms and goes through either an aerobic pathway catalyzed by type I/II fatty acid synthase, desaturases and elongases or an anaerobic pathway catalyzed by a polyunsaturated fatty acid synthase. After synthesis, VLCPUFAs must be incorporated into glycerolipids for storage through acyl assembly processes. Understanding the mechanisms for the biosynthesis of VLCPUFAs and their incorporation into glycerolipids is important not only for developing a renewable, sustainable and environment-friendly source of these fatty acids in microorganisms, but also, for designing effective strategies for metabolic engineering of these fatty acids in heterologous systems. This review highlights recent findings which have increased our understanding of biosynthesis of VLCPUFAs and their incorporation into glycerolipids in microorganisms. Future directions in improving the production of VLCPUFAs in native microbial producers are also discussed along with transgenic production of these fatty acids in oleaginous microorganisms and oilseed crops for food and feed uses.  相似文献   

16.
The polyunsaturated fatty acid composition of Brugia malayi microfilariae was analyzed by gas chromatography and compared to that of sera from B. malayi-infected jirds. The essential fatty acid, linoleic acid (18:2 omega 6), was the most abundant fatty acid present in both microfilarial total lipids and phospholipids as well as in jird sera. In contrast, arachidonic acid (20:4 omega 6), as well as the 18:3 omega 6, 20:2 omega 6, and 20:3 omega 6 intermediates that are formed in the enzymatic conversion of linoleic acid to arachidonic acid, were proportionally more abundant in microfilariae than in jird sera. To assess the capacity of microfilariae to transform linoleic acid into arachidonic acid, B. malayi microfilariae were incubated with [14C]linoleic acid. Microfilarial lipids were extracted and resolved by high-pressure liquid chromatography and thin-layer chromatography. A portion of [14C]linoleic acid incorporated by microfilariae was converted to [14C]arachidonic acid. Thus, microfilariae can not only incorporate exogenous arachidonic acid, as previously demonstrated, but can also synthesize arachidonic acid from exogenous linoleic acid. The capacity of microfilariae to utilize specific host polyunsaturated fatty acids raises the possibility that intravascular filarial parasites may synthesize eicosanoid metabolites of arachidonic acid that could mediate filarial-host cell interactions.  相似文献   

17.
Long-chain polyunsaturated fatty acids, notably arachidonic (AA) and docosahexaenoic (DHA) acids are abundant in brain and may be conditionally essential in fetal life. We investigated umbilical artery (UA) and vein (UV) fatty acid compositions and early neonatal neurological condition in 317 term infants. Neurological condition was summarized as a clinical classification and a 'neurological optimality score' (NOS). Neurologically abnormal infants (n=27) had lower UV DHA and essential fatty acid (EFA) status. NOS correlated positively with AA (UV), and EFA (UV) and DHA status (UV and UA) and negatively with 18:2omega6 and omega9 (UV), and 20:3omega9, omega7 and C18 trans fatty acids (UV and UA). UV DHA, AA, saturated fatty acids, gestational age and obstetrical optimality score explained 16.2% of the NOS variance. Early postnatal neurological condition seems negatively influenced by lower fetal DHA, AA and EFA status. C18 trans fatty acids and 18:2omega6 may exert negative effects by impairment of LCP status.  相似文献   

18.
The role of acyl‐CoA‐dependent Δ6‐desaturation in the heterologous synthesis of omega‐3 long‐chain polyunsaturated fatty acids was systematically evaluated in transgenic yeast and Arabidopsis thaliana. The acyl‐CoA Δ6‐desaturase from the picoalga Ostreococcus tauri and orthologous activities from mouse (Mus musculus) and salmon (Salmo salar) were shown to generate substantial levels of Δ6‐desaturated acyl‐CoAs, in contrast to the phospholipid‐dependent Δ6‐desaturases from higher plants that failed to modify this metabolic pool. Transgenic plants expressing the acyl‐CoA Δ6‐desaturases from either O. tauri or salmon, in conjunction with the two additional activities required for the synthesis of C20 polyunsaturated fatty acids, contained higher levels of eicosapentaenoic acid compared with plants expressing the borage phospholipid‐dependent Δ6‐desaturase. The use of acyl‐CoA‐dependent Δ6‐desaturases almost completely abolished the accumulation of unwanted biosynthetic intermediates such as γ‐linolenic acid in total seed lipids. Expression of acyl‐CoA Δ6‐desaturases resulted in increased distribution of long‐chain polyunsaturated fatty acids in the polar lipids of transgenic plants, reflecting the larger substrate pool available for acylation by enzymes of the Kennedy pathway. Expression of the O. tauriΔ6‐desaturase in transgenic Camelina sativa plants also resulted in the accumulation of high levels of Δ6‐desaturated fatty acids. This study provides evidence for the efficacy of using acyl‐CoA‐dependent Δ6‐desaturases in the efficient metabolic engineering of transgenic plants with high value traits such as the synthesis of omega‐3 LC‐PUFAs.  相似文献   

19.
The effect of linolenic acid (C18:3 omega 3) on the development of Strongyloides ratti first-stage larvae (L1) in culture was studied. The fatty acid composition of S. ratti free-living generations was analyzed by gas chromatography. L1 had abundant linoleic acid (C18:2 omega 6) but its proportion decreased with development. On the contrary, eicosapentaenoic acid (C20:5 omega 3) and C20:4 omega 3 were prominent in the filariform larva (L3). Because C20:5 omega 3 is generally synthesized from C18:3 omega 3 via C20:4 omega 3, the high ratio of C20:5 omega 3/C18:3 omega 3 of L3 in all the free-living generations suggested that polyunsaturated fatty acid metabolism, particularly the omega-3 series, and eicosanoids produced had important roles in the development of S. ratti L1.  相似文献   

20.
We studied the effect of transforming growth factor-beta (TGF-beta) on prostaglandin E2 (PGE2) production and mitogenesis in human amnion cells and compared the response in amnion cells with that in A431 cells. Both amnion cells and A431 cells respond to epidermal growth factor (EGF) with increased production of PGE2 whereas EGF promotes mitogenesis in amnion cells but not in A431 cells. In amnion cells, TGF-beta was not mitogenic, and did not alter the mitogenic response of cells to EGF. Treatment of amnion cells with TGF-beta did, however, cause a decrease in PGE2 production relative to untreated cells, although EGF stimulated PGE2 production was not attenuated. In A431 cells, TGF-beta acted to decrease PGE2 production relative to untreated cells and to attenuate the stimulation of PGE2 production effected by EGF. The inhibitory action of TGF-beta on PG production in amnion and A431 cells is contrary to the stimulation of PG production in mouse calvaria reported by others and is suggestive that the effect of TGF-beta on prostaglandin production, like its effect on growth, varies between different cell types. Inhibition of PG production by treatment of amnion or A431 cells with mefenamic acid did not alter thymidine incorporation into DNA in response to EGF; similarly, the addition of PGE2 or PGF2 alpha to culture media of amnion or A431 cells had no effect on mitogenesis (in the absence or presence of EGF). Based on these findings, we conclude that PG production and EGF action on proliferation (stimulation in amnion cells; inhibition in A431 cells) are dissociated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号