首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Homing of hemopoietic progenitor cells to the marrow   总被引:3,自引:0,他引:3  
The recognition of hemopoietic stem cell after intravenous transplantation of marrow cells occurs initially by a lectin moiety on the surface of marrow sinus endothelium. The cell is then transported across the endothelial cytoplasm much in the way that a soluble ligand, such as transferrin, is transported. In the extravascular compartment, the cell binds to lineage-specific stromal cells. This mechanism, known as homing, is mediated by a lectin-glycoconjugate interaction, the lectin being on the surface of progenitor cell with specificity for galactosyl and mannosyl residues. The binding is subsequently stabilized by membrane-bound proteoglycans, integrin-like receptors, and fibronectin.  相似文献   

2.
Long-term bone marrow cultures established from C57Ks/J mice have been shown to spontaneously release endogenous ecotropic RNA type-C virus (retrovirus). C57Ks/J marrow cultures produced granulocyte-macrophage progenitor cells (GM-CFUc) and immature and mature granulocytes for over 45 weeks. In contrast, NIH Swiss mouse marrow cultures failed to release detectable ecotropic virus and generated GM-CFUc and granulocytes for 25–35 weeks and established WEHI-3 conditioned medium (CM) dependent cell lines in vitro and did not establish permanent cell lines. To determine whether viral and/or cellular genes regulated the longevity of C57Ks/J marrow cultures, groups of cultures were established from the marrow of (NIH-Swiss × C57Ks/J) F1 hybrid, F2 hybrid, and (NIH Swiss × C57Ks/J) X NIH Swiss backcross generations. Release of endogenous ecotropic virus was measured weekly in each culture as was the duration of production of immature granulocytic cells and GM-CFUc over a 58-week period. The results demonstrated a complex pattern of inheritance of longevity of long-term in vitro hemopoiesis. Increased longevity did not absolutely correlate with detectable replication of the C57Ks/J N-tropic virus.  相似文献   

3.
A C Eaves  C J Eaves 《Blood cells》1988,14(2-3):355-368
Primitive, high-proliferative potential hemopoietic progenitors can be routinely maintained for many weeks in long-term marrow cultures (LTC) in the absence of added hemopoietic growth factors. Nevertheless, these progenitors are clearly responsive to both positive and negative regulatory control mechanisms that operate within the adherent layer as evidenced by cyclic changes in their proliferative activity each time the medium is replaced. The key event appears to be the addition of a constituent of fresh horse serum that is not found in fetal calf serum. Analogous primitive neoplastic progenitor cell types from CML or PV patients are insensitive to the negative arm of this proliferation control mechanism both in vitro and in vivo. A model to explain the progenitor cell cycle changes normally observed in the LTC system is proposed. This model suggests that perturbations of nonhemopoietic mesenchymal cells determine the net positive or negative influence that these regulatory cells exert on adjacent primitive hemopoietic cells, possibly by a mechanism involving direct cell contact. Recently, we have identified a number of cytokines that can simulate the transient positive effect of fresh horse serum, as well as another cytokine, that is, tumor growth factor-beta (TGF-beta), that can mimic the negative but reversible effect exerted by mesenchymal cells. These studies demonstrating the effects of positive and negative regulatory cytokines on the control of hemopoiesis in the adherent layer of LTC suggest new approaches for analyzing the basis of both normal and abnormal stem cell regulation by marrow stromal elements.  相似文献   

4.
5.
6.
V G Lebedev 《Radiobiologiia》1991,31(4):510-514
Prodigiozan injected to long-term cultures of mouse bone marrow 24 h before irradiation increased CFUs and CFU-GM number and colony-stimulating factor (CSF) level by the time of delivery of ionizing radiation. As early as 60 min following irradiation of bone marrow structures with a dose of 2 Gy the number of CFUs and CFU-GM decreased considerably, and from day 3 on after irradiation the indices under study were gradually restored. By day 14 the cultures preinjected with prodigiozan exhibited higher recovery levels. The decrease in the number of precursor cells 60 min after irradiation was accompanied by a drastic increase in the CSF content of cultures; the CSF release in cultures protected with prodigiozan was more moderate than in the irradiated controls.  相似文献   

