首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Amplification of the EPSPS gene has been previously identified as the glyphosate resistance mechanism in many populations of Amaranthus palmeri, a major weed pest in US agriculture. Here, we evaluate the effects of EPSPS gene amplification on both the level of glyphosate resistance and fitness cost of resistance. A. palmeri individuals resistant to glyphosate by expressing a wide range of EPSPS gene copy numbers were evaluated under competitive conditions in the presence or absence of glyphosate. Survival rates to glyphosate and fitness traits of plants under intra-specific competition were assessed. Plants with higher amplification of the EPSPS gene (53-fold) showed high levels of glyphosate resistance, whereas less amplification of the EPSPS gene (21-fold) endowed a lower level of glyphosate resistance. Without glyphosate but under competitive conditions, plants exhibiting up to 76-fold EPSPS gene amplification exhibited similar height, and biomass allocation to vegetative and reproductive organs, compared to glyphosate susceptible A. palmeri plants with no amplification of the EPSPS gene. Both the additive effects of EPSPS gene amplification on the level of glyphosate resistance and the lack of associated fitness costs are key factors contributing to EPSPS gene amplification as a widespread and important glyphosate resistance mechanism likely to become much more evident in weed plant species.  相似文献   

2.
The tomato bZIP2-encoding gene was inserted into the Nicotiana benthamiana genome using Agrobacterium-mediated transformation to characterize resistance to oxidative stress and two herbicides, glyphosate and paraquat. We produced transgenic tobacco plants using the LebZIP2 gene, which were then utilized to examine salt stress and herbicide resistance through oxidative mechanisms. Transgenic LebZIP2-overexpressing plants were examined using specific primers for selection marker genes (PCR using genomic DNA) and target genes (RT-PCR). Based on microscopic examination, we observed an increase in leaf thickness and cell number in transgenic plants. The electrolyte leakage of leaves suggested that LebZIP2-overexpressing lines were weak tolerant to NaCl stress and resistant to methyl viologen. During our analysis, transgenic lines were exposed to different herbicides. Transgenic plants showed an increased tolerance based on visual injury, as well as an increased biomass. Based on these results, the LebZIP2 gene may be involved in oxidative stress tolerance and cell development in plants.  相似文献   

3.
Kalanchoe pinnata L. plants bearing an artificial CP1 gene encoding the cecropin P1 antimicrobial peptide have been obtained. The presence of the CP1 gene in the plant genome has been confirmed by PCR. Cecropin P1 synthesis in transgenic plants has been shown by MALDI mass spectrometry and Western blotting. The obtained plants have been highly resistant to bacterial and fungal phytopathogens, and their extracts have demonstrated antimicrobial activity towards human and animal pathogens. It has been shown that transgenic plants bearing the CP1 gene can be colonized by the beneficial associative microorganisms Methylovorus mays.  相似文献   

4.
As salinity is a major threat to sustainable agriculture worldwide, cultivation of salt-tolerant crops becomes increasingly important. IrrE acts as a global regulator and a general switch for stress resistance in Deinococcus radiodurans. In this study, to determine whether the irrE gene can improve the salt tolerance of Brassica napus, we introduced the irrE gene into B. napus by the Agrobacterium tumefaciens-mediated transformation method. Forty-two independent transgenic plants were regenerated. Polymerase chain reaction (PCR) analyses confirmed that the irrE gene had integrated into the plant genome. Northern as well as Western blot analyses revealed that the transgene was expressed at various levels in transgenic plants. Analysis for the T1 progenies derived from four independent transformants showed that irrE had enhanced the salt tolerance of T1 in the presence of 350 mM NaCl. Furthermore, under salt stress, transgenic plants accumulated more compatible solutes (proline) and a lower level of malondialdehyde (MDA), and they had higher activities of catalase (CAT), peroxidase (POD) and superoxide dismutase (SOD). However, agronomic traits were not affected by irrE gene overexpression in the transgenic B. napus plants. This study indicates that the irrE gene can improve the salt tolerance of B. napus and represents a promising candidate for the development of crops with enhanced salt tolerance by genetic engineering.  相似文献   

