首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Universal immunoprobe for (per)chlorate-reducing bacteria   总被引:1,自引:0,他引:1  
Recent studies in our lab have demonstrated the ubiquity and diversity of microorganisms which couple growth to the reduction of chlorate or perchlorate [(per)chlorate] under anaerobic conditions. We identified two taxonomic groups, the Dechloromonas and the Dechlorosoma groups, which represent the dominant (per)chlorate-reducing bacteria (ClRB) in the environment. As part of these studies we demonstrated that chlorite dismutation is a central step in the reductive pathway of (per)chlorate that is common to all ClRB and which is mediated by the enzyme chlorite dismutase (CD). Initial studies on CD suggested that this enzyme is highly conserved among the ClRB, regardless of their phylogenetic affiliation. As such, this enzyme makes an ideal target for a probe specific for these organisms. Polyclonal antibodies were commercially raised against the purified CD from the ClRB Dechloromonas agitata strain CKB. The obtained antiserum was deproteinated by ammonium sulfate precipitation, and the antigen binding activity was assessed using dot blot analysis of a serial dilution of the antiserum. The titers obtained with purified CD indicated that the antiserum had a high affinity for the CD enzyme, and activity was observed in dilutions as low as 10(-6) of the original antiserum. The antiserum was active against both cell lysates and whole cells of D. agitata, but only if the cells were grown anaerobically with (per)chlorate. No response was obtained with aerobically grown cultures. In addition to D. agitata, dot blot analysis employed with both whole-cell suspensions and cell lysates of several diverse ClRB representing the alpha, beta, and gamma subclasses of Proteobacteria tested positive regardless of phylogenetic affiliation. Interestingly, the dot blot response obtained for each of the ClRB cell lysates was different, suggesting that there may be some differences in the antigenic sites of the CD protein produced in these organisms. In general, no reactions were observed with cells or cell lysates of the organisms closely related to the ClRB which could not grow by (per)chlorate reduction. These studies have resulted in the development of a highly specific and sensitive immunoprobe based on the commonality of the CD enzyme in ClRB which can be used to assess dissimilatory (per)chlorate-reducing populations in environmental samples regardless of their phylogenetic affiliations.  相似文献   

2.
The reduction of (per)chlorate and nitrate in (per)chlorate-reducing bacteria shows similarities and differences. (Per)chlorate reductase and nitrate reductase both belong to the type?II DMSO family of enzymes and have a common bis(molybdopterin guanine dinucleotide)molybdenum cofactor. There are two types of dissimilatory nitrate reductases. With respect to their localization, (per)chlorate reductase is more similar to the dissimilatory periplasmic nitrate reductase. However, the periplasmic, unlike the membrane-bound, respiratory nitrate reductase, is not able to use chlorate. Structurally, (per)chlorate reductase is more similar to respiratory nitrate reductase, since these reductases have analogous subunits encoded by analogous genes. Both periplasmic (per)chlorate reductase and membrane-bound nitrate reductase activities are induced under anoxic conditions in the presence of (per)chlorate and nitrate respectively. During microbial (per)chlorate reduction, molecular oxygen is generated. This is not the case for nitrate reduction, although an atypical reaction in nitrite reduction linked to oxygen formation has been described recently. Microbial oxygen production during reduction of oxyanions may enhance biodegradation of pollutants under anoxic conditions.  相似文献   

3.
Li HJ  Peng JJ 《应用生态学报》2011,22(10):2705-2710
Microorganism-mediated dissimilatory Fe (III) reduction is recognized as the dominant mechanism for Fe(III) reduction to Fe(II) in non-sulfidogenic anaerobic environments, but the microorganisms involved, especially in paddy soil, are still poorly understood. In this paper, an enrichment culture was conducted to study the phylogenetic diversity of Fe (III)-reducing bacteria in paddy soil, with acetate or hydrogen as the electron donor and with ferrihydrite or goethite as the electron acceptor, and by the methods of terminal-restriction fragment length polymorphism (T-RFLP) technology and 16S rRNA genes cloning and sequencing. No matter what the electron donor and electron acceptor were supplemented, the most abundant microorganisms were Geobacter and Clostridiales, and Rhodocyclaceae were also abundant, when acetate was supplemented as electron donor, which suggested that besides Geobacter, Clostridiales and Rhodocyclaceae could be also the important Fe(III)-reducing bacteria in paddy soil.  相似文献   

