首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of seed advancement on the early growth of sugar beet was determined in two experiments made under controlled conditions and eight field experiments made between 1974 and 1978. The experiments in the growth room suggested that seed advancement increased the rate of emergence and seedling dry weight over a wide range of soil moisture contents but seedling numbers were only greater under sub-optimal moisture conditions. Similarly, in most field experiments, seed advancement resulted in more rapid emergence and larger seedlings. In four field experiments, seed advancement gave up to 16% more plants, and in three experiments a significant increase in final sugar yield of up to 0–7 t h-1 was detected. The plants were hand-singled to a uniform stand and had the crops been drilled to a stand, some yield responses would have been larger. Seed advancement did not decrease the plant stand or final yield in any experiments. Results in 1977 and 1978 provided some evidence that seed advancement may help reduce the damage caused by field mice and the number of plants which bolt and, by making emergence more rapid, be particularly beneficial on soils prone to slumping or capping. There might, however, be a slightly increased risk of frost injury if advanced seed is used for early sowings.  相似文献   

2.
《农业工程》2020,40(2):128-133
Instances of flowering of bamboo species Dendrocalamus strictus are few and far between which are taken as opportunity by nurserymen to collect seeds for propagation. Germination of seeds is reported to be poor. Therefore, different seed priming treatments were applied to D. strictus seeds collected from Ranchi in order to obtain uniform and high germination. Under laboratory conditions, dehusking of seeds before sowing ensured cent percent germination. Seed priming with KNO3 1% solution resulted in 80.4% increase in germination followed by hydropriming by 16 h (73.1% increase). In field conditions, dehusked seeds gave 23.0% germination without any priming treatment. Priming treatment with KNO3 1% gave the highest rise in germination (39.1%) followed by hydropriming for 16 h (26.1%). Seeds with their seed coats intact could give germination of 9.5% when germinated without any treatment. A rise of 115.8% in germination was obtained by priming with KNO3 1% (final germination count 20.5%). The next best treatment was hydropriming for 16 h (final germination 18.5%, a rise of 94.7%). KNO3 1% also induced the earliest and the most rapid germination. When seedlings germinated in laboratory were transferred to soil, all seedlings from all treatments established successfully without any mortality whatsoever. Therefore, it is recommended that seeds should be primed for 8 h with 1% KNO3 and germinated in laboratory or in farm house under normal atmospheric condition before transplanting the seedlings to soil.  相似文献   

3.
Imsande  John  Schmidt  Jean M. 《Plant and Soil》1998,202(1):41-47
During pod filling, a grain legume remobilizes vegetative nitrogen and sulfur to its developing fruit. This study was conducted to determine whether different nitrogen sources affected N and S assimilation and remobilization during pod filling. Well-nodulated plants fed 1.0 mM KNO3, 0.5 mM urea, or 2.5 mM urea assimilated 0%, 37%, or 114% more N, respectively, and 25%, 46%, or 56% more S, respectively, than did the average non-nodulated control plant fed 5.0 mM KNO3. Thus, N source during pod filling greatly affected both N and S assimilation. Depending upon N source, plant N concentration during pod filling decreased from 2.96% to between 1.36% and 1.82%. Non-nodulated control plants fed 5.0 mM KNO3 had the highest residual N at harvest. During the same treatments, plant S concentration decreased from 0.246% to a relatively uniform 0.215%. Thus, during pod filling, vegetative N was seemingly remobilized more efficiently (38–54%) than was S (13%). N source also affected seed yield and seed quality. Non-nodulated control plants fed 5.0 mM KNO3 produced the lowest yield (21.1 g seeds plant-1), whereas well nodulated plants fed 1.0 mM KNO3, 0.5 mM urea, or 2.5 mM urea produced yields of 26.2 g, 31.8 g, and 36.7 g seeds plant-1, respectively. Non-nodulated plants fed 2.5 mM urea yielded 28.6 g of seeds plant-1. Seed N concentrations of non-nodulated plants and nodulated plants fed 2.5 mM urea were high, 6.30% and 6.11% N, respectively, whereas their seed S concentrations were low, 0.348% and 0.330% S, respectively. N sources that produced both a relatively high seed yield and seed N concentration (i.e., a relatively high total seed N plant-1) produced a proportionately smaller increase in total seed sulfur. Consequently, seed quality, as judged solely by seed S concentration, was lowered.  相似文献   