5.
The expression of the CP4 EPSPS protein in genetically engineered (GE) soybean confers tolerance to the Roundup® family of agricultural herbicides. This study evaluated the variability of CP4 EPSPS expression using an enzyme-linked immunosorbent assay in soybean tissues collected across diverse germplasm and 74 different environments in Argentina, Brazil and the USA. Evaluated material included single and combined (stacked) trait products with other GE traits in entries with cp4 epsps gene at one or two loci. The highest level of CP4 EPSPS was observed in leaf tissues, intermediate in forage and seed, and lowest in root tissues. Varieties with two loci had approximately twice the level of CP4 EPSPS expression compared to one locus entries. Variable and non-directional level of CP4 EPSPS was observed with other factors like genetic background, trait stacking, growing region or season. The maximum and average CP4 EPSPS expression levels in seed provided large margins of exposure (MOE of approximately 4000 and 11,000, respectively), mitigating concerns over exposure to this protein in food and feed from soybean varieties tolerant to Roundup® herbicides.  相似文献   

6.
Genetic transformation of plants allows us to obtain improved genotypes enriched with the desired traits. However, if transgenic lines were to be used in breeding programs the stability of inserted transgenes is essential. In the present study, we followed the inheritance of transgenes in hybrids originated from crossing two transgenic tobacco lines resistant to Potato virus Y (PVY): MN 944 LMV with the transgene containing Lettuce mosaic virus coat protein gene (LMV CP) and AC Gayed ROKY2 with PVY replicase gene (ROKY2). Progeny populations generated by successive self-pollination were analyzed with respect to the transgene segregation ratio and resistance to Potato virus Y in tests carried out under greenhouse conditions. The presence of the virus in inoculated plants was detected by DAS-ELISA method. The results demonstrated the Mendelian fashion of inheritance of transgenes which were segregated independently and stably. As a result, we obtained T4 generation of hybrid with both transgenes stacked and which was highly resistant to PVY.  相似文献   

7.
This study was to determine a transformation system for Miscanthus sinensis, and to optimize factors and conditions required for expression of an antisense caffeic acid O-methyltransferase gene in the M. sinensis (MsCOMT-AS). Transformation of callus derived from seeds and immature inflorescences of M. sinensis was established by using Agrobacterium tumefaciens strain LBA4404 harboring a binary vector pMBP1. In order to establish the stable transformation system, several transformation factors such as explant type, strain, co-culture periods, acetosyringone concentration, and selective markers were assessed. In this study, seven putative transgenic plants were obtained from callus transformation and plantlet regeneration. Various tests including PCR analysis and RT-PCR were used to detect the transgenic insert. The transgenic plants were also characterized for their agronomic and morphological characteristics, expression of MsCOMT-AS gene, and variation in lignocellulosic content. Biomass related traits such as plant height, number of leaves, length of leaf, stem diameter, fresh weight, dry weight, and cell size of the control plants were superior to transgenic plants. Total lignin content of transgenic plants was lower than that of the control plant due to reduced caffeic acid O-methyltransferase (COMT) gene expression related to lignin production. Cellulose and hemicellulose content in transgenic plants were not increased. Variation in cellulose and hemicellulose content had no correlation with variation in lignin content of transgenic plants. In conclusion, transgenic M. sinensis was obtained with down-regulated COMT gene. Lignin synthesis was decreased what offers possibility of crop modification for facilitated biofuel production.  相似文献   

8.
Olive is one of the most important tree crops in the Mediterranean region, because of its ability to grow and produce acceptable yields under limited water availability. In this study, the drought tolerance of an olive cultivar Canino was compared to the performance of its derived transgenic line expressing osmotin gene from tobacco, obtained by Agrobacterium-mediated transformation of Canino cultivar. Shoot cultures of both wild-type (wt) and transgenic lines were exposed to drought stress over a 28-day period, and their differential responses to in vitro-drought stress were investigated. After exposure to PEG, most of the shoots from wt plants resulted in damage and exhibited decreased levels of chlorophyll, while those of transgenic line did not show injuries and showed a normal growth even when exposed to the highest PEG concentration (4%). After preliminary evaluation we characterized Canino AT17-1, by measuring several physiological parameters, including the activities of the antioxidant enzymes (POD and CAT), and the content of malondialdehyde (MDA). Both the activity of catalase and the proline content were higher in the leaves of the transgenic shoots compared to wt plants. Consequently, it was observed that the transgenic line accumulated less MDA indicating that the presence of the osmotin gene protected the cell membrane from damage by lipid peroxidation. Together, these results could suggest that the transgenic line Canino AT17-1 was more efficient in the activation of defense responses against oxidative stress with respect to the Canino wt. The further finding that the transgenic shoots also showed higher proline accumulation supported the hypothesis that the osmotin gene conferred to transgenic shoots increased tolerance to drought stress compared with the wt.  相似文献   

9.
10.