4.
5.
水稻土中铁还原菌多样性   总被引:3,自引:0,他引:3  
黎慧娟  彭静静 《生态学杂志》2011,22(10):2705-2710
微生物介导的异化Fe(III) 还原是非硫厌氧环境中Fe(III) 还原生成Fe(II) 的主要途径,然而相关的铁还原菌还不是很清楚,特别是在水稻土中.本文采用富集培养的方法,以乙酸和氢气作为电子供体,水铁矿和针铁矿作为电子受体,通过末端限制性片段长度多态性(T-RFLP)技术和16S rRNA基因克隆测序相结合的分子生物学方法研究了水稻土中铁还原菌的多样性.结果表明:无论是以乙酸或氢气为电子供体,水铁矿或针铁矿为电子受体,地杆菌(Geobacter)和梭菌(Clostridiales)是富集到的主要微生物群落;乙酸为电子供体时,富集到的主要微生物群落还包括红环菌(Rhodocyclaceae);因此,除地杆菌外,梭菌和红环菌很可能也是水稻土中重要的铁还原菌.  相似文献   

6.
水稻土中铁还原菌多样性   总被引:4,自引:0,他引:4  
黎慧娟  彭静静 《应用生态学报》2011,22(10):2705-2710
微生物介导的异化Fe(III) 还原是非硫厌氧环境中Fe(III) 还原生成Fe(II) 的主要途径,然而相关的铁还原菌还不是很清楚,特别是在水稻土中.本文采用富集培养的方法,以乙酸和氢气作为电子供体,水铁矿和针铁矿作为电子受体,通过末端限制性片段长度多态性(T-RFLP)技术和16S rRNA基因克隆测序相结合的分子生物学方法研究了水稻土中铁还原菌的多样性.结果表明:无论是以乙酸或氢气为电子供体,水铁矿或针铁矿为电子受体,地杆菌(Geobacter)和梭菌(Clostridiales)是富集到的主要微生物群落;乙酸为电子供体时,富集到的主要微生物群落还包括红环菌(Rhodocyclaceae);因此,除地杆菌外,梭菌和红环菌很可能也是水稻土中重要的铁还原菌.  相似文献   

7.
The energy metabolism of essential microbial guilds in the biogeochemical sulfur cycle is based on a DsrAB-type dissimilatory (bi)sulfite reductase that either catalyzes the reduction of sulfite to sulfide during anaerobic respiration of sulfate, sulfite and organosulfonates, or acts in reverse during sulfur oxidation. Common use of dsrAB as a functional marker showed that dsrAB richness in many environments is dominated by novel sequence variants and collectively represents an extensive, largely uncharted sequence assemblage. Here, we established a comprehensive, manually curated dsrAB/DsrAB database and used it to categorize the known dsrAB diversity, reanalyze the evolutionary history of dsrAB and evaluate the coverage of published dsrAB-targeted primers. Based on a DsrAB consensus phylogeny, we introduce an operational classification system for environmental dsrAB sequences that integrates established taxonomic groups with operational taxonomic units (OTUs) at multiple phylogenetic levels, ranging from DsrAB enzyme families that reflect reductive or oxidative DsrAB types of bacterial or archaeal origin, superclusters, uncultured family-level lineages to species-level OTUs. Environmental dsrAB sequences constituted at least 13 stable family-level lineages without any cultivated representatives, suggesting that major taxa of sulfite/sulfate-reducing microorganisms have not yet been identified. Three of these uncultured lineages occur mainly in marine environments, while specific habitat preferences are not evident for members of the other 10 uncultured lineages. In summary, our publically available dsrAB/DsrAB database, the phylogenetic framework, the multilevel classification system and a set of recommended primers provide a necessary foundation for large-scale dsrAB ecology studies with next-generation sequencing methods.  相似文献   

8.
Dissimilatory arsenate-respiring bacteria (DARB) reduce arsenate to arsenite and may play a significant role in arsenic mobilization in aquifers and anoxic sediments. Many studies have been conducted with pure cultures of DARB to understand their involvement in arsenic contamination. However, few studies have examined uncultured DARB in the environment. In order to investigate uncultured DARB in anoxic sediments, genes encoding arsenate respiratory reductases ( arr ) were targeted as a genetic marker. Degenerate primers for the α-subunit of arr genes were designed and used with PCR amplification to detect uncultured DARB in the sediments collected from three stations (upper, mid and lower bay) in the Chesapeake Bay. Phylogenetic analysis of putative arrA genes revealed the diversity of DARB with distinct community structures at each of the three stations. Arsenate reduction in sediment communities was confirmed using enrichment cultures established with sediment samples from the upper bay. In addition, terminal restriction fragment length polymorphism analysis of the putative arrA genes showed changes in the community structure of DARB in the enrichment cultures while reducing arsenate. This was also confirmed by cloning and sequence analysis of the arrA genes obtained from the enrichment cultures. Thus, we were able to detect diverse uncultured DARB in sediments, as well as to describe changes in DARB community structure during arsenic reduction in anoxic environments.  相似文献   