4.
Abstract Chenopodium album L. plants, grown under controlled environmental conditions on different levels of soil nitrate, produced seeds with proportionately different NO?3 contents. Regardless of the endogenous NO?3 content, few seeds germinated in water or upon treatment with KNO3. Ethylene promoted germination, and the extent of germination was positively correlated with the endogenous seed NO?3 content. Combined application of ethylene and KNO3 in the dark had a synergistic effect on NO?3 -deficient seed. The synergism between ethylene and KNO3 was attributable to the NO?3 moiety of the nitrate salt. Ethylene and light showed moderate synergism in seeds with low or high endogenous nitrate. Addition of nitrate, however, masked the interaction between ethylene and light. Gibberellic acid4+7 (GA4+7) or red light, each alone or combined with KNO3, had little effect on germination. When applied together in the dark, ethylene and GA4+7 synergistically enhanced the germination of NO?3-deficient seed. The combined effects of the two hormones on this seed were further enhanced by the addition of KNO3. There was no synergism between ethylene and GA4+7 in NO?3-rich seed. These interactions among GA4+7, ethylene and KNO3 were not affected by light. The results confirm and further elaborate our earlier finding that the sensitivity of C. album seeds to ethylene may depend on nitrate availability.  相似文献   

5.
The effects of gibberellic acid (GA3), potassium nitrate (KNO3), prechilling, temperature, salt stress and osmotic potential on seed germination and sowing depth on seedling emergence and burial depth on seed viability of hoary cress (Cardaria draba (L.) Desv.), were studied in a series of laboratory, glasshouse and outdoor experiments. The optimal temperature for hoary cress seed germination was 20°C, both in light/dark and darkness regimes. Seed germination of hoary cress at 400 ppm concentration of GA3 in a light/dark regime was maximal. Potassium nitrate concentrations increased the percentage of germination in comparison with the control treatment. Increasing the duration of dry prechilling to 30 and 45 days promoted the seed germination of hoary cress. Germination of hoary cress markedly decreased as salt and drought stress increased. Seed germination of hoary cress occurred at a range of pH from 3 to 11. Seedling emergence significantly decreased as planting depth increased. Total seed viability decreased with increasing burial depth. The maximum increase in mortality occurred in seeds that were buried at 5‐cm depth.  相似文献   

6.
The medium forin vitro culture of green and SANDOZ herbicides-treatedChenopodium rubrum L. plants contained saccharides and hormones in different concentrations. Five days after sowing, the plants were exposed to non-inductive (15 long days—LD) or inductive (6 short days—SD + 9 LD) photoperiodic conditions. The length of hypocotyl and cotyledon blade were measured and percentage of flowering was scored. Gibberellic acid (GA3) stimulated hypocotyl growth of green and photobleached plants under SD and inhibited under LD conditions. Indole-3-acetic acid (IAA) slightly stimulated hypocotyl growth of green plants only under LD conditions. Benzylaminopurine (BAP) inhibited hypocotyl growth regardless of photoperiodic regime. The optimal concentration of glucose or saccharose for flowering in green and SANDOZ-treated plants was 5%. In green SAN 9785-treated plants exogenous saccharides compensated lack of photosynthates to bring about full flowering, but SAN 9789-treated plants needed in addition GA3.  相似文献   

