首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During spermatogenesis in mammals and in Drosophila melanogaster, male germ cells develop in a series of essential developmental processes. This includes differentiation from a stem cell population, mitotic amplification, and meiosis. In addition, post-meiotic germ cells undergo a dramatic morphological reshaping process as well as a global epigenetic reconfiguration of the germ line chromatin—the histone-to-protamine switch.Studying the role of a protein in post-meiotic spermatogenesis using mutagenesis or other genetic tools is often impeded by essential embryonic, pre-meiotic, or meiotic functions of the protein under investigation. The post-meiotic phenotype of a mutant of such a protein could be obscured through an earlier developmental block, or the interpretation of the phenotype could be complicated. The model organism Drosophila melanogaster offers a bypass to this problem: intact testes and even cysts of germ cells dissected from early pupae are able to develop ex vivo in culture medium. Making use of such cultures allows microscopic imaging of living germ cells in testes and of germ-line cysts. Importantly, the cultivated testes and germ cells also become accessible to pharmacological inhibitors, thereby permitting manipulation of enzymatic functions during spermatogenesis, including post-meiotic stages.The protocol presented describes how to dissect and cultivate pupal testes and germ-line cysts. Information on the development of pupal testes and culture conditions are provided alongside microscope imaging data of live testes and germ-line cysts in culture. We also describe a pharmacological assay to study post-meiotic spermatogenesis, exemplified by an assay targeting the histone-to-protamine switch using the histone acetyltransferase inhibitor anacardic acid. In principle, this cultivation method could be adapted to address many other research questions in pre- and post-meiotic spermatogenesis.  相似文献   

2.
Non-mammalian infection models have been developed over the last two decades, which is a historic milestone to understand the molecular basis of bacterial pathogenesis. They also provide small-scale research platforms for identification of virulence factors, screening for antibacterial hits, and evaluation of antibacterial efficacy. The fruit fly, Drosophila melanogaster is one of the model hosts for a variety of bacterial pathogens, in that the innate immunity pathways and tissue physiology are highly similar to those in mammals. We here present a relatively simple protocol to assess the key aspects of the polymicrobial interaction in vivo between the human opportunistic pathogens, Pseudomonas aeruginosa and Staphylococcus aureus, which is based on the systemic infection by needle pricking at the dorsal thorax of the flies. After infection, fly survival and bacteremia over time for both P. aeruginosa and S. aureus within the infected flies can be monitored as a measure of polymicrobial virulence potential. The infection takes ~24 h including bacterial cultivation. Fly survival and bacteremia are assessed using the infected flies that are monitored up to ~60 h post-infection. These methods can be used to identify presumable as well as unexpected phenotypes during polymicrobial interaction between P. aeruginosa and S. aureus mutants, regarding bacterial pathogenesis and host immunity.  相似文献   

3.
4.
The effect of mutation Kit W-Y found in C57BL/6 mice on fertility, spermatogenesis, and early embryogenesis of mice have been studied. If heterozygotes Kit W /+ are crossed with wild-type mice, fertility decreases by 20%. Homozygotes Kit W-Y /Kit W-Y and compounds Kit W-Y /Kit Ssm are nonviable. The study of spermatogenesis in Kit W /+ mice has demonstrated a negative effect of this mutation on spermatocytes. Histological examination of the testes of mutant males has shown local empty spaces in seminal ducts. Electron microscopic examination of synaptonemal complexes have demonstrated desynapsis disturbance in some nuclei at the diplotene stage of meiotic prophase I. However, these disturbances do not cause a decrease in the number of fertilized oocytes/ova. The decrease in fertility is accounted for disturbances of early embryogenesis. In vivo and in vitro analyses of early embryogenesis have demonstrated that cleavage divisions are asynchronous in Kit W-Y /+ heterozygous embryos. Some of these embryos die before implantation, and others cleave more rapidly than wild-type embryos, which give them selective advantage during the postimplantation period of embryogenesis. The pattern of Kit W-Y expression during spermatogenesis and embryogenesis mimics potential human pathology, which makes these mutants an interesting and valuable object for genetics and developmental biology.  相似文献   

5.
6.
Genetic analysis of the inheritance of mutation ps in sugar beet was conducted. This mutation causes the meiotic abnormalities leading to the development of diploid pollen grains and influences several other morphological traits, namely, annual or biennial habit, stem color, and aggregation of pollen grains into tetrads, which are controlled by the genes B, Stc, and ap, respectively. The literature data on the linkage of genes B and Stc were confirmed; the obtained recombination coefficient between these genes amounts to 15.0 ± 3.6%. It was demonstrated that gene ap was inherited independently of genes B and Stc. Statistical analysis of the data shows that the mutation ps is recessive and is inherited independently of the mutation ap but in a linked manner with the traits development habit and stem color. The conclusion is made that a gene with a strong phenotypic effect that determines the development of the phenotype characteristic of mutation ps is located in the first linkage group near genes B and Stc.  相似文献   

7.

