首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present investigation was carried out to know the seasonal variation in plasma glucose,insulin and glucagon cells during the reproductive cycle of untreated Melanochelys trijuga. Pancreatic endocrine cells were immunochemically localized.Insulin-immunoreactive (IR) cells occurred in groups of 3-20 and were in close apposition, while glucagon-IR cells were distributed individually between the exocrine pancreas or formed anastomosing cords where cells were not intimately attached. Whenever both IR cell types were present together forming an islet,insulin-IR cells formed clusters in the centre with glucagon-IR cells being scattered at the periphery. Glucagon-IR cells seemed to be secretory throughout the pancreas during the reproductive cycle,while insulin-IR cells were found to be pulsating in their secretion. Mean size of the islet was 1.306, 0.184 and 2.558 mm in the regenerative, reproductive and regressive periods,respectively. In general,insulin-IR cells measured 5.18 (mu)m and glucagon-IR cells 5.22 (mu)m in their longest axis. Invariably, glucagon-IR cells were more in number than insulin-IR cells. The fasting plasma glucose level was 69.97 mg% during the regenerative period, which increased to 97.96 mg% during the reproductive period,and reached a peak value of 113.52 mg% in the regressive period.  相似文献   

2.
Insulin resistance and altered endocrine pancreas function are central pathophysiological features of type 2 diabetes mellitus (T2DM). The Goto-Kakizaki (GK) rat is a model of spontaneous T2DM characterised by reduced beta cell mass and genetically determined glucose intolerance and altered insulin secretion. To identify genetic determinants of endocrine pancreas histopathology, we carried out quantitative trait locus (QTL) mapping of histological phenotypes (beta cell mass -BCM and insulin-positive cell area -IPCA) and plasma concentration of hormones and growth factors in a F2 cohort derived from GK and normoglycemic Brown Norway rats. Although IPCA and BCM in the duodenal region of the pancreas were highly positively correlated (P < 10?6), and similarly in the splenic region, both measures were poorly correlated when comparing duodenal and splenic phenotypes. Strongest evidence of linkage to pancreas morphological traits was obtained between BCM and chromosome 10 (LOD 3.2). Evidence of significant linkage (LOD 4.2) to plasma corticosterone was detected in a region of chromosome 1 distal to other QTLs previously identified in the GK. Male-specific genetic effects were detected, including linkages (LOD > 4) to growth hormome (GH) on chromosome 6 and prolactin on chromosome 17. These data suggest independent genetic control of the structure and function of ontologically different regions of the endocrine pancreas. Novel QTLs for corticosterone, prolactin and GH may contribute to diabetes in the GK. The QTLs that we have identified in this, and previous genetic studies collectively underline the complex and multiple mechanisms involved in diabetes in the GK strain.  相似文献   

3.
Antisera specific for mammalian insulin-like growth factor 1 (IGF-1) and mammalian insulin and the double immunofluorescence technique were used for this study. IGF-1-like-immunoreactivity was localized in entero-endocrine cells in the gastro-intestinal tract of the protochordates Ciona intestinalis and Branchiostoma lanceolatum. Some of the specimens also showed IGF-1-like-immunoreactive (-IR) perikarya and fibers in the central nervous system. Whilst in rat endocrine pancreas, IGF-1-IR and insulin-IR occurred in different cell populations, in Ciona and Branchiostoma the vast majority of entero-endocrine cells and central neurons were IGF-1-like-+insulin-IR. A minor portion exhibited IGF-1-like-IR alone. For further characterization of the IGF-1-like-IR material, in Ciona intestinalis, peptides related to IGF-1 were identified by radioimmunoassay and gel chromatography. In accordance with the immunohistochemical results, IGF-I-like-IR was detected both in cerebral ganglion and in gastro-intestinal tract. Using acid gel chromatography, in Ciona gastro-intestinal tract the IGF-1-like-IR was found to occur in two peaks, with apparent molecular weights of approximately 16 kDa and 3 kDa. Absorption studies with insulin- and IGF-related peptides, with crude extracts and the peak material obtained after gel chromatography, indicated that the IGF-1-like peptides in Ciona are different from mammalian insulin and IGF-1. The findings are in accordance with the presence of a common insulin/IGF precursor molecule in protochordates.  相似文献   