7.
Araucaria angustifolia exhibits cryptogeal germination, where the root–hypocotyl axis emerges first and penetrates into the soil. In Araucaria bidwillii, the whole process of transferring reserves from the seed to the seedling takes place before shoot emergence, and there is a major storage of these reserves in the underground hypocotyl, which assumes a tuberous form. In A. angustifolia, the shoot emerges before seed reserves are depleted. Though it does not grow like a tuber, the hypocotyl of A. angustifolia grows thicker than the adjacent taproot during initial growth, and we hypothesize that it may act as a major sink for seed reserves during this stage. The study tests this hypothesis by evaluating changes in the mass of different plant parts during initial growth. Four harvests were conducted during a ~6-month period to compare the dry mass of different fractions (attached seed, seedling, its shoot and root and the hypocotyl) of seedlings growing under darkness and high light. While seed reserves were still being depleted, the hypocotyl mass showed an initial increase and then a reduction. This was more abrupt when light was available. After seed mass had stabilized, the mass of the hypocotyl continued to decrease in the dark-grown seedlings, but showed a second increase in the light-grown ones. Results confirm the hypothesis that the hypocotyl represents a major sink for the seed reserves of A. angustifolia, acting as an underground storage structure for the growing seedling. Its reserves seem to be important for sustaining initial shoot growth and might also act as a storage sink for photosynthates.  相似文献   

8.
Floral induction (FI) has been intensively studied in mango, more under sub-tropical than under tropical environments. Decreases in temperature below 20 °C, which is common in sub-tropical regions but seldom occurs in many tropical ones, has been considered a critical factor for FI in this species. Trying to understand the way by which two FI treatments, potassium nitrate (KNO3) and paclobutrazol (PBZ), can regulate flowering by modulating the endogenous concentrations of plant hormones, the following compounds were analyzed in terminal buds, wood and bark sections of lateral branches from treated and untreated ‘Tommy Atkins’ mango trees growing under tropical conditions: indole-acetic acid (IAA), gibberellins (GAs), zeatin/zeatin riboside (Z/ZR) and N 6 2-isopentenyl) adenine/N 6 2-isopentenyl) adenosine. Behavior in the contents of these endogenous hormones was often irregular but their course was in general similar for all three treatments. However, levels of GAs were consistently lower in most evaluations of wood and bark sections of PBZ-treated trees compared to KNO3-treated and control plants. In contrast, the endogenous levels of the presumably FI promoting Z/ZR raised considerably at the time close to FI in buds of KNO3-treated trees. These KNO3-treated trees flowered earlier and more profusely than those from other treatments. Although PBZ could be related in this work to a reduction in GA contents, no direct influence of this compound over FI could be established. KNO3 might partially exert its promoting effect on mango FI by increasing Z/ZR contents.  相似文献   

9.
The study is focused on changes in metabolism of Matricaria chamomilla, caused by potassium nitrate (KNO3) supplement and foliar application of an ethylene releaser—ethephon (ET). ET-treated plants were irrigated with 0, 9, 18 or 27 mmol of KNO3 during 1 week and simultaneously treated with ET. The same procedure was followed with ET non-treated plants, where an equal amount of distilled water was sprayed on leaves. Nitrogen addition into soil substrate caused considerable increment in dry matter content, nitrate accumulation and amino acids synthesis. After ET application, a positive correlation between KNO3 supply and stress-related parameters, such as superoxide radical, hydrogen peroxide and malondialdehyde was found. Experimental conditions led to a sharp decrease in herniarin level, which was accompanied with increasing content of its glycosidic precursors in ET-treated plants. The observations indicated that higher doses of nitrate suppressed the stimulation effect of ET on the production of salicylic acid and umbelliferone, metabolites, which are involved in stress responses in plants. In the case of umbelliferone, ET strongly induced its accumulation in comparison with ET non-treated variants.  相似文献   