7.
Human bone marrow cells expressing CD34 but not HLA-DR were isolated by immunofluorescence flow cytometric cell sorting. These cells contained a hematopoietic cell (CFU-B1) capable of producing, in an in vitro semisolid culture system, blast-cell-containing colonies, which possessed the capacity for self-renewal and commitment to multipotential differentiation. In addition, CD34+ HLA-DR- marrow cells contained primitive megakaryocyte progenitor cells, the burst-forming unit-megakaryocyte (BFU-MK). A subset of CD34+ HLA-DR- marrow cells lacking the expression of CD15 and CD71 was obtained by flow cytometric cell sorting and was capable of sustaining in vitro hematopoiesis in suspension culture for up to 8 weeks in the absence of a preestablished adherent marrow cell layer. The combination of IL-3 + IL-1 alpha and IL-3 + IL-6 sustained proliferation of these cells for 8 weeks, induced maximal cellular expansion, and increased the numbers of assayable progenitor cells. These studies demonstrate that human CD34+ HLA-DR- marrow cells and their subsets contain primitive multipotential hematopoietic cells capable of self-renewal and of differentiation into multiple hematopoietic lineages.  相似文献   

8.
Minor histocompatibility antigens on canine hemopoietic progenitor cells   总被引:4,自引:0,他引:4  
Adoptive immunotherapy with CTL against minor histocompatibility Ags (mHA) provides a promising way to treat leukemia relapse in allogeneic chimeras. Here we describe the in vitro generation of CTL against mHA in the dog. We tested their inhibitory effect on the growth of hemopoietic progenitor cells stimulated by hemopoietic growth factors in a 4-day suspension culture. CTL were produced by coculture of donor PBMC with bone marrow-derived dendritic cells (DCs). These DCs were characterized by morphology, high expression of MHC class II and CD1a, and the absence of the monocyte-specific marker CD14. Characteristically these cells stimulated allogeneic lymphocytes (MLR) and, after pulsing with a foreign Ag (keyhole limpet hemocyanin), autologous T cells. CTL were generated either ex vivo by coculture with DCs of DLA-identical littermates or in vivo by immunization of the responder with DCs obtained from a DLA-identical littermate. In suspension culture assays the growth of hemopoietic progenitor cells was inhibited in 53% of DLA-identical littermate combinations. In canine families mHA segregated with DLA as restriction elements. One-way reactivity against mHA was found in five littermate combinations. In two cases mHA might be Y chromosome associated, in three cases autosomally inherited alleles were detected. We conclude that CTL can be produced in vitro and in vivo against mHA on canine hemopoietic progenitor cells using bone marrow-derived DCs.  相似文献   

9.
B lymphocytes are not produced in the Dexter long-term bone marrow cultures, but a primitive B cell precursor is present. The findings presented in this study demonstrate that this precursor can be induced to produce B lymphocytes by transferring the cultures to the Whitlock conditions for the long-term growth of B cells in vitro. Two weeks after the transfer of cultures maintained at 33 degrees C in medium supplemented with horse serum and steroids to low concentrations of fetal calf serum at 37 degrees C, marked effects can be observed. The pattern of cell growth changes from one in which the hemopoietic cells are clustered in tight foci containing several hundred cells to smaller ones in which the cells are not as densely packed. Fat cells in the adherent layer disappear and the supporting stroma becomes more uniform in appearance. This change in the culture format is accompanied by a decrease in the number of nonadherent cells and a shift from myelopoiesis to lymphopoiesis. The numbers of granulocyte-macrophage progenitors decline weekly after the change in culture conditions and are not detected by the third week. B cell colony-forming units appear by 3 wk. Cells that express the 14.8 cell surface antigen are induced by 1 wk after the change in culture conditions, followed by the appearance of surface IgM-bearing cells 2 wk later. This shift to lymphopoiesis can be confirmed morphologically. Granulocytes and macrophages disappear from the cultures by 4 wk, at which time almost all of the cells have a characteristic lymphocyte morphology. Upon switching these cultures back to the original Dexter conditions, only low levels of transient myelopoiesis can be reinitiated.  相似文献   

10.
11.
Whereas multiple growth-promoting cytokines have been demonstrated to be involved in regulation of the hemopoietic stem cell (HSC) pool, the potential role of negative regulators is less clear. However, IFN-gamma, if overexpressed, can mediate bone marrow suppression and has been directly implicated in a number of bone marrow failure syndromes, including graft-vs-host disease. Whether IFN-gamma might directly affect the function of repopulating HSCs has, however, not been investigated. In the present study, we used in vitro conditions promoting self-renewing divisions of human HSCs to investigate the effect of IFN-gamma on HSC maintenance and function. Although purified cord blood CD34(+)CD38(-) cells underwent cell divisions in the presence of IFN-gamma, cycling HSCs exposed to IFN-gamma in vitro were severely compromised in their ability to reconstitute long-term cultures in vitro and multilineage engraft NOD-SCID mice in vivo (>90% reduced activity in both HSC assays). In vitro studies suggested that IFN-gamma accelerated differentiation of targeted human stem and progenitor cells. These results demonstrate that IFN-gamma can negatively affect human HSC self-renewal.  相似文献   

