首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 15 毫秒
1.
2.
Significant spatial variability in NH4+, NO3- and H+ net fluxes was measured in roots of young seedlings of Douglas-fir (Pseudotsuga menziesii) and lodgepole pine (Pinus contorta) with ion-selective microelectrodes. Seedlings were grown with NH4+, NO3-, NH4NO3 or no nitrogen (N), and were measured in solutions containing one or both N ions, or no N in a full factorial design. Net NO3- and NH4+ uptake and H+ efflux were greater in Douglas-fir than lodgepole pine and in roots not exposed to N in pretreatment. In general, the rates of net NH4+ uptake were the same in the presence or absence of NO3-, and vice versa. The highest NO3- influx occurred 0-30 mm from the root apex in Douglas-fir and 0-10 mm from the apex in lodgepole pine. Net NH4+ flux was zero or negative (efflux) at Douglas-fir root tips, and the highest NH4+ influx occurred 5-20 mm from the root tip. Lodgepole pine had some NH4+ influx at the root tips, and the maximum net uptake 5 mm from the root tip. Net H+ efflux was greatest in the first 10 mm of roots of both species. This study demonstrates that nutrient uptake by conifer roots can vary significantly across different regions of the root, and indicates that ion flux profiles along the roots may be influenced by rates of root growth and maturation.  相似文献   

3.
To clarify the role of the fungal nitrate assimilation pathway in nitrate reduction by mycorrhizal plants, nitrate reductase (NR)-deficient (NR) mutants of the ectomycorrhizal basidiomycete Hebeloma cylindrosporum Romagnesi have been selected. These mutants were produced by u.v. mutagenesis on protoplasts originating from homokaryotic mycelia belonging to complementary mating types of this heterothallic tetrapolar species. Chlorate-resistant mutants were first selected in the presence of different nitrogen (N) sources in the culture medium. Among 1495 chlorate resistant mycelia, 30 failed to grow on nitrate and lacked a detectable NR activity. Growth tests on different N sources suggested that the NR activity of all the different mutants is specifically impaired as a result of mutations in either the gene coding for NR apoprotein or genes controlling the synthesis of the molybdenum cofactor. Furthermore, restoration of NR activity in some of the dikaryons obtained after crosses between the different mutant mycelia suggested that not all the selected mutations mapped in the same gene. Utilization of N on a NH415NO3 medium was studied for two mutant strains and their corresponding wild-type homokaryons. None of the mutants could use nitrate whereas 15N enrichment values indicated that 13–27% of N present in 13-d-old wild-type mycelia originated from nitrate. Apparently, the mutant mycelia do not compensate their inability to use nitrate by a more efficient use of ammonium. These different NR mutants still form mycorrhizas with the habitual host plant, Pinus pinaster (Ait.), making them suitable for study of the contribution of the fungal nitrate assimilation pathway to nitrate assimilation by mycorrhizal plants.  相似文献   

4.
5.
 Container-grown Pseudotsuga menziesii and Pinus pinaster seedlings were inoculated with water suspensions of spores of five ectomycorrhizal fungi commonly found in northeastern Spain. Pseudotsuga menziesii seedlings were inoculated with basidiospores of Melanogaster ambiguus, or Rhizopogon subareolatus, or with ascospores of Tuber maculatum. Pinus pinaster seedlings were inoculated with basidiospores of Melanogaster ambiguus, Rhizopogon roseolus or Scleroderma citrinum. The spore concentrations were 102–107 spores per seedling for Melanogaster ambiguus (in Pseu dotsuga menziesii) and Rhizopogon subareolatus, 103–107 for Melanogaster ambiguus (in Pinus pinaster), Rhizopogon roseolus, and Scleroderma citrinum, and 102–104 for Tuber maculatum. Melanogaster ambiguus colonized more short roots in a larger proportion of plants at 107 spores per seedling than at any other rate. The highest colonization by Rhizopogon subareolatus was obtained at 104 spores per seedling and higher, and all inoculated plants became infected at 106 spores per seedling and higher. Tuber maculatum colonized a high percentage of short roots at all rates tested; the proportion of infected plants was over 80% at 103–104 spores per plant, decreasing to 50% at 102 spores per plant. Rhizopogon roseolus colonized the highest number of short roots on nearly all the inoculated plants when applied at 105 spores per seedling and higher. Scleroderma citrinum colonized a high percentage of short roots on all inoculated plants when applied at 105 spores per seedling and higher. The abundance of sporocarps of Melanogaster ambiguus, Rhizopogon subareolatus, R hizopogon roseolus and Scleroderma citrinum and their colonization ability at relatively low rates allows these spores to be used as ectomycorrhizal inocula on a large scale. Accepted: 27 February 1996  相似文献   