10.
11.
Studying seed dormancy and its consequent effect can provide important information for vegetation restoration and management. The present study investigated seed dormancy, seedling emergence and seed survival in the soil seed bank of Stipa bungeana, a grass species used in restoration of degraded land on the Loess Plateau in northwest China. Dormancy of fresh seeds was determined by incubation of seeds over a range of temperatures in both light and dark. Seed germination was evaluated after mechanical removal of palea and lemma (hulls), chemical scarification and dry storage. Fresh and one-year-stored seeds were sown in the field, and seedling emergence was monitored weekly for 8 weeks. Furthermore, seeds were buried at different soil depths, and then retrieved every 1 or 2 months to determine seed dormancy and seed viability in the laboratory. Fresh seeds (caryopses enclosed by palea and lemma) had non-deep physiological dormancy. Removal of palea and lemma, chemical scarification, dry storage (afterripening), gibberellin (GA3) and potassium nitrate (KNO3) significantly improved germination. Dormancy was completely released by removal of the hulls, but seeds on which hulls were put back to their original position germinated to only 46%. Pretreatment of seeds with a 30% NaOH solution for 60 min increased germination from 25% to 82%. Speed of seedling emergence from fresh seeds was significantly lower than that of seeds stored for 1 year. However, final percentage of seedling emergence did not differ significantly for seeds sown at depths of 0 and 1 cm. Most fresh seeds of S. bungeana buried in the field in early July either had germinated or lost viability by September. All seeds buried at a depth of 5 cm had lost viability after 5 months, whereas 12% and 4% seeds of those sown on the soil surface were viable after 5 and 12 months, respectively.  相似文献   

12.
Abstract

Desert plant species commonly use seed dormancy to prevent germination during unfavorable environmental conditions and thus increase the probability of seedling survival. Seed dormancy presents a challenge for restoration ecology, particularly in desert species for which our knowledge of dormancy regulation is limited. In the present study the effect of gibberellic acid (GA3) and potassium nitrate (KNO3) on seed dormancy release was investigated on eight Arabian desert species. Both treatments significantly enhanced the germination of most species tested. GA3 was more effective than KNO3 in enhancing germination percentage, reducing mean germination time and synchronizing the germination in most of the studied species. Light requirement during germination was species-specific, but in general the presence of light promoted germination more effectively when combined with KNO3 and GA3. The wide variation in dormancy and germination requirements among the tested species is indicative of distinct germination niches, which might assist their co-existence in similar habitat/environmental conditions. Seed pre-treatments that optimize germination in this habitat must therefore be assessed for individual species to improve the outcomes of ecological restoration.  相似文献   

13.
The potential for the pre‐zygotic plant growth environment to play a role in determining seed longevity was investigated for a species that inhabits arid to semi‐arid Australia. Seed longevity is particularly important for wild populations in fluctuating environments because the longer a seed‐lot is able to survive in the soil seed bank the more likely it is to buffer the population from unpredictable environments. Thus Wahlenbergia tumidifructa plants received wet or dry soil moisture within a warm or cool glasshouse until flowering. Seeds subsequently produced by flowers that opened on the day that plants were moved to a common environment were collected at maturity and longevity assessed by controlled ageing at 60% relative humidity and 45°C. Mean seed longevity was similar for seeds produced by plants that grew in warm‐wet, warm‐dry and cool‐dry conditions (P50 of about 20 days), but extended for plants in cool‐wet conditions (P50 = 41.7 days). Cool temperatures resulted in seeds with a wider distribution of lifespans (σ = 20 days) than warm conditions (σ = 12 days); the large σ caused the extended P50 for cool‐wet plants, but not cool‐dry as a result of a concomitant reduction in initial seed germination (Ki). After moving to the common environment, all plants generated new vegetative material, which went on to produce seeds with similar longevity (P50 approx. 20 days) irrespective of original environment. Visible phenotypic responses of the parent to environmental conditions correlated with longevity and quality parameters of the progeny seeds, suggesting that a parental effect modified seed longevity. Our study provides novel empirical data showing that environmental conditions expected under climate change scenarios may potentially cause seed longevity to decline for a species that inhabits arid to semi‐arid Australia. These negative impacts on population buffering may weaken the storage effect mechanism of species coexistence in fluctuating environments.  相似文献   

