首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
2.
Ectomycorrhizas are formed between certain soil fungi and fine roots of woody plants. An important feature of this symbiosis is the supply of photoassimilates to the fungus. Hexoses, formed from sucrose in the common apoplast at the root/fungus interface, can be taken up by both plant and fungal monosaccharide transporters. Recently we characterised a monosaccharide transporter from the ectomycorrhizal fungus Amanita muscaria. This transporter was up-regulated in mycorrhizas, thus increasing the hexose uptake capacity of the fungal partner in symbiosis. In order to characterise host (Picea abies) root monosaccharide transporters, degenerate oligonucleotide primers, designed to match conserved regions from known plant hexose transporters, were used to isolate a cDNA fragment of a transporter by PCR. This fragment was used to identify a presumably full length clone (PaMST1) in a P. abies/A. muscaria mycorrhizal cDNA library. The entire cDNA code for an open reading frame of 513 amino acids, revealing best homology to H+/monosaccharide transporters from Ara- bidopsis, Saccharum and Ricinus. PaMST1 was highly expressed in the hypocotyl and in roots of P. abies seedlings, but not in needles. Mycorrhiza formation led to a slight reduction of PaMST1 expression. The results are discussed with special reference to carbon allocation in ectomycorrhizas. Received: 9 October 1999 / Accepted: 22 December 1999  相似文献   

3.
Arbuscular mycorrhiza (AM) are mutualistic interactions formed between soil fungi and plant roots. AM symbiosis is a fundamental and widespread trait in plants with the potential to sustainably enhance future crop yields. However, improving AM fungal association in crop species requires a fundamental understanding of host colonisation dynamics across varying agronomic and ecological contexts. To this end, we demonstrate the use of betalain pigments as in vivo visual markers for the occurrence and distribution of AM fungal colonisation by Rhizophagus irregularis in Medicago truncatula and Nicotiana benthamiana roots. Using established and novel AM-responsive promoters, we assembled multigene reporter constructs that enable the AM-controlled expression of the core betalain synthesis genes. We show that betalain colouration is specifically induced in root tissues and cells where fungal colonisation has occurred. In a rhizotron setup, we also demonstrate that betalain staining allows for the noninvasive tracing of fungal colonisation along the root system over time. We present MycoRed, a useful innovative method that will expand and complement currently used fungal visualisation techniques to advance knowledge in the field of AM symbiosis.

Arbuscular mycorrhiza are mutualistic interactions formed between soil fungi and plant roots. This study presents the MycoRed system, which uses red plant pigments derived from beetroot to reveal how fungi establish symbiosis with living legume and wild tobacco roots.  相似文献   

4.
5.
Betalains, comprising violet betacyanins and yellow betaxanthins, are pigments found in plants belonging to the order Caryophyllales. In this study, we induced the accumulation of betalains in ornamental lisianthus (Eustoma grandiflorum) by genetic engineering. Three betalain biosynthetic genes encoding CYP76AD1, dihydroxyphenylalanine (DOPA) 4,5-dioxygenase (DOD), and cyclo-DOPA 5-O-glucosyltransferase (5GT) were expressed under the control of the cauliflower mosaic virus (CaMV) 35S promoter in lisianthus, in which anthocyanin pigments are responsible for the pink flower color. During the selection process on hygromycin-containing media, some shoots with red leaves were obtained. However, most red-colored shoots were suppressed root induction and incapable of further growth. Only clone #1 successfully acclimatized and bloomed, producing pinkish-red flowers, with a slightly greater intensity of red color than that in wild-type flowers. T1 plants derived from clone #1 segregated into five typical flower color phenotypes: wine red, bright pink, pale pink, pale yellow, and salmon pink. Among these, line #1-1 showed high expression levels of all three transgenes and exhibited a novel wine-red flower color. In the flower petals of line #1-1, abundant betacyanins and low-level betaxanthins were coexistent with anthocyanins. In other lines, differences in the relative accumulation of betalain and anthocyanin pigments resulted in flower color variations, as described above. Thus, this study is the first to successfully produce novel flower color varieties in ornamental plants by controlling betalain accumulation through genetic engineering.  相似文献   