6.
7.
Ectomycorrhizal (ECM) association can improve plant phosphorus (P) nutrition. Polyphosphates (polyP) synthesized in distant fungal cells after P uptake may contribute to P supply from the fungus to the host plant if they are hydrolyzed to phosphate in ECM roots then transferred to the host plant when required. In this study, we addressed this hypothesis for the ECM fungus Hebeloma cylindrosporum grown in vitro and incubated without plant or with host (Pinus pinaster) and non‐host (Zea mays) plants, using an experimental system simulating the symbiotic interface. We used 32P labelling to quantify P accumulation and P efflux and in vivo and in vitro nuclear magnetic resonance (NMR) spectroscopy and cytological staining to follow the fate of fungal polyP. Phosphate supply triggered a massive P accumulation as newly synthesized long‐chain polyP in H. cylindrosporum if previously grown under P‐deficient conditions. P efflux from H. cylindrosporum towards the roots was stimulated by both host and non‐host plants. However, the host plant enhanced 32P release compared with the non‐host plant and specifically increased the proportion of short‐chain polyP in the interacting mycelia. These results support the existence of specific host plant effects on fungal P metabolism able to provide P in the apoplast of ectomycorrhizal roots.  相似文献   

8.
9.
Knowledge of the preferred source of N for Eucalyptus nitens will lead to improved fertiliser management practices in plantations. Ion selective microelectrodes were used non-invasively to measure simultaneously net fluxes of NH4 +, NO3 and H+ along the tap root of solution-cultured E. nitens. Measurements were conducted in solutions containing 100 m NH4NO3. The pattern of fluxes was such that there was a large influx of NH4 +, a smaller influx of NO3 and large H+ efflux. The ratio of these fluxes was constant, according to the ratio 3:1:–6 (NH4 +:NO3 :H+). Within the region 20–60 mm from the root apex of E. nitens seedlings there was spatial and temporal variation in fluxes but flux patterns remained constant. Root hair density did not affect fluxes nor did proximity to lateral roots. Variation was less than that found in previous studies of localised root fluxes using similar high-resolution measurement techniques. It was concluded that small-scale spatial variation in fluxes may have confounded previous studies. There were associations between fluxes of all three ions, the strongest associations being between NH4 + and H+, and NH4 + and NO3 . Overall, these results are consistent with NH4 + being the preferred source N for E. nitens.  相似文献   

10.
Lainé  P.  Ourry  A.  Boucaud  J.  Salette  J. 《Plant and Soil》1998,202(1):61-67
Roots of higher plants are usually exposed to varying spatial and temporal changes in concentrations of soil mineral nitrogen. A split root system was used to see how Lolium multiflorum Lam. roots adapt to such variations to cope with their N requirements. Plants were grown in hydroponic culture with their root system split in two spatially separated compartments allowing them to be fed with or without KNO3. Net NO3 - uptake, 15NO3 - influx and root growth were studied in relation to time. Within less than 24 h following deprivation of KNO3 to half the roots, the influx in NO3 - fed roots was observed to increase (about 200% of the influx measured in plant uniformly NO3 - supplied control plant) thereby compensating the whole plant for the lack of uptake by the N deprived roots. Due to the large NO3 - concentrations in the roots, the NO3 - efflux was also increased so that the net uptake rate increased only slightly (35% maximum) compared with the values obtained for control plants uniformly supplied with NO3 -. This increase in net NO3 - uptake rate was not sufficient to compensate the deficit in N uptake rate of the NO3 - deprived split root in the short term. Over a longer period (>1 wk), root growth of the part of the root system locally supplied with NO3 - was stimulated. An increase in root growth was mainly responsable for the greater uptake of nitrate in Lolium multiflorum so that it was able to fully compensate the deficit in N uptake rate of the NO3 - deprived split root.  相似文献   