Key message

This report demonstrates the usefulness of ptxD/phosphite as a selection system that not only provides a highly efficient and simple means to generate transgenic cotton plants, but also helps address many of the concerns related to the use of antibiotic and herbicide resistance genes in the production of transgenic crops.

Abstract

Two of the most popular dominant selectable marker systems for plant transformation are based on either antibiotic or herbicide resistance genes. Due to concerns regarding their safety and in order to stack multiple traits in a single plant, there is a need for alternative selectable marker genes. The ptxD gene, derived from Pseudomonas stutzeri WM88, that confers to cells the ability to convert phosphite (Phi) into orthophosphate (Pi) offers an alternative selectable marker gene as demonstrated for tobacco and maize. Here, we show that the ptxD gene in combination with a protocol based on selection medium containing Phi, as the sole source of phosphorus (P), can serve as an effective and efficient system to select for transformed cells and generate transgenic cotton plants. Fluorescence microscopy examination of the cultures under selection and molecular analyses on the regenerated plants demonstrate the efficacy of the system in recovering cotton transformants following Agrobacterium-mediated transformation. Under the ptxD/Phi selection, an average of 3.43 transgenic events per 100 infected explants were recovered as opposed to only 0.41% recovery when bar/phosphinothricin (PPT) selection was used. The event recovery rates for nptII/kanamycin and hpt/hygromycin systems were 2.88 and 2.47%, respectively. Molecular analysis on regenerated events showed a selection efficiency of ~?97% under the ptxD/Phi system. Thus, ptxD/Phi has proven to be a very efficient, positive selection system for the generation of transgenic cotton plants with equal or higher transformation efficiencies compared to the commonly used, negative selection systems.
  相似文献   

11.
12.
Christolea crassifolia HARDY: gene (CcHRD) belongs to the AP2/ERF-like tanscritpion factor family, and overexpression of HRD gene has been proved to result in improved water use efficiency and enhanced drought resistance in multiple plant species. In the present study, we cloned the CcHRD gene from Christolea crassifolia, which shares 99.1% sequence similarity with the HRD gene from Arabidopsis thaliana. We generated transgenic tomato plants expressing CcHRD gene by agrobacterium-mediated genetic transformation. Our results revealed that the transgenic tomato plants showed a more developed root system and higher fruit yield than the wild-type plants. Furthermore, the leaf relative water content, chlorophyll content and Fv/Fm value in transgenic plants were significantly higher than the wild type, while the relative conductivity and MDA content of transgenic plant leaves were markedly lower than those of wild type under drought stress. We also observed that the major agronomic traits of transgenic tomato plants were improved under natural drought stress compared with those of the wild type. In summary, results in this transgenic study showed that the CcHRD gene could enhance the drought resistance in tomato, and also provided important information for the application of drought-responsive genes in improving crop plant resistance to abiotic stresses.  相似文献   

13.
Cultivating insect pest-resistant varieties is one of the most effective ways to prevent or mitigate pest infestation in Chinese cabbage (Brassica campestris ssp. chinensis). Via the agrobacterium tumefaciens-mediated transformation method, this study introduced the protease inhibitor encoding gene sporamin into two widely cultured cultivars ‘Youdonger’ and ‘Shanghaiqing’, of the common variety of Chinese cabbages (B. campestriss ssp. chinensis var. communis), getting transgenic plants with high sporamin expression. In vitro insect bioassays indicated that, compared with the wild type plants, the transgenic plants exhibited improved resistance to diamondback moth (Plutella xylostella L.) The analysis of inheritance pattern of exogenous sporamin in the progenies of single copy insertion transgenic lines demonstrated that sporamin could be inherited and expressed stably in transgenic progenies. Field survey of the insect resistance under the normal culture condition confirmed the enhanced resistance in transgenic progenies to diamondback moth. Our results strongly suggest that sporamin is an efficient candidate gene for insect-resistant genetic engineering in Chinese cabbage.  相似文献   

