首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Cryptococcus neoformans is a major cause of fungal meningitis in individuals with impaired immunity. Our previous studies have shown that the VPS41 gene plays a critical role in the survival of Cryptococcus neoformans under nitrogen starvation; however, the molecular mechanisms underlying VPS41-mediated starvation response remain to be elucidated. In the present study, we show that, under nitrogen starvation, VPS41 strongly enhanced ICL1 expression in C. neoformans and that overexpression of ICL1 in the vps41 mutant dramatically suppressed its defects in starvation response due to the loss of VPS41 function. Moreover, targeted deletion of ICL1 resulted in a dramatic decline in viability of C. neoformans cells under nitrogen deprivation. Taken together, our data suggest a model in which VPS41 up-regulates ICL1 expression, directly or indirectly, to promote survival of C. neoformans under nitrogen starvation.  相似文献   

3.
4.
5.
6.
7.
8.
To investigate the spatial and temporal dependence of hormonal regulation during gravitropism, we compared the effects of root cap application of indole-3-acetic acid (IAA) and abscisic acid (ABA) with gene expression changes occurring naturally during gravitropic reaction of Brassica rapa roots. The expression of auxin, ABA, and metabolism-related genes in the tip, elongation zone, and maturation zone varied with time, location, and hormone concentration and characterized polar auxin transport. IAA was transported readily shootward and inhibited growth more than ABA. Expression of PIN3 and IAA5 in the elongation zone showed downregulation on the convex but upregulation on the concave side. Both PIN7 and IAA5 responded near maximally to 10?8 M IAA within 30 min, suggesting that auxin activates its own transport system. Ubiquitin 1 (UBQ1) responded after a lag time of more than 1 h to IAA. The metabolic control gene Phosphoenolpyruvate carboxylase 1 (PEPC1) was more sensitive to ABA but upregulated by high concentrations of either hormone. The time course and duration of gene activation suggests that ABA is not involved in gravitropic curvature, differential elongation is not simply explained by IAA-induced upregulation, and that reference genes are sensitive to auxin.  相似文献   

9.
10.
11.
β-glucosidase (BG) was believed to take part in abscisic acid (ABA) synthesis via hydrolysis of ABA glucose ester to release active ABA during plant growth and development. However, there is no genetic evidence available to indicate the role of genes during fruit ripening. Here, the expression patterns of three genes (VvBG1, VvBG2, and VvBG3) encoding β-glucosidase were analyzed during grape fruit development, and it was found that β-glucosidase activity increased in grape fruit in response to various stresses. Furthermore, to verify the function of β-glucosidase during fruit ripening, heterogeneous expression of the VvBG1 gene in strawberry fruit was validated, and the results showed that the VvBG1 over-expression increased β-glucosidase and promoted the fruit ripening process in strawberry. In addition, we found that ABA contents increased in the VvBG1 over-expression of strawberry fruit, which induced fruit anthocyanin, soluble solid accumulation, and fruit softening. Moreover, genes related to coloring (CHS, CHI, F3H, and UFGT), softening (PG1, PL1, and EXP1), and aroma (SAAT, and QR) were up-regulated. This work will elucidate the specific roles of VvBGs in the synthesis of ABA and provide some new insights into the ABA-controlled grape ripening mechanism.  相似文献   