4.
Pteronotus personatus as an insectivore bat and has a diet that consists of a high protein diet, whereas the diet of Anoura geoffroyi, a predominantly nectarivore bat, is rich in simple sugars like sucrose, glucose and fructose. Considering that diet influences the activation of different pathways, which may influence morphological adaptations in the gastrointestinal system, the aim of this study was to compare the morphology of the endocrine pancreas in P. personatus and A. geoffroyi. For this, histological, stereological and immunohistochemical methods were used. In P. personatus, the average diameter of the pancreatic islet was 40.47 μm ± 13.94, while in A. geoffroyi was 88.16 μm ± 36.40. The total number of pancreatic islets in P. personatus was 26150 ± 2346 and in A. geoffroyi was 15970 ± 1666. In P. personatus, the volume density of the pancreatic islets was 3.4%± 2.6, whereas in A. geoffroyi the volume density was 6.1% ± 3.7. In addition, the immunodensity of the α, β and δ cells, in P. personatus was 25.8% ± 11.9, 35.5% ± 13.5, 3.9% ± 0.7, respectively, and in A. geoffroyi was 33.10% ± 12.7, 55.08% ± 7.4, 6.2% ± 4.6, respectively. In conclusion, the results of this study indicate differences in the pancreatic weight/body, weight ratio, diameter and volume density of pancreatic islets and in immunodensity of the β and α cells between both species, which have different dietary habits.  相似文献   

5.
6.
The nutritional essentialities of transition element vanadium (V) as micro-nutrient in farm animals have not yet been established, though in rat model, vanadium as vanadate has been reported to exert insulin-mimetic effect and shown to be needed for proper development of bones. The objective of this study was to determine the effect of V supplementation on growth performance, plasma hormones and bone health status in calves. Twenty-four crossbred calves (body weight 72.83 ± 2.5 kg; age 3–9 months) were blocked in four groups and randomly assigned to four treatment groups (n = 6) on body weight and age basis. Experimental animals were kept on similar feeding regimen except that different groups were supplemented with either 0, 3, 6 or 9 ppm inorganic V/kg DM. Effect of supplementation during 150-day experimental period was observed on feed intake, body weight gain, feed efficiency, body measures, endocrine variables, plasma glucose and biomarkers of bone health status. Supplementation of V did not change average daily gain (ADG), dry matter intake (DMI), feed efficiency and body measures during the experimental period. During the post-V supplementation period plasma insulin-like growth factor-1 (IGF-1), triiodothyronine (T3) and thyroxin (T4) concentrations were increased and observed highest in 9 mg V/kg DM fed calves; however, levels of insulin, glucose, parathyroid hormone (PTH) and calcitonin hormones remained similar among calves fed on basal or V-supplemented diets. Bone alkaline phosphatase (Bone-ALP) concentration was increased (P < 0.05); however, plasma protein tyrosine phosphatase (PTP) level decreased (P < 0.05) in 6 and 9 mg V/kg DM supplemented groups. Plasma hydroxyproline (Hyp) and tartrate-resistant acid phosphatase (TRAP) concentration were unchanged by V supplementation. Blood V concentration showed positive correlation with supplemental V levels. These results suggest that V may play a role in modulation of the action of certain endocrine variables and biomarkers of bone health status in growing crossbred calves.  相似文献   

7.
Summary The ultrastructure of endocrine-like cells of the human lung was compared to the ultrastructure of endocrine-like cells of the stomach and pancreas in both adult and foetal material.Three types of endocrine-like cells were found in the human foetal lung. Type 1 or P1 cells contained very small granules (about 110 nm) of two varieties, cored and vesicular; type 2 or P2 cells with cored granules measuring about 130 nm; and type 3 cells with cored granules of about 180–190 nm. In the adult lung only one type Pa cells with cored granules could be found.Cells resembling foetal P1 cells were not found in foetal or adult gastric mucosa, or in the pancreas. In the gastric mucosa cells resembling pulmonary Pa or P2 cells were moderately represented and often difficult to distinguish from each other. Thus, they were grouped together as gastric P cells. Cells with granules resembling those of pulmonary type 3 cells were found most numerous in the adult oxyntic mucosa. Cells resembling gastric P cells (and pulmonary P2 cells) were rather numerous in foetal pancreas, but very rare in adult pancreas. Few cells containing granules somewhat resembling those of pulmonary type 3 cells were present in both foetal and adult pancreas.The results were discussed in respect to 1) the similarities between some gastric or pancreatic carcinoids and lung carcinoids, 2) the gastro-pancreatic P cells as a separate cell population, 3) the possible secretion by the lung endocrine-like cells of active substances, either amines or peptides, 4) the similarity between the secretory granules of Pa and P1 cells and neurosecretory granules of the hypothalamus and between P2 cells and some endocrine cells of the pituitary.Supported in part by the Italian National Research Council (Grants N. 75.00630.04 and N. 76.01558.04)  相似文献   