12.
The establishment of prolific long-term human bone marrow cultures has led to the development of hematopoietic bioreactor systems. A single batch expansion of bone marrow mononuclear cell populations leads to a 10- to 30-fold increase in total cell number and in the number of colony forming units-granulocyte/macrophage (CFU-GMs), and a four- to tenfold increase in the number of long-term culture initiating cells (LTC-ICs). In principle, unlimited expansion of cells should be attainable from a pool of stem cells if all the necessary requirements leading to stem cell maintenance and division are met. In this article, we take the first step toward the identification of factors that limit single batch expansion of ex vivo bone marrow cells in perfusion-based bioreactor systems. One possible constraint is the size of the growth surface area required. This constraint can be overcome by harvesting half the cell population periodically. We found that harvesting cells every 3 to 4 days, beginning on day 11 of culture, led to an extended growth period. Overall calculated cell expansion exceeded 100-fold and the CFU-GM expansion exceeded 30-fold over a 27-day period. These calculated values are based on growth that could be obtained from the harvested cell population. Growth of the adherent cell layer was stable, whereas the nonadherent cell population diminished with increasing number of passages. These results show that the bioreactor protocols published to date are suboptimal for long-term cultivation, and that further definition and refinement is likely to lead to even greater expansion of hematopoietic cell populations obtained from bone marrow. More importantly, these results show that the LTC-IC measured during the single pass expansion do have further expansion potential that can be realized by frequent harvesting. Finally, the present culture conditions provide a basis for an assay system for the identifications provide a basis for an assay system for the identification of the factors that determine the long-term maintenance and replication of human stem cells ex vivo. (c) 1994 John Wiley & Sons, Inc.  相似文献   

13.
The purpose of the present study was to investigate the influence of human lipoproteins on CFU-e and BFU-e proliferation from human bone marrow in a serum-free system. In our previously described miniaturized agar system the main lipoprotein-density-classes from human plasma, namely very low density lipoproteins (VLDL), intermediate density lipoproteins (IDL), low density lipoproteins (LDL), high density lipoproteins2 (HDL2) and HDL3 and a mixture of all the five lipoproteins were added in rising concentrations (from 1/10 to normal human plasma concentration) to serum-free medium containing delipidated and deionized bovine serum albumin (BSA), iron saturated transferrin and erythropoietin. The results demonstrate that all lipoproteins markedly increased the CFU-e and BFU-e proliferation after 7 and 14 days of incubation, respectively. Moreover, the lipoproteins induced a shift towards a lower threshold concentration of erythropoietin. Serumlike conditions were obtained if LDL and the mixture of lipoproteins were added to serum-free medium. Furthermore, in the serum-free cultures a maturation to the mature erythrocyte could be found.  相似文献   

14.
A transient increase in terminal deoxynucleotidyl transferase positive (TdT+) cells was observed during the early phase of (less than or equal to day 5) cultures supporting the growth of pluripotent myeloid progenitor cells (CFU-mix). T-cell growth-promoting medium and erythropoietin were not required. The rapidity with which TdT+ cells appeared in cultures and the results of cultures where TdT+ cells were high initially (greater than 800 cells/culture) were not consistent with their having been produced by proliferation of pre-existing TdT+ cells from the bone marrow inoculum. The results suggest production of TdT+ cells from a TdT-negative precursor either by altered enzyme expression or by production of TdT+ progeny.  相似文献   

15.
The effect of hyperthermia on hemopoietic progenitor cells of the mouse   总被引:1,自引:0,他引:1  
We have studied the effect of heat on four lineage-specific clonogenic cells from mouse bone marrow. The thermal sensitivities of two red cell precursors, one primitive (BFU-E) and one more differentiated (CFU-E), a granulocyte-macrophage precursor (CFU-GM), and a megakaryocyte precursor (CFU-M) were determined after exposure to 42, 43, and 44 degrees C. We found that the erythroid precursors were much more heat sensitive than either the CFU-GM or CFU-M. At 42 degrees C the CFU-E and BFU-E had a D0 of about 30 min, while the CFU-GM and CFU-M had D0 values of about 60 min. Thus the four progenitors could be divided into two distinct classes with respect to their sensitivity to hyperthermia. These results suggest that erythropoiesis is more likely to be suppressed than either thrombopoiesis or leukocyte production when hyperthermia is applied in a clinical setting.  相似文献   