6.
In the soils of mature forests, nitrogen availability is mainly the result of litter decomposition. Thus protein degradation is of major interest for nutrition. Two aspartic proteases were excreted in a pH‐dependent manner by the ectomycorrhizal fungus Amanita muscaria grown in liquid culture. AmProt1 with a molecular mass of approximately 45 kDa was mainly present at pH values up to 5·4, whereas the excretion of AmProt2 with a molecular mass of about 90 kDa was only detectable at pH values between pH 5·4 and 6·3. In addition, the pH optima of both enzymes differed significantly. AmProt1 had a narrow pH optimum around 3, whereas AmProt2 had a broad pH optimum between 3 and 5·5 and a higher affinity to the substrate methylcasein. One cDNA‐clone (AmProt1*) that presumably encodes AmProt1 was identified. Like AmProt1, this cDNA was expressed in a pH‐dependent manner. In addition, carbohydrate and to a lesser extent nitrogen depletion significantly enhanced AmProt1* expression. In fully developed Populus hyb./A. muscaria ectomycorrhizas the expression of AmProt1* was significantly higher in hyphae of the Hartig net compared with those of the fungal sheath. The role of AmProt1 and AmProt2 for fungal physiology and competitiveness is discussed.  相似文献   

7.
8.
Radish leaves contain two homologous 5-kDa plant defensins which accumulate systemically upon infection by fungal pathogens (F.R.G. Terras et al., 1995, Plant Cell 7: 573–588). Here we report on the molecular cloning of the cDNAs encoding the two pathogen-inducible plant defensin isoforms from radish (Raphanus sativus L.) leaves. Tissue-print and whole-leaf electroblot immunostaining showed that the plant defensin peptides not only accumulate at high levels at or immediately around the infection sites in leaves inoculated with Alternariabrassicicola, but also accumulate in healthy tissue further away from the infection sites and in non-infected leaves from infected plants. Gel blot analysis of RNA confirmed that expression of plant defensin genes is systemically triggered upon fungal infection whereas radish PR-1 gene expression is only activated locally. In contrast to the radish PR-1 gene(s), expression of the radish plant defensin genes was not induced by external application of salicylic acid. Activation of the plant defensin genes, but not that of PR-1 genes, occurred upon treatment with methyl jasmonate, ethylene and paraquat. Received: 3 December 1997 / Accepted: 3 March 1998  相似文献   

9.
Betalains are pigments that replace anthocyanins in the majority of families of the plant order Caryophyllales. Betalamic acid is the common chromophore of betalains. The key enzyme of the betalain biosynthetic pathway is an extradiol dioxygenase that opens the cyclic ring of dihydroxy-phenylalanine (DOPA) between carbons 4 and 5, thus producing an unstable seco-DOPA that rearranges nonenzymatically to betalamic acid. A gene for a 4,5-DOPA-dioxygenase has already been isolated from the fungus Amanita muscaria, but no homolog was ever found in plants. To identify the plant gene, we constructed subtractive libraries between different colored phenotypes of isogenic lines of Portulaca grandiflora (Portulacaceae) and between different stages of flower bud formation. Using in silico analysis of differentially expressed cDNAs, we identified a candidate showing strong homology at the level of translated protein with the LigB domain present in several bacterial extradiol 4,5-dioxygenases. The gene was expressed only in colored flower petals. The function of this gene in the betalain biosynthetic pathway was confirmed by biolistic genetic complementation in white petals of P. grandiflora genotypes lacking the gene for color formation. This gene named DODA is the first characterized member of a novel family of plant dioxygenases phylogenetically distinct from Amanita sp. DOPA-dioxygenase. Homologs of DODA are present not only in betalain-producing plants but also, albeit with some changes near the catalytic site, in other angiosperms and in the bryophyte Physcomitrella patens. These homologs are part of a novel conserved plant gene family probably involved in aromatic compound metabolism.  相似文献   

10.
Plant genomes encode a variety of protein kinases, and while some are functional homologues of animal and fungal kinases, others have a novel structure. This review focuses on three groups of unusual membrane-associated plant protein kinases: receptor-like protein kinases (RLKs), calcium-dependent protein kinases (CDPKs), and histidine protein kinases. Animal RLKs have a putative extracellular domain, a single transmembrane domain, and a protein kinase domain. In plants, all of the RLKs identified thus far have serine/threonine signature sequences, rather than the tyrosine-specific signature sequences common to animals. Recent genetic experiments reveal that some of these plant kinases function in development and pathogen resistance. The CDPKs of plants and protozoans are composed of a single polypeptide with a protein kinase domain fused to a C-terminal calmodulin-like domain containing four calcium-binding EF hands. No functional plant homologues of protein kinase C or Ca2+/calmodulin-dependent protein kinase have been identified, and no animal or fungal CDPK homologues have been identified. Recently, histidine kinases have been shown to participate in signaling pathways in plants and fungi. ETR1, an Arabidopsis histidine kinase homologue with three transmembrane domains, functions as a receptor for the plant hormone ethylene. G-protein-coupled receptors, which often serve as hormone receptors in animal systems, have not yet been identified in plants. Received: 18 August 1997/Revised: 23 December 1997  相似文献   