8.
Glucagon-like peptide-1 (GLP-1) reduces blood glucose and improves abnormal metabolism caused by hyperglycemia. The formation of thrombus, one of major consequences suffered from diabetes, can be inhibited by the treatment of Hirudin (HV). This study was aimed to develop a fusion peptide which combines functions of GLP-1 and HV to treat diabetes and its complication thrombosis. A rolGLP-HV expression plasmid was constructed and expressed in BL21 (DE3) line of E. coli. The peptide was then purified and analyzed in vitro and in vivo for its anti-thrombosis ability. The results showed that the anti-coagulant activity of rolGLP-HV was about 109 ± 1.7 ATU/mL, and the peptide displayed a great ability in reducing thrombosis in a mouse model. The effect of rolGLP-HV on plasma glucose was assessed by daily oral-gavage administration up to 10 days in streptozotocin-induced type 2 diabetic mice. Our results showed that rolGLP-HV treatment decreased (p < 0.01) plasma glucose level by 41.6 and 55.7 %, respectively, on the 5th and 10th day post the initial oral gavage. Also, rolGLP-HV treatment led to an increase in body weight and decreases in drink level and food intake (p < 0.05) compared with the control. In conclusion, our data suggest that rolGLP-HV peptide has dual-function in preventing thrombosis and reducing plasma glucose.  相似文献   

9.
Sodium, potassium, chloride, glucose, insulin and renin activity were investigated in fasted Vipera aspis subjected for 3 days to administration of 3% NaCl 5 ml, or injection of a diuretic and water loading to produce sodium depletion. After sodium loading, plasma sodium and glucose were significantly elevated if compared with those of controls, while plasma renin-like activity and plasma insulin were depressed. The insulin and somatostatin producing cells (B- and D-cells) showed only a weak immunoreactivity, while in the glucagon producing cells (A-cells) the immunoreactivity was stronger if compared with the handled controls. After sodium depletion, plasma sodium and glucose were significantly depressed and plasma renin-like activity and plasma insulin were significantly elevated. A strong immunoreactivity was present in B- and D-cells and only a weak immunoreactivity was detectable in the A-cells. These data suggest that the secretory activity of the endocrine pancreas and kidney may be affected, in vipers, by sodium and/or volume status.  相似文献   

10.
Poplar 741 [Populus alba × (P. davidiana + P. simonii) × P. tomentosa] leaves were rooted within 8 days when cultured on 1/2 MS medium. The subcellular localization of endogenous indole-3-acetic acid (IAA) in the rhizogenesis was investigated, using an immunocytochemical approach. The results of IAA subcellular localization revealed organelle-specific distribution. Three days after root induction, IAA in vascular cambium cells of the basal region of the petiole was distributed mainly in the plasma membrane, endoplasmic reticulum (ER), and nucleus, with a lesser amount in the cytoplasm. In phloem of the basal region of the petiole, IAA was detected in the plasma membrane and ER of the companion cell and in the plasma membrane of the sieve element. In xylem of the basal region of the petiole, no IAA gold particles were labeled. In mesophyll cells IAA was distributed in the chloroplast starch grains before root induction, and the amount in the chloroplast starch grains increased after 3 days after root induction. This suggests that the plasma membrane and nucleus of cambium cells may be the target sites where IAA performs its physiological activities during poplar leaf rhizogenesis. IAA polar transport from lamina mesophyll to the basal region of the petiole during rhizogenesis is mediated by phloem. The starch grains of mesophyll chloroplasts appeared to accumulate IAA and may be a source of IAA during poplar leaf rhizogenesis. Novel and direct evidence regarding the function of IAA during rhizogenesis is provided in this study.  相似文献   

