首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Transport of newly synthesized proteins from the endoplasmic reticulum (ER) to the Golgi is mediated by the coat protein complex COPII. The inner coat of COPII is assembled from heterodimers of SEC23 and SEC24. Though mice with mutations in one of the four Sec24 paralogs, Sec24b, exhibit a neural tube closure defect, deficiency in humans or mice has not yet been described for any of the other Sec24 paralogs. We now report characterization of mice with targeted disruption of Sec24d. Early embryonic lethality is observed in mice completely deficient in SEC24D, while a hypomorphic Sec24d allele permits survival to mid-embryogenesis. Mice haploinsufficient for Sec24d exhibit no phenotypic abnormality. A BAC transgene containing Sec24d rescues the embryonic lethality observed in Sec24d-null mice. These results demonstrate an absolute requirement for SEC24D expression in early mammalian development that is not compensated by the other three Sec24 paralogs. The early embryonic lethality resulting from loss of SEC24D in mice contrasts with the previously reported mild skeletal phenotype of SEC24D deficiency in zebrafish and restricted neural tube phenotype of SEC24B deficiency in mice. Taken together, these observations suggest that the multiple Sec24 paralogs have developed distinct functions over the course of vertebrate evolution.  相似文献   

4.
5.
Neurochemical Research - White matter degeneration in the central nervous system (CNS) has been correlated with a decline in cognitive function during aging. Ultrastructural examination of the...  相似文献   

6.
Electron Microscope Study of Toxoplasma Cysts in Mouse Brain   总被引:2,自引:0,他引:2  
SYNOPSIS. Toxoplasma aggregates in sub-acutely and chronically infected mouse brain were studied with special regard to interparasitic relationships, encapsulating wall formation and host-parasite interaction. The individual parasites within a cyst are separated from one another by an opaque substance which also appears as a component of the cyst wall. A second constituent in the wall consists of vesicular and membranous structures which presumably are derived from the endoplasmic reticulum of the host cell. In small cysts, the organising are loosely arranged and maintain the typical crescentic shape whereas, in large cysts, they are tightly packed and polygonal in outline. It is concluded from the data obtained that only the term "cyst" correctly designates these parasitic aggregates.  相似文献   

7.
目的:对与小鼠胚胎发育相关的印记基因Mcts2表达模式及生物学功能做初步的分析。方法:采用切片原位杂交,全胚胎原位杂交,Northern blot和real-time PCR对该基因进行了表达谱的分析。结果:切片原位杂交结果显示Mcts2基因在E13.5和E15.5胚胎中的脑、舌、心脏、肺脏、肝脏、肾脏等重要脏器中都有普遍表达。全胚胎原位杂交结果显示Mcts2基因在E10.5胚胎中的前脑、前肢、尾芽中出现较强的信号,其他部位信号较弱。Northern和Real-time PCR实验分析了Mcts2基因在E12.5,E15.5,E18.5胚胎和新生小鼠的脑、心脏、肺脏、肝脏和肾脏中的表达谱,发现Mcts2基因在这几个主要发育时期都有普遍表达,在E15.5胚胎中表达信号最为强烈。结论:Mcts2基因在小鼠胚胎的发育的各主要时期的重要脏器中都有普遍的表达,提示该基因在小鼠胚胎发育过程中起到了重要的作用。  相似文献   

8.
9.
Abstract: Among various tissues of mouse, β1,4- N -acetylgalactosaminyltransferase (GM2/GD2 synthase) gene is expressed predominantly in the brain. Further analysis of the gene expression in the mouse CNS was performed by northern blotting and by enzyme assays using extracts from various parts of the CNS. In situ hybridization was also done to investigate the distribution of cells generating GM2/GD2 synthase. In northern blots, diverse levels of the gene expression were observed, depending on the regions examined. By in situ hybridization, pyramidal cells in the hippocampus, granular cells in dentate gyrus and cerebral cortex, Purkinje cells in cerebellum, and mitral cells in the olfactory bulb expressed high levels of the mRNA; these results corresponded to the results obtained by northern blot. Enzyme levels in these sites were accordingly high. However, enzyme levels in certain areas with low mRNA intensities, such as thalamus and pons medulla, were higher than expected from the results of northern blotting. The significance of the high gene expression in certain areas for brain function and the reason for the discrepancy between mRNA level and enzyme activity in some regions are discussed.  相似文献   