14.
The effect of various pre-treatments and their interaction with temperature on cumulative percentage and the rate of germination were evaluated for Digitaria nuda. Stored and fresh seeds were pre-treated with either 0.02 M KNO3, soaked in water for 24 h (priming), sterilized with 0.5% NaOCl or heat treated at 60 °C. Seeds were germinated at constant temperatures of 25 and 30 °C and fluctuating temperature regimes of 25/10 and 30/15 °C. The effect of pre-chilling on germination of stored and fresh seed was evaluated at 30/15 °C, and seed emergence in two soil types at different burial depths (0, 0.5, 1, 2, 3, 4, 5 and 6 cm) was also determined. The pre-treatment of stored seed with KNO3 resulted in the highest germination percentage (100%), whereas the pre-treatment of fresh seed with water for 24 h gave the best germination (99%), at constant temperatures of 25 and 30 °C. Pre-chilling of seed increased germination by more than 30%. Emergence from clay loam soil was greater compared with the emergence from sandy loam soil. Total seedling emergence decreased exponentially with increasing burial depths with only 5% of seed germinating from a burial depth of 6 cm. Results from this study showed that germination requirements are species specific and knowledge of factors influencing germination and emergence of grass weed seed can assist in predicting flushes in emergence allowing producers to implement control practices more effectively.  相似文献   

15.
16.
Summary The effect of exogenous KNO3, the terminal acceptor of electrons in oxygen-free medium, on mitochondrial ultrastructure and on the growth rate of 4-day-old rice coleoptiles under strictly anoxic conditions was studied. Exogenous nitrate (10 mM) did not exert any significant effect on the growth rate of coleoptiles of intact seedlings compared to their growth in KNO3-free medium. Anaerobic incubation of detached coleoptiles in KNO3-free medium for 48 h resulted in the complete destruction of mitochondrial and other cell membranes. In the presence of KNO3, no mitochondrial-membrane destruction was observed even after 48 h anoxia although the mitochondrial ultrastructure was modifed. Cristae were arranged in parallel rows and elongated dumbbell-shaped mitochondria appeared in some cells. The data obtained indicate a protective role of exogenous nitrate as electron acceptors in oxygen-free medium. The results of the present investigation are discussed and compared with reports of either markedly damaging or favorable effects of exogenous nitrate on the growth, metabolism, and energetics of rice and other plants under hypoxic and anoxic conditions.  相似文献   

17.

Background and Aims

The phenotypic selection of a diverse insect assemblage was studied on a generalist plant species (Paeonia broteroi) in ten flowering seasons, with tests for whether visitor preferences for plants with larger flowers eventually translated into significant differences among plants in visitation rates, seed production, seed mass, seed germination and seedling survival.

Methods

Selection gradients were used to assess if selection on flower size contributed to explain differences in visitation rates, seed production and seed mass. First, independent analyses were carried out for each season; then for the ten season as a whole. Seedling emergence and survival were assessed by generalized linear models.

Key Results

Directional selection was found on flower size through visitation rates and seed production, and stabilizing selection through seed mass. Thus, larger flowers were more visited, and produced more, but lighter seeds, than smaller flowers. The results suggest a conflicting selection on flower size through seed number and size. Floral integration found in the study populations was larger than that in populations of a distant region. Finally, seed size did not influence seedling emergence and survival; thus, any advantages of seed size may be constrained under natural conditions before plants become reproductive individuals.

Conclusions

Plants with larger flowers may be benefited by producing more lighter seeds than fewer heavier ones, as they may contribute disproportionately to the seed bank, and have better chances that any descendant could eventually recruit. However, it seems unlikely that differences in flower size and integration found among populations in different regions could have been originated by rapid evolutionary change. First, because of the conflicting selection described; second, because of the remarkably low seedling survival found under natural conditions. Consequently, the influence of pollinator selection alone does not seem to explain differences in flower size and integration.Key words: Paeonia broteroi, long-term selection, conflicting selection, flower size, seed production, generalist pollination  相似文献   