11.
12.
Elephant seals maintain rates of endogenous glucose production (EGP) typical of post-absorptive mammals despite enduring prolonged periods of food deprivation concurrent with low rates of glucose oxidation. These high rates of EGP suggest extensive glucose recycling during fasting. We investigated lactate metabolism in fasting elephant seals to assess its role in glucose recycling. Whole-animal glucose and lactate fluxes were measured as the rates of appearance of glucose and lactate (Ra gluc and Ra lac, respectively) using a primed constant infusion of [U-14C] lactate and [6-3H] glucose, and we calculated the minimum contribution of lactate to gluconeogenesis (GNG lac). Ra lac was high compared to resting values in other species (3.21 ± 0.71 mmol min?1* kg?1), did not change between 14 ± 1 and 31 ± 8 days of fasting and varied directly with Ra glu. The minimum GNG lac was 44.6 ± 6.0 % of EGP, varied directly with plasma lactate levels, and did not change over the fast. Ra lac and Ra glu both varied directly with plasma insulin concentrations. These data suggest that lactate is the predominant gluconeogenic precursor in fasting elephant seals and that high rates of glucose recycling through Cori cycle activity contribute to the maintenance of EGP during fasting. High levels of Cori cycle activity and EGP may be important components of metabolic adaptations that maintain glucose production while avoiding ketosis during extended fasting or are related to sustained metabolic alterations associated with extended breath-holds in elephant seals.  相似文献   

13.
The present study relates to the determination of the plasma glucose level and volumetric analysis of β cells in pancreatic islets of the soft‐shelled turtle Lissemys punctata during different phases of its reproductive cycle. Reproductive events play a vital role in influencing the plasma glucose level and β‐cell behaviour in the pancreatic islets. The colour of the pancreas is either yellowish or pinkish, depending on endocrine activity. Islets are present throughout the gland and range from individual cells to small or large clumps, depending on the seasonal cycle. Splenic islets are dense with more blood capillaries and nerve innervations irrespective of sex and season. The endocrine cell mass forms irregular patches without connective tissue capsule. β cells occupy the inner region of the islets, being surrounded by other cell types. Lissemys punctata exhibits higher β‐cell activity during hibernation. Most insulin‐secreting cells acquire a larger size during the regressive period. An analysis indicates that β cells outnumber the non‐β endocrine cell mass in both number and per cent volume. There is negative correlation between islet mass and animal weight. Between the periods of reproductive cycles, a difference exists with respect to fasting plasma glucose and β‐cell volume.  相似文献   

14.
15.
In the present study, both gfp and rfp transgenic zebrafish lines using a 2.5-kb zebrafish somatostain2 (sst2) promoter were generated. During embryonic development, expression of GFP/RFP in the endocrine pancreas of transgenic embryos was initiated at ∼20 hpf and the number of GFP/RFP positive cells in the pancreas increased in subsequent stages; thus, our newly generated Tg(sst2:gfp) and Tg(sst2:rfp) lines faithfully recapitulated sst2 expression in endocrine pancreatic cells and provided a useful tool in analyzing the development of Sst2-producing δ-cells in the pancreas. By crossing these new transgenic lines with previously available transgenic lines targeted in insulin (Ins)-producing β-cells, Tg(ins:gfp) and Tg(ins:rfp), in combination with immunodetection of glucagon (Gcg)-producing α-cells and pancreatic polypeptide (PP)-producing PP-cells, the organization and composition of endocrine islets were investigated in both embryonic and adult pancreas. We found that there was always a big cluster of endocrine cells (principal islet) in the anterior-dorsal pancreas, followed by numerous smaller clusters (variable in size) of endocrine cells (secondary islets) along the anterior–posterior axis of the pancreas. All four types of endocrine cells were found in the principal islet, but secondary islets may or may not contain PP-cells. In addition, there were also discrete endocrine cells throughout the pancreas. In all co-localization experiments, we did not find any endocrine cells positive for more than one hormone markers, suggesting that these endocrine cells produce only a single hormone. In both principal and secondary islets, we found that β-cells were generally located in the center and non-β cells in the periphery; reminiscent of the “mantel–core” organization of islets of Langerhans in mammals where β-cells form the core and non-β-cells the mantel. In zebrafish primary islet, β-cells constitute most of the mass (∼50%), followed by δ-cells and α-cells (20–25% each), and PP-cells (1–2%); this is also similar to the composition of mammalian islets.  相似文献   