9.
Abstract Four unidentified saccharolytic dissimilatory sulfate-reducing strains were isolated from an anaerobic digester. Cells were Gram-negative, motile, nonsporulating rods which differ markedly from known sulfate reducers especially with respect to carbon source utilisation and sulfur sources which can be reduced. The strains were capable of metabolising at least 26 out of 50 carbohydrates tested. Carbohydrates were, in the absence of exogenous sulfate, fermented to acetate, ethanol, lactate, carbon dioxide and hydrogen. In the presence of excess sulfate carbohydrates were fermented to acetate, ethanol, carbon dioxide, hydrogen and hydrogen sulfide, but lactate was not detected. An oxidized organic or inorganic sulfur source, including elemental sulfur, was not required as a prerequisite for growth on carbohydrates, Lactate was, in the presence of sulfate, converted to acetate, ethanol, carbon dioxide, hydrogen and hydrogen sulfide. In the absence of sulfate no lactate was utilised and no growth was observed.  相似文献   

10.
Studies with a diversity of hyperthermophilic and mesophilic dissimilatory Fe(III)-reducing Bacteria and Archaea demonstrated that some of these organisms are capable of precipitating gold by reducing Au(III) to Au(0) with hydrogen as the electron donor. These studies suggest that models for the formation of gold deposits in both hydrothermal and cooler environments should consider the possibility that dissimilatory metal-reducing microorganisms can reductively precipitate gold from solution.  相似文献   

11.
The availability of whole genome sequences for Shewanella oneidensis and Geobacter sulfurreducens has provided numerous new biological insights into the function of these model dissimilatory metal-reducing bacteria. Many of these findings, including the identification of a high number of c-type cytochromes in both organisms, have resulted from comparative genomic analyses, and several have been experimentally confirmed. These genome sequences have also aided the identification of genes important for the reduction of metal ions and other electron acceptors utilized during anaerobic growth, by facilitating the identification of genes disrupted by random insertions. Technologies for assaying global expression patterns for genes and proteins have also been employed, but their application has been limited mainly to the analysis of the role of global regulatory genes and to identifying genes expressed or repressed in response to specific electron acceptors. It is anticipated that details of the mechanisms of metal ion respiration, and metabolism in general, will eventually be revealed by comprehensive, systems-level analyses enabled by functional genomics data.  相似文献   

12.
Natural attenuation of the environmental contaminant perchlorate is a cost-effective alternative to current removal methods. The success of natural perchlorate remediation is dependent on the presence and activity of dissimilatory (per)chlorate-reducing bacteria (DPRB) within a target site. To detect DPRB in the environment, two degenerate primer sets targeting the chlorite dismutase (cld) gene were developed and optimized. A nested PCR approach was used in conjunction with these primer sets to increase the sensitivity of the molecular detection method. Screening of environmental samples indicated that all products amplified by this method were cld gene sequences. These sequences were obtained from pristine sites as well as contaminated sites from which DPRB were isolated. More than one cld phylotype was also identified from some samples, indicating the presence of more than one DPRB strain at those sites. The use of these primer sets represents a direct and sensitive molecular method for the qualitative detection of (per)chlorate-reducing bacteria in the environment, thus offering another tool for monitoring natural attenuation. Sequences of cld genes isolated in the course of this project were also generated from various DPRB and provided the first opportunity for a phylogenetic treatment of this metabolic gene. Comparisons of the cld and 16S ribosomal DNA (rDNA) gene trees indicated that the cld gene does not track 16S rDNA phylogeny, further implicating the possible role of horizontal transfer in the evolution of (per)chlorate respiration.  相似文献   