10.
Until recently, the mouse was rarely used to study the biology of learning and memory. With advancements in gene-targeting technology, which now allow the structure and expression of a specific protein to be controlled in the intact animal, the mouse provides a powerful new tool to explore cognitive function. In mice, in contrast to other organisms, it is now possible to regulate the expression of a protein in the same neurons that are electrophysiologically and biochemically manipulable and are in a circuit involved in a defined learned behavior. Mouse mutants have been described that alter synaptic physiology, neuroanatomy, neurochemistry, and behavior. The mutants provide the first opportunity to correlate these phenotypes within animals engineered with defined molecular alterations. This review will discuss a range of methodologies that are required to describe the phenotype of mice with synaptic and behavioral abnormalities and focus on the interpretative difficulties of integrating these techniques.  相似文献   

11.
Intraperitoneal coadministration of adenosine and L-homocysteine markedly increased S-adenosyl-L-homocysteine in whole mouse brain, but further investigations showed that this elevation could also be produced following administration of L-homocysteine alone. The noted increase was maximal (+1325%) 10 min after treatment, remaining at about this level for 30-40 min before returning to control values after 180 min. Cerebral adenosine levels were decreased after treatment with L-homocysteine, adenosine, or these two substances in combination.  相似文献   

12.
13.
Normal brain function relies not only on embryonic development when major neuronal pathways are established, but also on postnatal development when neural circuits are matured and refined. Misregulation at this stage may lead to neurological and psychiatric disorders such as autism and schizophrenia1,2. Many genes have been studied in the prenatal brain and found crucial to many developmental processes3-5. However, their function in the postnatal brain is largely unknown, partly because their deletion in mice often leads to lethality during neonatal development, and partly because their requirement in early development hampers the postnatal analysis. To overcome these obstacles, floxed alleles of these genes are currently being generated in mice 6. When combined with transgenic alleles that express Cre recombinase in specific cell types, conditional deletion can be achieved to study gene function in the postnatal brain. However, this method requires additional alleles and extra time (3-6 months) to generate the mice with appropriate genotypes, thereby limiting the expansion of the genetic analysis to a large scale in the mouse brain.Here we demonstrate a complementary approach that uses virally-expressed Cre to study these floxed alleles rapidly and systematically in postnatal brain development. By injecting recombinant adeno-associated viruses (rAAVs)7,8 encoding Cre into the neonatal brain, we are able to delete the gene of interest in different regions of the brain. By controlling the viral titer and coexpressing a fluorescent protein marker, we can simultaneously achieve mosaic gene inactivation and sparse neuronal labeling. This method bypasses the requirement of many genes in early development, and allows us to study their cell autonomous function in many critical processes in postnatal brain development, including axonal and dendritic growth, branching, and tiling, as well as synapse formation and refinement. This method has been used successfully in our own lab (unpublished results) and others8,9, and can be extended to other viruses, such as lentivirus 9, as well as to the expression of shRNA or dominant active proteins 10. Furthermore, by combining this technique with electrophysiology as well as recently-developed optical imaging tools 11, this method provides a new strategy to study how genetic pathways influence neural circuit development and function in mice and rats. Download video file.(46M, mov)  相似文献   