11.
Vertical stratification of plant-available K in vermiculitic soil profiles contributes to a late-season K deficiency that limits cotton (Gossypium hirsutum L.) yields on affected soils. Split-root solution culture and split-pot soil experiments were conducted to determine whether root distribution and cultivar differences in root extension in these stratified profiles result from a compensatory response to localized enrichment with NO3-N, PO4-P, and/or K in the root zone. Compensatory root growth was greatest in response to localized NO3-N enrichment. For two cultivars examined in solution culture, 74% of new root development occurred in the half-pot providing 90% of the total NO3-N supply. Only 60% of cultivar root development occurred in the half-pot providing 90% of the PO4-P. No compensatory root growth was observed in response to localized K enrichment. In the split-pot system, the proportion of total root surface area developing in a half-pot was highly correlated with localized soil NO3-N levels (r2=0.81), while increased K availability in one half of the root zone did not affect root distribution. Mean soil NO3-N supply to the whole root system determined shoot N accumulation (r2=0.97). Shoot K accumulation was not related to soil K availability but was strongly correlated with mean root surface area density (r2=0.86). Cultivar Acala GC510, known to be less sensitive to K deficiency than Acala SJ-2, had significantly larger root diameter in all nutrient-supply environments. Under conditions of K stress, Acala GC510 had increased root branching and allocated greater dry matter to roots relative to shoots than Acala SJ-2. The results demonstrate that K acquisition by cotton is strongly influenced by the quantity and distribution of NO3-N in the root zone through its effects on root proliferation, and that distinct cultivar differences associated with crop performance on low K soils can be detected in short-term, solution culture growth systems.  相似文献   

12.
Net fluxes of NH4+ and NO3 along adventitious roots of rice ( Oryza sativa L.) and the primary seminal root of maize ( Zea mays L.) were investigated under nonperturbing conditions using ion-selective microelectrodes. The roots of rice contained a layer of sclerenchymatous fibres on the external side of the cortex, whereas this structure was absent in maize. Net uptake of NH4+ was faster than that of NO3 at 1 mm behind the apex of both rice and maize roots when these ions were supplied together, each at 0·1 mol m–3. In rice, NH4+ net uptake declined in the more basal regions, whereas NO3 net uptake increased to a maximum at 21 mm behind the apex and then it also declined. Similar patterns of net uptake were observed when NH4+ or NO3 was the sole nitrogen source, although the rates of NO3 net uptake were faster in the absence of NH4+. In contrast to rice, rates of NH4+ and NO3 net uptake in the more basal regions of maize roots were similar to those near the root apex. Hence, the layer of sclerenchymatous fibres may have limited ion absorption in the older regions of rice roots.  相似文献   

13.
Seedlings of Scots pine ( Pinus sylvestris L.) were grown on perlite for 21 days under controlled conditions. Apart from the water control, KNO3 (15 m M ), (NH4)2SO4 (7.5 m M ), and NH4NO3 (15 m M ) were offered to study the effects of a high nitrogen supply on nitrogen assimilation. In some experiments 1.3 m M potassium was added to the basic ammonium solutions. In labelling studies nitrate and ammonium were 2.3 atom%15N-enriched. It was found that over the 21-day period approximately three times more ammonium-N was taken up than nitrate-N. However, nitrate and ammonium, applied simultaneously, were taken up to the same extent as if they were applied separately (additivity). The presence of K+ in the medium did not affect N-uptake. Among the soluble N-containing compounds nitrate, ammonium and 8 amino acids were quantified. It was found that assimilation of nitrate can cope with the uptake of NO3 under all circumstances. Neither free nitrate nor ammonium or amino acids accumulated to an extent exceeding the values of water-grown seedlings. On the other hand, in case of high ammonium supply considerably more nitrogen was taken up than could be incorporated into nonsoluble N-containing substance ('protein'). The remaining nitrogen was found to accumulate in intermediary storage pools (free NH4+, glutamine, asparagine, arginine). Part of this accumulated N could be incorporated into protein when potassium was offered in the nutrient solution. It is concluded that potassium is a requirement for a high rate of protein synthesis not only in crop plants but also in conifers.  相似文献   

14.
Two methods for measuring proton fluxes along intact maize roots grown with NH 4 + or NO 3 at pH 6.5 were compared. Videodensitometric measurement of changes in a pH-indicator dye by video camera was used to map pH around roots and determine the amounts of protons released by various root regions. This method was compared with potentiometric determination of the concentration of H+ in the unstirred layer at the root surface using ion-selective microelectrodes. With NH 4 + the roots released large amounts of H+ in preferential regions where the rate of flux can reach 1.4 or even 2.5 nmol m−1 s−1. Videodensitometry indicated a first region of root acidification in the subapical zone, but this was more difficult to localize with microelectrodes. With NO3 both methods showed that the roots released small amounts of H+ and that the apical region took up H+ in the first 10 mm then sometimes released H+ over the following 10 mm of root. The H+ flux profiles obtained by both methods were in good agreement in terms of both order of magnitude of the fluxes and spatial differences along the root. These results suggest that videodensitometry, which is easier to use than potentiometry, can be used to screen different plant species or cultivars under various experimental conditions. The microelectrode technique is indispensable, however, for studying the underlying mechanisms of net H+ fluxes. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