16.
Long-term recovery of mouse hemopoietic stem cells (CFU-S and CFU-S per colony), granulocyte-macrophage precursor cells (GM-CFC), and stromal colony-forming units (CFU-F) after doses up to 12.5 Gy was almost complete by 1 year when the dose rate was reduced to 0.0005 Gy/min compared to incomplete recovery after doses up to only 6.5 Gy given at greater than 0.7 Gy/min. This sparing effect of dose rate on long-term hemopoietic recovery is in contrast to the generally reported lack of dependence on dose rate for acute survival of hemopoietic progenitors after doses up to 5 Gy. The present results are compatible with the hypothesis that good recovery of the stroma should be reflected in the long-term recovery of hemopoiesis.  相似文献   

17.
The adherent stromal layer in long-term marrow cultures is essential to the proliferation and differentiation of hemopoietic cells. Adhering cells are heterogeneous and morphologically not adequately characterized. Comparative morphological studies were conducted on adherent cells in short-term clonal assays and long-term cultures derived from liver and bone marrow. Liver and bone marrow at different developmental ages have different hemopoietic activities in vivo and in vitro, as tested via CFU-GM recovery in long-term cultures. Adherent cells from each organ were recovered at an age with high hemopoietic activity (fetal liver and adult bone marrow) and at an age with low hemopoietic activity (neonatal liver and bone marrow). The presence of macrophages, alkaline phosphatase, acid phosphatase, myeloperoxidase, sulfated and non-sulfated glycosaminoglycans (GAGs) and fibronectin was compared. For a given organ, CFU-f colonies showed characteristics similar to those of the confluent adherent stromal layer in long-term cultures. The presence of macrophages and GAGs (sulfated and non-sulfated) in the adherent layer were directly related to the hemopoietic activity. The amount of alkaline phosphatase-positive cells and the amount of fibronectin showed no correlation with the hemopoietic activity of the cultures.  相似文献   

18.
Pluripotent (CFU-MIX), erythroid (BFU-E) and granulocyte/macrophage (CFU-GM) progenitor cells were examined in bone marrow (BM) from 23 patients with myelodysplastic syndromes (MDS). Patients were grouped according to the FAB classification: Refractory anemia (RA), n = 3; RA with ring sideroblasts (RARS), n = 3; RA with excess of blasts (RAEB), n = 8; RA with excess of blasts in transformation (RAEBt), n = 7; chronic myelomonocytic leukemia (CMML), n = 2. In FAB groups RA, RARS, RAEB and RAEBt CFU-GM concentrations were normal or decreased but both CMML-patients had increased CFU-GM values. Abnormal cluster growth was observed in 9 of 23 MDS-patients. BFU-E colony formation was subnormal in all cases. Mixed-colony assay values were at the lower limit of controls in one patient and decreased in the remaining 22 MDS-patients. A similar growth pattern of hemopoietic progenitor cells was observed in 19 patients with acute nonlymphocytic leukemia (ANLL), who were studied for comparison. These data suggest a quantitative or qualitative/functional defect of the pluripotent progenitor cell compartment as the major cause for the cytopenia in MDS-patients.  相似文献   

19.
Bovine marrow granulocyte/macrophage and erythroid progenitor cells maintained viability after storage in liquid nitrogen for 2 to 4 weeks. The granulocyte/macrophage progenitor cells maintained 100% viability for 4 weeks, while the erythroid progenitor cells maintained 100% viability for at least 2 weeks. The optimum concentration of either DMSO or glycerol was found to be 5–10%. DMSO was superior to glycerol as a cryopreservative of bovine granulocyte/ macrophage progenitor cells. Glycerol was found to be unable to cryopreserve bovine erythroid progenitor cells.  相似文献   

20.
In vitro methylcellulose clonal cell culture assays of granulopoietic and erythropoietic colonies were used to study the primary effect of glucan on the hematopoietic stem cells. Addition of glucan to the cultures inhibits the formation of colony-forming units-erythrocytic (CFU-E), enhances the production of burst forming units-erythrocytic (BFU-E) and has no effect on colony-forming unit-culture (CFU-C). These results indicate that glucan has a direct effect on late and early erythroid precursor cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号