11.
12.
Hevea brasiliensis anther calli were genetically transformed using Agrobacterium GV2260 (p35SGUSINT) that harboured the β-glucuronidase (gus) and neomycin phosphotransferase (nptII) genes. β-Glucuronidase protein (GUS) was expressed in the leaves of kanamycin-resistant plants that were regnerated, and the presence of the gene was confirmed by Southern analysis. GUS was also observed to be expressed in the latex and more importantly in the serum fraction. Transverse sections of the leaf petiole from a transformed plant revealed GUS expression to be especially enhanced in the phloem and laticifers. GUS expression was subsequently detected in every one of 194 plants representing three successive vegetative cycles propagated from the original transformant. Transgenic Hevea could thus facilitate the continual production of foreign proteins expressed in the latex. Received: 14 February 1997 / Revision received: 16 August 1997 / Accepted: 20 July 1997  相似文献   

13.
Ustilago maydis killer toxins are small polypeptides (7–14 kDa) whichkill susceptible cells of closely related fungal species. The KP4 toxin is a single polypeptide subunit with a molecular weight of 11.1 kDa. In this work, a transgenic tobacco plant was constructed which secretes the KP4 toxin at a high level. The KP4 toxin expressed in this transgenic plant was of the same size and specificity as the authentic Ustilago KP4 toxin. The expression level was at least 500 times higher than that of the KP6 toxin expressed in plants. Transgenic crop plants producing the KP4 toxin could be rendered resistant to KP4-susceptible fungal pathogens.  相似文献   

14.
A cell-wall fraction of the mycorrhizal fungus Amanita muscaria increased the chitinase activity in suspension-cultured cells of spruce (Picea abies (L.) Karst.) which is a frequent host of Amanita muscaria in nature. Chitinase activity was also increased in roots of spruce trees upon incubation with the fungal elicitor. Non-induced levels of chitinase activity in spruce were higher in suspension cells than in roots whereas the elicitorinduced increase of chitinase activity was higher in roots. Treatment of cells with hormones (auxins and cytokinin) resulted in a severalfold depression of enzyme activity. However, the chitinase activity of hormone-treated as well as hormone-free cells showed an elicitor-induced increase. Suspension cells of spruce secreted a large amount of enzyme into the medium. It is postulated that chitinases released from the host cells in an ectomycorrhizal system partly degrade the fungal cell walls, thus possibly facilitating the exchange of metabolites between the symbionts.  相似文献   

15.
The human lysozyme gene, which is assembled by the stepwise ligation of chemically synthesized oligonucleotides, was introduced into tobacco (Nicotiana tabacum cv `SR1') by the Agrobacterium-mediated method. The introduced human lysozyme gene was highly expressed under the control of the cauliflower mosaic virus 35S promoter, and the gene product accumulated in the transgenic tobacco plants. The transgenic tobacco plants showed enhanced resistance against the fungus Erysiphe cichoracearum – both conidia formation and mycelial growth were reduced, and the size of the colony was diminished. Microscopic observation revealed that the transgenic tobacco plants carried the resistant phenotype, analogous to that of the resistant cultivar `Kokubu' which had been selected by conventional breeding. Growth of the phytopathogenic bacterium Pseudomonas syringae pv. tabaci was also strongly retarded in the transgenic tobacco, and the chlorotic halo of the disease symptom was reduced to 17% of that observed in the wild-type tobacco. Thus, the introduction of a human lysozyme gene is an effective approach to protect crops against both fungal and bacterial diseases. Received: 9 September 1996 / Revision received: January 9 1997 / Accepted: 20 February 1997  相似文献   

16.
Tyrosinase involved in betalain biosynthesis of higher plants   总被引:1,自引:0,他引:1  
A tyrosine-hydroxylating enzyme was partially purified from betacyanin-producing callus cultures of Portulaca grandiflora Hook. by using hydroxyapatite chromatography and gel filtration. It was characterized as a tyrosinase (EC 1.14.18.1 and EC 1.10.3.1) by inhibition experiments with copper-chelating agents and detection of concomitant o-diphenol oxidase activity. The tyrosinase catalysed both the formation of L-(3,4-dihydroxyphenyl)-alanine (Dopa) and cyclo-Dopa which are the pivotal precursors in betalain biosynthesis. The hydroxylating activity with a pH optimum of 5.7 was specific for L-tyrosine and exhibited reaction velocities with L-tyrosine and D-tyrosine in a ratio of 1:0.2. Other monophenolic substrates tested were not accepted. The enzyme appeared to be a monomer with an apparent molecular mass of ca. 53 kDa as estimated by gel filtration and SDS-PAGE. Some other betalain-producing plants and cell cultures were screened for tyrosinase activity; however, activities could only be detected in red callus cultures and plants of P. grandiflora as well as in plants, hairy roots and cell cultures of Beta vulgaris L. subsp. vulgaris (Garden Beet Group), showing a clear correlation between enzyme activity and betacyanin content in young B. vulgaris plants. We propose that this tyrosinase is specifically involved in the betalain biosynthesis of higher plants. Received: 14 July 1998 / Accepted: 23 October 1998  相似文献   