14.
Transgenic chilli pepper (Capsicum annuum L.) plants tolerant to salinity stress were produced by introducing the wheat Na+/H+ antiporter gene (TaNHX2) via Agrobacterium-mediated transformation. Cotyledonary explants were infected with Agrobacterium tumefaciens strain LBA4404 harboring a binary vector pBin438 that contains a wheat antiporter (TaNHX2) gene driven by the double CaMV 35S promoter and NPT II gene as a selectable marker. PCR and semiquantitative RT-PCR analysis confirmed that the TaNHX2 gene had been integrated and expressed in the T1 generation of transgenic pepper plants as compared to the non-transformed plants. Southern blot analysis further verified the integration and presence of TaNHX2 gene in the genome of chilli pepper plants. Biochemical assays of these transgenic plants revealed enhanced levels of proline, chlorophyll, superoxide dismutase, ascorbate peroxidase, relative water content, and reduced levels of hydrogen peroxide (H2O2), malondialdehyde compared to wild-type plants under salt stress conditions. The present investigation clearly showed that overexpression of the TaNHX2 gene enhanced salt stress tolerance in transgenic chilli pepper plants.  相似文献   

15.
16.
17.
Genetic engineering provides new opportunities for improving economically important traits in sugarcane cultivars. In this study, an efficient Agrobacterium-mediated transformation system that uses the bar gene (a herbicide resistance gene that is used in conjunction with the herbicide Basta) as a selection marker was developed. Using this transformation selection system, all of the resistant plants after selection were nearly 100% polymerase chain reaction (PCR) detection positive and showed herbicide resistance. Each gram of sugarcane calli used for transformation produced approximately 12 transgenic lines. It took approximately 4 months to generate transgenic plants that measured 10 cm in height for greenhouse transplantation.  相似文献   

18.
19.
An inverted repeat construct corresponding to a segment of the potato leaf roll virus coat protein gene was created under control of a constitutive promoter and transferred into a transformation vector with a heat inducible Cre-loxP system to excise the nptII antibiotic resistance marker gene. Fifty-eight transgenic events were evaluated for resistance to PLRV by greenhouse inoculations, which lead to the identification of 7 highly resistant events, of which 4 were extremely resistant. This resistance was also highly effective against accumulation in subsequent tuber generations from inoculated plants, which has not been reported before. Northern blot analysis showed correlation of PLRV specific siRNA accumulation with the level of PLRV resistance. Heat mediated excision of the nptII antibiotic resistance gene in PLRV resistant events was highly efficient in one event with full excision in 71 % of treated explants. On the other hand 8 out of 10 analyzed events showed truncated T-DNA insertions lacking one of the two loxP sites as determined by PCR and confirmed by sequencing flanking regions in 2 events, suggesting cryptic LB sites in the non-coding region between the nptII gene and the flanking loxP site. Accordingly, it is proposed to modify the Cre-loxP vector by reducing the 1 kb size of the region between nptII, loxP, and the LB.  相似文献   

20.
Phelipanche and Orobanche spp. (broomrapes) are economically important parasitic weeds, causing severe damage to many agricultural crops. However, conventional methods to control these parasitic weeds are often not effective. Targeting molecular and biochemical processes involved in the establishment of the connection between the parasite and the host may offer a new perspective for control. However, progress in the understanding of these processes is hampered by the fact that genetic transformation and regeneration of these parasites is difficult if not impossible due to their specific lifecycle. Phelipanche and Orobanche spp. are holoparasites that need to attach to the roots of a host plant to get their assimilates, nutrients and water to develop and reproduce. The present study describes a highly efficient genetic transformation and regeneration protocol for the root holoparasitic Phelipanche ramosa. We present a new transformation system for P. ramosa using Agrobacterium rhizogenes MSU440 carrying a non-destructive selection marker gene coding for a red fluorescent protein (DsRed1). Using this protocol up to 90% transformation efficiency was obtained. We transformed 4 weeks old P. ramosa calli and transgenic calli expressing DsRed1 were then cultured on host plants. For the first time, we present shoot and flower development of the transgenic parasitic plant P. ramosa after successful connection of transgenic calli with the host plant roots. Moreover, we also present, for the first time, growth and development of P. ramosa shoots and flowers in vitro in the absence of a host plant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号