14.
Autism spectrum disorder and schizophrenia share a substantial number of etiologic and phenotypic characteristics. Still, no direct comparison of both disorders has been performed to identify differences and commonalities in brain structure. In this voxel based morphometry study, 34 patients with autism spectrum disorder, 21 patients with schizophrenia and 26 typically developed control subjects were included to identify global and regional brain volume alterations. No global gray matter or white matter differences were found between groups. In regional data, patients with autism spectrum disorder compared to typically developed control subjects showed smaller gray matter volume in the amygdala, insula, and anterior medial prefrontal cortex. Compared to patients with schizophrenia, patients with autism spectrum disorder displayed smaller gray matter volume in the left insula. Disorder specific positive correlations were found between mentalizing ability and left amygdala volume in autism spectrum disorder, and hallucinatory behavior and insula volume in schizophrenia. Results suggest the involvement of social brain areas in both disorders. Further studies are needed to replicate these findings and to quantify the amount of distinct and overlapping neural correlates in autism spectrum disorder and schizophrenia.  相似文献   

15.
A solubilized sheep red blood cell (SRBC) antigen (supernatant fraction obtained by centrifuging 107-2 × 108 sonicated SRBC at 6 × 104 g for 30 min [Sup-SRBC]), whose ability to inhibit anti-SRBC plaque formation was 70% of that of the original sonicated SRBC, was unable to elicit a detectable antibody response in either unprimed or SRBC-primed mice. However, Sup-SRBC as well as intact SRBC antigens generated memory for the secondary response, which was transferable to irradiated syngeneic recipients by injection of immune spleen cells. The memory generated by Sup-SRBC involved helper memory for anti-trinitrophenyl group (TNP) response to challenge with TNP-conjugated SRBC. Increase in the helper T cell memory in the spleens of Sup-SRBC-primed mice was also demonstrated by an in vitro culture experiment and by an adoptive cell transfer experiment. In contrast, no detectable B cell memory was generated by Sup-SRBC. Repeated stimulation with Sup-SRBC never induced significant antibody response but reduced the level of memory. A single injection of a low dose (106) of SRBC also failed to induce a definite primary antibody response generating memory for the secondary response. However, repeated stimulation with this dose of SRBC induced a high antibody response and generated good memory. From these results it is suggested that the intact structure of SRBC is required for the activation of B cells, but is not necessary for the stimulation of T cells.  相似文献   

16.
Mutant mice (ddY/DAO-) lacking D-amino acid oxidase in the kidney also lacked this enzyme in the brain. Genetic cross experiments showed that the inheritance of the enzyme in the brain was the same as that in the kidney. The deficiency in the enzyme in the brain could not be separated from that in the kidney. The brain and kidney enzymes showed similar substrate specificities. These results suggest that brain and kidney D-amino acid oxidases are coded by the same gene in the mouse.  相似文献   

17.

Background

Spontaneous intracerebral haemorrhage is a devastating form of stroke and its incidence increases with age. Obtaining brain tissue following intracerebral haemorrhage helps to understand its cause. Given declining autopsy rates worldwide, the feasibility of establishing an autopsy-based collection and its generalisability are uncertain.

Methods

We used multiple overlapping sources of case ascertainment to identify every adult diagnosed with intracerebral haemorrhage between 1st June 2010-31st May 2012, whilst resident in the Lothian region of Scotland. We sought consent from patients with intracerebral haemorrhage (or their nearest relative if the patient lacked mental capacity) to conduct a research autopsy.

Results

Of 295 adults with acute intracerebral haemorrhage, 110 (37%) could not be approached to consider donation. Of 185 adults/relatives approached, 91 (49%) consented to research autopsy. There were no differences in baseline demographic variables or markers of intracerebral haemorrhage severity between consenters and non-consenters. Adults who died and became donors (n = 46) differed from the rest of the cohort (n = 249) by being older (median age 80, IQR 76–86 vs. 75, IQR 65–83, p = 0.002) and having larger haemorrhages (median volume 23ml, IQR 13–50 vs. 13ml, IQR 4–40; p = 0.002).