17.
Growth and P-nutrition of transgenic Trifolium subterraneum L. which express a chimeric fungal phytase gene (ex::phyA) was compared to azygous and wild-type controls in a range of soils that differed in organic P content. Shoot and root growth by plant lines were measured and effects of reducing the influence of soil microorganisms were investigated by pasteurising the soils. Plants that expressed phyA did not have better P-nutrition than control plants after 56 days growth, except in a soil that contained a large concentration of both total organic P and organic P that was amenable to hydrolysis by a plant-derived phytase. Pasteurisation had little effect on the relative P-nutrition of the various plant lines in any of the soils. Roots of transgenic plants that expressed ex::phyA were shorter than controls up to 21 days growth in a number of soils, which resulted in an initial greater P accumulation efficiency. However, greater P accumulation efficiency was only maintained in the soil where significant growth and P nutrition responses were also observed. Availability of inositol phosphates in soil is a major factor that limits the effectiveness of expressing fungal phytase genes in plants as a means to improve P-nutrition. Reducing the influence of rhizosphere microorganisms appeared to have little effect on the P-nutrition of plant lines, but the longer root system produced by control plants may have initially provided them with greater access to soil P resources. This research highlights the inherent difficulty in improving the P-nutrition of plants by the manipulation of single traits in isolation, but does provide some evidence that such approaches can be successful under certain edaphic conditions.  相似文献   

18.
  1. Upon herbivory, plants emit specific herbivore-induced plant volatiles (HIPVs) that can attract natural enemies of the herbivore thus serving as indirect plant resistance. Not only insect herbivores, but microorganisms may also affect HIPV emission before or after plant colonisation, which in turn can affect behaviour of natural enemies of the herbivore. Yet, it remains elusive whether volatiles from microorganisms influence HIPV emission and indirect plant resistance.
  2. In this study, we investigated whether exposure of Brassica rapa roots to volatiles from soil-borne fungi influence HIPV emission and the recruitment of natural enemies of Pieris brassicae larvae.
  3. Using a two-compartment pot system, we performed greenhouse and common-garden experiments, and we profiled plant HIPV emission.
  4. We found that exposure of plant roots to fungal volatiles did not affect the number of P. brassicae larvae recollected from the plants, suggesting a neutral effect of the fungal volatiles on natural predation. Likewise, in a greenhouse, similar numbers of larvae were parasitised by Cotesia glomerata wasps on control plants as on fungal volatile-exposed plants. Additionally, chemical analysis of HIPV profiles revealed no qualitative and quantitative differences between control plants and fungal volatile-exposed plants that were both infested with P. brassicae larvae.
  5. Together, our data indicate that root exposure to fungal volatiles did not affect indirect plant resistance to an insect herbivore. These findings provide new insight into the influence of indirect plant resistance by fungal volatiles that are discussed together with the effects of fungal volatiles on direct plant resistance.
  相似文献   

19.
This paper describes the artificial induction of secondary metabolite production in transgenic plant cell cultures using a recombinant, inducible plant promoter. The bacterial gene ubiC from Escherichia coli encodes the enzyme chorismate pyruvate lyase (CPL) which catalyses the conversion of chorismate to 4-hydroxybenzoate (4HB). This gene was fused to the tetracycline-inducible plant promoter Triple-Op. After transformation into Nicotiana tabacum W38 TET, transgenic cell cultures were established. Addition of chlorotetracycline to the medium led to specific induction of CPL activity. The optimal chlorotetracycline concentration was approximately 2 mg/l medium. Three to 5 h after induction, the ubiC mRNA concentration reached a maximum, while highest specific CPL activity was detected after 8 days. The artificial secondary metabolite 4HB was converted to glucosides, and their accumulation reached maximum levels after 5 weeks of subculture. The induction was reversible. Received: 31 May 1997 / Revision received: 22 August 1997 / Accepted: 30 September 1997  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号