15.
The inter- and intracellular distribution of the elements calcium, potassium and sodium in non-mycorrhizal and mycorrhizal roots of Pinus sylvestris dependent on different external nutrient supply conditions was detected by energy-dispersive X-ray microanalysis after cryofixation, freeze-drying and pressure infiltration of the material. In non-mycorrhizal and mycorrhizal roots, calcium was mainly detectable in the apoplastic regions. The levels in vacuoles and cytoplasm were near the limits of detection by X-ray microanalysis. Incubation with high concentrations of potassium and sodium, or mycorrhizal infection with Suillus bovinus and Pisolithus tinctorius reduced the amounts of calcium detectable in the roots, especially in the apoplast of cortical cells. The studies revealed that: potassium is mainly localized in cytoplasm and cell walls; the cytoplasmic content is regulated over a wide range of external potassium concentrations; potassium levels in the inner parts of roots are higher than in the outer parts. Mycorrhizal infection with Suillus bovinus had no effect on the inter- and intracellular distribution of potassium in roots but, if the external supply was low, the potassium content in shoots was reduced. In non-mycorrhizal pine roots and those infected with Paxillus involutus an increase in the sodium content of all cell compartments was observed after treatment with high external concentrations of NaH2PO4. However, an increase in sodium content in mycorrhizas of S. bovinus was not detected. The X-ray microanalytical results are discussed in relation to the apoplastic movement of nutrients in non-mycorrhizal and mycorrhizal fine roots of pine and to the demand for these nutrients in different intracellular compartments.  相似文献   

16.
Paterson  Eric  Thornton  Barry  Sim  Allan  Pratt  Shona 《Plant and Soil》2003,250(2):293-305
The aim of this study was to investigate the physiological basis of increased root exudation from Festuca rubra, in response to defoliation. The hypothesis, that assimilate supply to roots is a key determinant of the response of root exudation to defoliation was tested by imposing CO2-deplete (< 50 mol mol–1) atmospheres to F. rubra. This was done as a non-destructive means of preventing supply of new assimilate to roots of intact and defoliated plants. F. rubra was grown in axenic sand systems, with defoliation and CO2-depletion treatments applied to plants at 14 and 35 days after planting. Root exudation and NO3 uptake were quantified throughout, and post-treatment uptake and allocation of N were determined from the distribution of 15N label, supplied as 15NO3 . Defoliation of F. rubra resulted in significantly (P <0.01) increased root exudation, CO2-depletion did not result in increased exudation from plants of either age. When treatments were applied to F. rubra after 14 days, defoliation and CO2-depletion each reduced NO3 uptake significantly (P <0.05). However, in older plants, uptake of NO3 was less sensitive to defoliation and CO2-depletion. The results indicate that increased root exudation following defoliation is not related directly to reduced assimilate supply to roots. This was evident from the lack of effect of CO2-depletion on root exudation, and the absence of correlation between root-C efflux and the rate of NO3 uptake. The physiological basis of increased exudation following defoliation remains uncertain, but may be dependent on physical damage, either directly or as a consequence of systemic responses to wounding.  相似文献   

17.
在设施基质栽培条件下,研究了营养液中120、240及360 mg·L-1 3个钾素水平对网纹甜瓜‘甜甜1号’叶片光合特性及叶绿体亚显微结构的影响.结果表明,营养液中钾素水平过低(120 mg·L-1)或过高(360 mg·L-1)均导致网纹甜瓜叶片净光合速率下降,使叶绿体片层结构混乱、变形和片层数减少,但对CO2补偿点(70 μl·L-1)、饱和CO2(600 μl·L-1)、光补偿点(50 μmol·m-2·s-1)无显著影响.适宜的钾素水平能显著提高叶片的饱和光强、羧化效率和表观量子效率,3个指标分别为1 200 μmol·m-2·s-1、0.1364和0.0237.在试验条件下,提高温室内基质栽培网纹甜瓜叶片光合效率的最适钾素水平为240 mg·L-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号