13.
Summary A survey was made of various visible light absorption spectra of whole cells, particulate and soluble fractions and haem extracts of representative strains of all known species of sulphate-reducing bacteria. The previously accepted distinction that Desulfovibrio species contain only a c-type cytochrome whereas Desulfotomaculum species contain only a b-type cytochrome was not confirmed. The pigment contents of the genera Desulfovibrio and Desulfotomaculum were not completely distinct from each other, but both genera had characteristic spectral patterns. Reduced minus oxidized spectra of whole cells and particulate fractions showed the presence of b-type cytochromes in all Desulfotomaculum species and in Desulfovibrio africanus. However, protohaem, the prosthetic group of b-type cytochromes, occurred in haem extracts from all species, although only just detectable in the extract from Desulfovibrio vulgaris NCIB 8303. Particulate c-type cytochromes were found in Desulfotomaculum orientis, Desulfotomaculum nigrificans and all the Desulfovibrio species, but the amount in Desulfotomaculum nigrificans was very small. Only the Desulfovibrio species contained soluble c-type cytochromes. Spectral properties indicated that a d-type cytochrome might exist in species in addition to Desulfovibrio africanus, but no supporting evidence was obtained from results of haem extractions. Some spectra contained peaks which could not be identified.  相似文献   

14.
Methanol oxidation was studied in several RuMP and serine type methylotrophic bacteria. On the basis of the distribution of the dissimilatory enzymes and the electrophoretic mobility of the methanol dehydrogenases, the methanol and methane oxidizers of the RuMP type belong to two different taxonomic groups. The pink pigmented facultative serine type methylotrophs represent another taxon.  相似文献   

15.
The reduction of Fe during bacterial anaerobic respiration in sediments and soils not only causes the degradation of organic matter but also results in changes in mineralogy and the redistribution of many nutrients and trace metals. Understanding trace metal patterns in sedimentary rocks and predicting the fate of contaminants in the environment requires a detailed understanding of the mechanisms through which they are redistributed during Fe reduction. In this work, lacustrine sediments from Lake Matano in Indonesia were incubated in a minimal media with the dissimilatory iron reducing (DIR) bacterium Shewanella putrefaciens 200R. These sediments were reductively dissolved at rates slower than pure synthetic goethite despite the presence of an ‘easily reducible’ component, as defined by selective extractions. DIR of the lacustrine sediments resulted in the substrate‐dependent production of abundant quantities of extracellular polymeric substances. Trace elements, including Ni, Co, P, Si, and As, were released from the sediments with progressive Fe reduction while Cr was sequestered. Much of the initial trace metal mobility can be attributed to the rapid reduction of a Mn‐rich oxyhydroxide phase. The production of organo‐Fe(III) reveals that DIR bacteria can generate significant metal complexation capacity. This work demonstrates that DIR induces the release of many elements associated with Fe‐Mn oxyhydroxides, despite secondary mineralization.  相似文献   

16.
Microbial reduction of insoluble iron minerals by dissimilatory iron reducing bacteria (DIRB) is an important environment process in the iron biogeochemical cycle. We reported that the bio-current generated from oxidation of organic matter by these bacteria in the presence of iron oxides can be used as an indicator for microbial dissolution of insoluble iron oxides. Bioelectrochemical experiments were conducted to investigate the effects of the specific bacteria and the phase identity of iron oxides on bio-current generation by recording the current response as a result of a poised constant potential. Experimental results indicated that the bio-current generation can be greatly enhanced by iron oxide addition under all the conditions varying in the type of pure culture or iron oxide. The increase in the bio-current was linearly correlated with the increased concentration of biogenic Fe(II) detected either by chemical analysis or cyclic voltammetry (CV) tests. This can be understood based on the proposed mechanism that the Fe(II)/Fe(III) couple functions as the electron mediator shuttling electrons from the microbes to the electrodes.  相似文献   

17.
The characterization of sulfate-reducing bacteria (SRBs) is presented using the dissimilatory sulfite reductase (dsrAB) gene from various samples capable of mineralizing petroleum components. These samples include several novel, sulfidogenic pure cultures which degrade alkanes, toluene, and tribromophenol. Additionally, we have sulfidogenic consortia which re-mineralize benzene, naphthalene, 2-methylnaphthalene, and phenanthrene as a sole carbon source. In this study, 22 new dsrAB genes were cloned and sequenced. The dsrAB genes from our pollutant-degrading cultures or consortia were distributed among known SRBs and previously described dsrAB environmental clones, suggesting that many biodegradative SRBs are phylogenetically distinct and geographically wide spread. Specifically, the same dsrAB gene was discovered in independently established consortia capable of benzene, phenanthrene, and methylnaphthalene degradation, indicating that this particular SRB may be a key player in anaerobic degradation of hydrocarbons in the environment.  相似文献   