18.
Summary Studies under growth cabinet conditions investigated the effect of source and concentration of nitrogen and timing of nitrogen application on the growth and nitrogen fixation byLotus pedunculatus cv. Maku andTrifolium repens cv. S184. KNO3, NaNO3 and NH4NO3 were added at transplanting at the following rates: 3.33, 7.78 and 13.33 mg N/plant. KNO3 was added at 3.33 and 7.78 mg N/plant at 0, 6, 12, 18, 24 or 30 days after transplanting.Lotus shoot weight increased with all increasing nitrogen sources but clover only responded to KNO3 and NaNO3. The root weight of both species increased with increasing KNO3 and NH4NO3. The percentage increase in lotus and clover shoot growth was greater than that of root growth when KNO3 was added within a week of transplanting. Increases in growth by both species resulted from added nitrogen except with lotus when NaNO3 was applied where increased nitrogen fixation also contributed to increased growth.Weight and number of effective nodules on both species were increased with 3.33 mg N per plant as KNO3 but nitrogen fixation was not affected. Addition of 13.33 mg N as NaNO3 reduced weight and number of effective nodules in both species and also nitrogen fixation by lotus.KNO3 increased growth and nodulation of both species when applied within one week after transplanting. Nodulated lotus plants responded to KNO3 by increasing growth but not nodulation.KNO3 appeared to affect infection and development of nodules on lotus and may affect the growth of existing nodules on clover.  相似文献   

19.

Projected twenty first century increases in temperature and precipitation intensity in the U.S. Great Plains may alter playa wetland hydroperiods. Our objective was to identify favorable germination conditions for a common moist-soil grass, Barnyardgrass (Echinochloa crusgalli L.), by evaluating emergence and growth response to various environmental conditions specific to the Northern (Nebraska) and Southern (Texas) range of playas. We used a temperature-controlled growth chamber experiment to evaluate emergence and growth response of Barnyardgrass to three main effects: (i) weekly temperatures representing historical and future conditions under a moderate emissions scenario, (ii) dry, moist, and saturated soil moisture conditions, and (iii) various seed bank densities. In Nebraska samples, projected future temperatures reduced emergence percentage by up to 20%, but increased emergence percentage by up to 15% for Texas samples. For Nebraska samples, plants were 9.6 cm taller under field capacity moisture compared to saturated moisture. Texas plant height was driven by temperature, where historical conditions produced plants that were 13 cm shorter than future warm conditions. These effects may be exacerbated in natural settings over time and when inter-specific competition exists; thus, temperature, soil moisture, and seed bank densities may be important considerations when planning for playa management in future climate conditions.

  相似文献   

20.

Background and Aims

Imbibition of Japanese soybean (Glycine max) cultivars was studied using micro-magnetic resonance imaging (MRI) in order to elucidate the mechanism of soaking injury and the protective role of the seed coat.

Methods

Time-lapse images during water uptake were acquired by the single-point imaging (SPI) method at 15-min intervals, for 20 h in the dry seed with seed coat, and for 2 h in seeds with the seed coat removed. The technique visualized water migration within the testa and demonstrated the distortion associated with cotyledon swelling during the very early stages of water uptake.

Key Results

Water soon appeared in the testa and went around the dorsal surface of the seed from near the raphe, then migrated to the hilum region. An obvious protrusion was noted when water reached the hypocotyl and the radicle, followed by swelling of the cotyledons. A convex area was observed around the raphe with the enlargement of the seed. Water was always incorporated into the cotyledons from the abaxial surfaces, leading to swelling and generating a large air space between the adaxial surfaces. Water uptake greatly slowed, and the internal structures, veins and oil-accumulating tissues in the cotyledons developed after the seed stopped expanding. When the testa was removed from the dry seeds before imbibition, the cotyledons were severely damaged within 1·5 h of water uptake.

Conclusions

The activation of the water channel seemed unnecessary for water entry into soybean seeds, and the testa rapidly swelled with steeping in water. However, the testa did not regulate the water incorporation in itself, but rather the rate at which water encountered the hypocotyl, the radicle, and the cotyledons through the inner layer of the seed coat, and thus prevented the destruction of the seed tissues at the beginning of imbibition.Key words: Dry seeds, Glycine max, MRI, seed coat, soaking injury, soybean, testa, role of inner layer of seed coat, water uptake  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号