12.
13.
14.
15.
Potassium (K) plays an important role in fruit quality, and is well known as the most important quality element. A field experiment was conducted with four K levels of 0 (control), 150 (K150), 300 (K300), 450 (K450) kg K2O ha?1 in 2014–2015. The aim was to elucidate the roles of K in fruit growth, and the mechanism of K in regulating sugar metabolism between the leaves and fruit of Asian pear (Pyrus L.). The results showed that the K concentration and accumulation in leaves and fruit with the net photosynthetic rate and SPAD value of leaves were found to increase with the increase of K application rates. Increasing K application rates also led to promote the effectiveness of accumulation of glucose, fructose, sorbitol, and sucrose in fruit. During the early fruit development stage, the increase of all soluble sugars in leaves was correlated with the up-regulation expression of gene AIV and S6PDH. Furthermore, with fruit development, the expression of AIV1, SPS1 and SUS, S6PDH and SDH3 involved in sugar metabolism in leaves were up-regulated by increasing the K application rates, resulting in higher accumulation of soluble sugars in leaves. Interestingly, at the fruit maturity stage the expression of SUT in leaves, and SPS1, SUS and SUT in fruit was significantly up-regulated, leading to higher sucrose accumulation in fruit. Thus, K-promoted sugar accumulation of the leaves and fruit might result from up-regulated expression levels of key genes involved in sugar metabolism by K in leaves and fruit.  相似文献   

16.
17.
18.
Results of research on the study of the effects of the interaction between the keeping-life gene alc with the elevated fruit pigmentation genes hp, dg, B og, and B c are presented. It is shown that use of the gene recombinations alc/alc//hp/hp//B og/B og(B c/B c) and alc/alc//dg/dg is the most effective means of creating highly commercial, long keeping life varieties of tomato with saturated-red coloring of the fruit.  相似文献   

19.
By-products resulting from thermo-chemical pretreatment of lignocellulose can inhibit fermentation of lignocellulosic sugars to lactic acid. Furfural is such a by-product, which is formed during acid pretreatment of lignocellulose. pH-controlled fermentations with 1 L starting volume, containing YP medium and a mixture of lignocellulosic by-products, were inoculated with precultures of Bacillus coagulans DSM2314 to which 1 g/L furfural was added. The addition of furfural to precultures resulted in an increase in l(+)-lactic acid productivity by a factor 2 to 1.39 g/L/h, an increase in lactic acid production from 54 to 71 g and an increase in conversion yields of sugar to lactic acid from 68 to 88 % W/W in subsequent fermentations. The improved performance was not caused by furfural consumption or conversion, indicating that the cells acquired a higher tolerance towards this by-product. The improvement coincided with a significant elongation of B. coagulans cells. Via RNA-Seq analysis, an upregulation of pathways involved in the synthesis of cell wall components such as bacillosamine, peptidoglycan and spermidine was observed in elongated cells. Furthermore, the gene SigB and genes promoted by SigB, such as NhaX and YsnF, were upregulated in the presence of furfural. These genes are involved in stress responses in bacilli.  相似文献   

20.
Carotenoid dioxygenases, including 9-cis-epoxycarotenoid dioxygenases (NCEDs) and carotenoid cleavage dioxygenases (CCDs), can selectively cleave carotenoids into various apocarotenoid products that play important roles in fleshy fruit development and abiotic stress response. In this study, we identified 12 carotenoid dioxygenase genes in diploid strawberry Fragaria vesca, and explored their evolution with orthologous genes from nine other species. Phylogenetic analyses suggested that the NCED and CCDL groups moderately expanded during their evolution, whereas gene numbers of the CCD1, CCD4, CCD7, and CCD8 groups maintained conserved. We characterized the expression profiles of FveNCED and FveCCD genes during flower and fruit development, and in response to several abiotic stresses. FveNCED1 expression positively responded to osmotic, cold, and heat stresses, whereas FveNCED2 was only induced under cold stress. In contrast, FveNCED2 was the unique gene highly and continuously increasing in receptacle during fruit ripening, which co-occurred with the increase in endogenous abscisic acid (ABA) content previously reported in octoploid strawberry. The differential expression patterns suggested that FveNCED1 and FveNCED2 were key genes for ABA biosynthesis in abiotic stress responses and fruit ripening, respectively. FveCCD1 exhibited the highest expression in most stages of flower and fruit development, while the other FveCCDs were expressed in a subset of stages and tissues. Our study suggests distinct functions of FveNCED and FveCCD genes in fruit development and stress responses and lays a foundation for future study to understand the roles of these genes and their metabolites, including ABA and other apocarotenoid products, in the growth and development of strawberry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号