16.
Dunaliella salina, a eukaryotic microalga, is known for its highly halophilic nature. The high level of salts in growth medium for this alga has made its genetic transformation a comparatively difficult procedure, particularly during the selection stage. The high salt content decreases the efficiency of most antibiotics which are being used as selection markers. Studies pertaining to the interrelationship between salt concentration and antibiotic sensitivity are scarce in Dunaliella. During our previous experiment at genetic transformation of Dunaliella, an inverse relationship between the amount of antibiotic hygromycin and sodium chloride in the medium was revealed. A possible link between plasma membrane activity and the hygromycin sensitivity was investigated in the present study by modulating plasma membrane H+-ATPase activity using glucose. Glucose-induced activation of H+-ATPase, reduced the tolerance of D. salina to the antibiotic hygromycin. Hygromycin concentration required for selection during genetic transformation of Dunaliella was lowered from 100 to 25 mg L?1 in the presence of 10 mM glucose. Conversely, the inhibitors of the plasma membrane H+-ATPase, orthovanadate and diethylstilbestrol were found to inhibit the glucose activation at concentrations of 10 and 15 μM, respectively. The activation of H+-ATPase by glucose was further confirmed through H+-ATPase assay and medium acidification experiments. The results indicated that the sensitivity of Dunaliella to antibiotic is related to H+-ATPase and the possible involvement of pH gradient, created through H+-ATPase activation during drug transport.  相似文献   

17.
Aspergillus niger glucose oxidase (GOx) genes for wild-type (GenBank accession no. X16061, swiss-Prot; P13006) and M12 mutant (N2Y, K13E, T30 V, I94 V, K152R) were cloned into pPICZαA vector for expression in Pichia pastoris KM71H strain. The highest expression level of 17.5 U/mL of fermentation media was obtained in 0.5 % (v/v) methanol after 9 days of fermentation. The recombinant GOx was purified by cross-flow ultrafiltration using membranes of 30 kDa molecular cutoff and DEAE ion-exchange chromatography at pH 6.0. Purified wt GOx had k cat of 189.4 s?1 and K m of 28.26 mM while M12 GOx had k cat of 352.0 s?1 and K m of 13.33 mM for glucose at pH 5.5. Specificity constants k cat/K m of wt (6.70 mM?1 s?1) and M12 GOx (26.7 mM?1 s?1) expressed in P. pastoris KM71H were around three times higher than for the same enzymes previously expressed in Saccharomyces cerevisiae InvSc1 strain. The pH optimum and sugar specificity of M12 mutant of GOx remained similar to the wild-type form of the enzyme, while thermostability was slightly decreased. M12 GOx expressed in P. pastoris showed three times higher activity compared to the wt GOx toward redox mediators like N,N-dimethyl-nitroso-aniline used for glucose strips manufacturing. M12 mutant of GOx produced in P. pastoris KM71H could be useful for manufacturing of glucose biosensors and biofuel cells.  相似文献   

18.
This study aimed to investigate the distribution of argyrophil, argentaffin, and insulin-immunoreactive endocrine cells in the large intestine of opossums (Didelphis aurita) and to describe the ultrastructure of the secretory granules of insulin-immunoreactive endocrine cells. Fragments of the large intestine of 10 male specimens of D. aurita were collected, processed, and subjected to staining, immunohistochemistry, and transmission electron microscopy. The argyrophil, the argentaffin, and the insulin-immunoreactive endocrine cells were sparsely distributed in the intestinal glands of the mucous layer, among other cell types of the epithelium in all regions studied. Proportionally, the argyrophil, the argentaffin, and the insulin-immunoreactive endocrine cells represented 62.75%, 36.26%, and 0.99% of the total determined endocrine cells of the large intestine, respectively. Quantitatively, there was no difference between the argyrophil and the argentaffin endocrine cells, whereas insulin-immunoreactive endocrine cells were less numerous. The insulin-immunoreactive endocrine cells were elongated or pyramidal, with rounded nuclei of irregularly contoured, and large amounts of secretory granules distributed throughout the cytoplasm. The granules have different sizes and electron densities and are classified as immature and mature, with the mature granules in predominant form in the overall granular population. In general, the granule is shown with an external electron-lucent halo and electron-dense core. The ultrastructure pattern in the granules of the insulin-immunoreactive endocrine cells was similar to that of the B cells of pancreatic islets in rats.  相似文献   