Conclusions

Nearly half of those approached consent to brain tissue donation after acute intracerebral haemorrhage. The characteristics of adults who gave consent were comparable to those in an entire community, although those who donate early are older and have larger haemorrhage volumes.  相似文献   

18.
We have used a systemic approach to establish a relationship between enzyme measures of glial glutamate and energy metabolism (glutamine synthetase and glutamine synthetase-like protein, glutamate dehydrogenase isoenzymes, brain isoform creatine phosphokinase) and two major glial proteins (glial fibrillary acidic protein and myelin basic protein) in autopsied brain samples taken from patients with schizophrenia (SCH) and mentally healthy subjects (23 and 22 cases, respectively). These biochemical parameters were measured in tissue extracts in three brain areas (prefrontal cortex, caudate nucleus, and cerebellum). Significant differences in the level of at least one of the glutamate metabolizing enzymes were observed between two studied groups in all studied brain areas. Different patterns of correlative links between the biochemical parameters were found in healthy and schizophrenic brains. These findings give a new perspective to our understanding of the impaired regulation of enzyme levels in the brain in SCH.  相似文献   

19.
Abstract: Previous studies demonstrated that 9 kb of the rat tyrosine hydroxylase (TH) 5' flanking sequence directed appropriate spatiotemporal expression of a lacZ reporter gene to catecholaminergic cells in the CNS of transgenic mice. In the present study, specificity of transgene expression was further extended to demonstrate cell type-specific functional regulation of lacZ expression using manipulations known to alter endogenous TH expression. Alterations in lacZ reporter expression should parallel changes in endogenous TH levels if the DNA elements mediating these functional changes of TH expression in vivo reside within the 9 kb of the TH promoter region. Naris closure induced an activity-dependent decrease of TH expression in dopaminergic periglomerular cells in the olfactory bulb that was paralleled by down-regulation of lacZ expression in the transgenic mice. Densitometry and image analysis were used to quantify lacZ expression following acute reserpine administration (5 mg/kg, s.c.), which up-regulates endogenous TH. At 48 h postinjection, analysis of OD values indicated a significant increase of X-gal staining in the locus coeruleus and ventral tegmental area but not in the substantia nigra or olfactory bulb of reserpine-treated transgenic animals. These data showed that the 9-kb sequence also mediates cell type-specific transsynaptic regulation of reporter gene expression. Analysis of this transgenic animal offers a useful model system to study in vivo regulation of TH gene expression.  相似文献   

20.
Cerebral edema is the common pathogenic mechanism for cognitive impairment in minimal hepatic encephalopathy. Whether complete reversibility of brain edema, cognitive deficits, and their associated imaging can be achieved after liver transplantation remains an open question. To characterize white matter integrity before and after liver transplantation in patients with minimal hepatic encephalopathy, multiple diffusivity indices acquired via diffusion tensor imaging was applied. Twenty-eight patients and thirty age- and sex-matched healthy volunteers were included. Multiple diffusivity indices were obtained from diffusion tensor images, including mean diffusivity, fractional anisotropy, axial diffusivity and radial diffusivity. The assessment was repeated 6–12 month after transplantation. Differences in white matter integrity between groups, as well as longitudinal changes, were evaluated using tract-based spatial statistical analysis. Correlation analyses were performed to identify first scan before transplantation and interval changes among the neuropsychiatric tests, clinical laboratory tests, and diffusion tensor imaging indices. After transplantation, decreased water diffusivity without fractional anisotropy change indicating reversible cerebral edema was found in the left anterior cingulate, claustrum, postcentral gyrus, and right corpus callosum. However, a progressive decrease in fractional anisotropy and an increase in radial diffusivity suggesting demyelination were noted in temporal lobe. Improved pre-transplantation albumin levels and interval changes were associated with better recoveries of diffusion tensor imaging indices. Improvements in interval diffusion tensor imaging indices in the right postcentral gyrus were correlated with visuospatial function score correction. In conclusion, longitudinal voxel-wise analysis of multiple diffusion tensor imaging indices demonstrated different white matter changes in minimal hepatic encephalopathy patients. Transplantation improved extracellular cerebral edema and the results of associated cognition tests. However, white matter demyelination may advance in temporal lobe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号