18.
刘洪艳  刘淼  袁媛 《微生物学通报》2020,47(9):2711-2719
【背景】一些铁还原细菌具有异化铁还原与产氢的能力,该类细菌在环境污染修复的同时能够解决能源问题。【目的】从海洋沉积物中富集获得异化铁还原菌群,明确混合菌群组成、异化铁还原及产氢性质。获得海洋沉积物中异化铁还原混合菌群组成,分析菌群异化铁还原和产氢性质。【方法】利用高通量测序技术分析异化铁还原菌群的优势菌组成,在此基础上,分析异化铁还原混合菌群在不同电子供体培养条件下异化铁还原能力和产氢性质。【结果】高通量数据表明,在不溶性氢氧化铁为电子受体和葡萄糖为电子供体厌氧培养条件下,混合菌群的优势菌属主要是梭菌(Clostridium),属于发酵型异化铁还原细菌。混合菌群能够利用电子供体蔗糖、葡萄糖以及丙酮酸钠进行异化铁还原及发酵产氢。葡萄糖为电子供体时,菌群累积产生Fe(Ⅱ)浓度和产氢量最高,分别是59.34±6.73 mg/L和629.70±11.42 mL/L。【结论】异化铁还原混合菌群同时具有异化铁还原和产氢能力,拓宽了发酵型异化铁还原细菌的种质资源,探索异化铁还原细菌在生物能源方面的应用。  相似文献   

19.
The response behavior of three dissimilatory perchlorate-reducing bacteria to different electron acceptors (nitrate, chlorate, and perchlorate) was investigated with two different assays. The observed response was species-specific, dependent on the prior growth conditions, and was inhibited by oxygen. We observed attraction toward nitrate when Dechloromonas aromatica strain RCB and Azospira suillum strain PS were grown with nitrate. When D. aromatica and Dechloromonas agitata strain CKB were grown with perchlorate, both responded to nitrate, chlorate, and perchlorate. When A. suillum was grown with perchlorate, the organism responded to chlorate and perchlorate but not nitrate. A gene replacement mutant in the perchlorate reductase subunit (pcrA) of D. aromatica resulted in a loss of the attraction response toward perchlorate but had no impact on the nitrate response. Washed-cell suspension studies revealed that the perchlorate grown cells of D. aromatica reduced both perchlorate and nitrate, while A. suillum cells reduced perchlorate only. Based on these observations, energy taxis was proposed as the underlying mechanism for the responses to (per)chlorate by D. aromatica. To the best of our knowledge, this study represents the first investigation of the response behavior of perchlorate-reducing bacteria to environmental stimuli. It clearly demonstrates attraction toward chlorine oxyanions and the unique ability of these organisms to distinguish structurally analogous compounds, nitrate, chlorate, and perchlorate and respond accordingly.  相似文献   

20.
Sediment samples were collected worldwide from 16 locations on four continents (in New York, California, New Jersey, Virginia, Puerto Rico, Venezuela, Italy, Latvia, and South Korea) to assess the extent of the diversity and the distribution patterns of sulfate-reducing bacteria (SRB) in contaminated sediments. The SRB communities were examined by terminal restriction fragment (TRF) length polymorphism (TRFLP) analysis of the dissimilatory sulfite reductase genes (dsrAB) with NdeII digests. The fingerprints of dsrAB genes contained a total of 369 fluorescent TRFs, of which <20% were present in the GenBank database. The global sulfidogenic communities appeared to be significantly different among the anthropogenically impacted (petroleum-contaminated) sites, but nearly all were less diverse than pristine habitats, such as mangroves. A global SRB indicator species of petroleum pollution was not identified. However, several dsrAB gene sequences corresponding to hydrocarbon-degrading isolates or consortium members were detected in geographically widely separated polluted sites. Finally, a cluster analysis of the TRFLP fingerprints indicated that many SRB microbial communities were most similar on the basis of close geographic proximity (tens of kilometers). Yet, on larger scales (hundreds to thousands of kilometers) SRB communities could cluster with geographically widely separated sites and not necessarily with the site with the closest proximity. These data demonstrate that SRB populations do not adhere to a biogeographic distribution pattern similar to that of larger eukaryotic organisms, with the greatest species diversity radiating from the Indo-Pacific region. Rather, a patchy SRB distribution is encountered, implying an initially uniform SRB community that has differentiated over time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号