19.
Increasing studies have shown protective effects of intermittent hypoxia on brain injury and heart ischemia. However, the effect of intermittent hypoxia on blood glucose metabolism, especially in diabetic conditions, is rarely observed. The aim of this study was to investigate whether intermittent hypoxia influences blood glucose metabolism in type 1 diabetic rats. Streptozotocin-induced diabetic adult rats and age-matched control rats were treated with intermittent hypoxia (at an altitude of 3 km, 4 h per day for 3 weeks) or normoxia as control. Fasting blood glucose, body weight, plasma fructosamine, plasma insulin, homeostasis model assessment of insulin resistance (HOMA-IR), pancreas β-cell mass, and hepatic and soleus glycogen were measured. Compared with diabetic rats before treatment, the level of fasting blood glucose in diabetic rats after normoxic treatment was increased (19.88?±?5.69 mmol/L vs. 14.79?±?5.84 mmol/L, p?<?0.05), while it was not different in diabetic rats after hypoxic treatment (13.14?±?5.77 mmol/L vs. 14.79?±?5.84 mmol/L, p?>?0.05). Meanwhile, fasting blood glucose in diabetic rats after hypoxic treatment was also lower than that in diabetic rats after normoxic treatment (13.14 ± 5.77 mmol/L vs. 19.88 ± 5.69 mmol/L, p<0.05). Plasma fructosamine in diabetic rats receiving intermittent hypoxia was significantly lower than that in diabetic rats receiving normoxia (1.28?±?0.11 vs. 1.39?±?0.11, p?<?0.05), while there were no significant changes in body weight, plasma insulin and β-cell mass. HOMA-IR in diabetic rats after hypoxic treatment was also lower compared with diabetic rats after normoxic treatment (3.48?±?0.48 vs. 3.86?±?0.42, p?<?0.05). Moreover, intermittent hypoxia showed effect on the increase of soleus glycogen but not hepatic glycogen. We conclude that intermittent hypoxia maintains glycemia in streptozotocin-induced diabetic rats and its regulation on muscular glycogenesis may play a role in the underlying mechanism.  相似文献   

20.
The study objective was to evaluate nutritional metabolomics in support of companion animal nutrition. The specific purpose was to identify metabolites that differed significantly (q-value < 0.05) in the 23 h fasted plasma metabolome of healthy adult female neutered cats (n = 14) and dogs (n = 14) following 2 weeks adaptation to a single batch of diet, nutritionally complete for both species, with and without dietary glucose supplementation (3.85 % w/w). The study consisted of a two-way, crossover design with samples from individual animals on days 14, 16 and 18 of each diet. Metabolic profiling consistently identified 219 metabolites from cats and 216 metabolites from dogs. Fasted plasma glucose did not change significantly with diet in either species whilst 41 % of cat and 20 % of dog metabolites did change significantly. In general, the two species responded similarly and provided data interpretable within the context of insulin-regulated responses to glucose, for example decreased fatty acid oxidation, increased uptake of branched chain amino acids into muscle, and in cats, decreased glucogenic amino acid catabolism. Other responses, such as increased 1 carbon pool intermediates in cats, were consistent with known nutritional differences between cats and dogs and interpretable within the context of energy metabolism. Data also indicated inter-individual variability and diet-dependent changes in digestion and absorption, providing insights for future study designs. In this proof-of-principle study it was concluded that metabolomics can provide data interpretable to a well-characterised area of nutrition and metabolism and also provide novel insights into metabolic adaptations with relevance to companion animal nutrition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号