Background

Tsetse flies (Glossina sp.) refractory to trypanosome infection are currently being explored as potential tools to contribute in the control of human and animal African trypanosomiasis. One approach to disrupt trypanosome transmission by the tsetse fly vector involves the use of paratransgenesis, a technique that aims to reduce vector competence of disease vectors via genetic modification of their microbiota. An important prerequisite for developing paratransgenic tsetse flies is the stable repopulation of tsetse flies and their progeny with its genetically modified Sodalis symbiont without interfering with host fitness.

Results

In this study, we assessed by qPCR analysis the ability of a chromosomally GFP-tagged Sodalis (recSodalis) strain to efficiently colonize various tsetse tissues and its transmission to the next generation of offspring using different introduction approaches. When introduced in the adult stage of the fly via thoracic microinjection, recSodalis is maintained at high densities for at least 21 days. However, no vertical transmission to the offspring was observed. Oral administration of recSodalis did not lead to the colonization of either adult flies or their offspring. Finally, introduction of recSodalis via microinjection of third-instar larvae resulted in stably colonized adult tsetse flies. Moreover, the subsequent generations of offspring were also efficiently colonized with recSodalis. We show that proper colonization of the female reproductive tissues by recSodalis is an important determinant for vertical transmission.

Conclusions

Intralarval microinjection of recSodalis proves to be essential to achieve optimal colonization of flies with genetically modified Sodalis and its subsequent dissemination into the following generations of progeny. This study provides the proof-of-concept that Sodalis can be used to drive expression of exogenous transgenes in Glossina morsitans morsitans colonies representing a valuable contribution to the development of a paratransgenic tsetse fly based control strategy.
  相似文献   

8.
9.
The shore fly, Scatella stagnalis (Fallén) (Diptera: Ephydridae) is an important insect pest of greenhouse crops. We evaluated two different Spanish isolates of entomopathogenic nematodes, Steinernema feltiae (Filipjev) (Rhabditida: Steinernematidae) and Steinernema arenarium (Artyukhovsky) (Rhabditida: Steinernematidae), and two commercially available strains, Steinernema feltiae (Nemaplus®) and Heterorhabditis bacteriophora (Poinar) (Rhabditida: Heterorhabditidae) (Nematop®) against shore flies. In tests conducted in 24-well plate filter paper applied at 5, 11, 22, 44 and 88 nematodes per larva, all nematodes produced significant shore fly larval mortality. The lowest concentration tested was enough to obtain high larval mortality (65.2–87.0%). The nematodes Steinernema feltiae and Steinernema arenarium, which parasitized the shore fly larvae faster, also penetrated in higher number in the shore fly larva (4.6–8.8% penetration rate). In bioassays conducted in algae, Steinernema feltiae, applied at 50 nematodes/cm2, caused highest (100%) and Steinernema arenarium lowest shore fly mortality (94%). Our results suggest that entomopathogenic nematodes appear feasible for controlling shore flies but further tests are needed to determine their efficacy in the field.  相似文献   

10.
In the absence of meiotic recombination, deleterious mutations, decreasing the viability, are accumulated and fixed in small Drosophila populations. Study of the viability of hybrid progenies of three laboratory Drosophila melanogaster strains carrying meiotic mutation c(3)G 17 has suggested that the deleterious mutations are negatively synergistic in their interaction. The deleterious mutations localized to the pericentromeric region of chromosome 3 are threefold more efficient as compared with the mutations located in distal regions. Substitution of a new chromosome for the balancer chromosome in a strain with meiotic mutation c(3)G 17 partially restores (by ~20%) the viability of homozygotes c(3)G 17 /c(3)G 17 over the first 20–30 generations. Further cultivation for 30 generations with the same balancer again decreases the viability to the initial level. An epigenetic nature of deleterious mutations is discussed.  相似文献   

11.
The views on the role of glial tissue have changed greatly since the first studies in the field. The cells once regarded as “cell glue” have been shown to play important roles in development, trophic processes, production of navigation signals for axon growth, electric insulation of neurons, creation of a barrier between the brain and the hemolymph, control of extracellular homeostasis, and physiological functioning of the brain. Researchers all over the world are currently turning to Drosophila melanogaster, a well-characterized model organism in genetics, in order to investigate multiple molecular aspects of neurodegeneration processes, since the modeling of neurodegeneration mechanisms in Drosophila has a number of advantages. Fruit flies with a mutation in the swiss cheese (sws) gene show degeneration of neurons and surface glia cells of the optical lobe, and the protein product of the sws gene is essential for maintaining the functionality and integrity of the fly brain. The present review addresses the role of glial cells in Drosophila brain development and in the functioning of the adult fly brain as well as the pattern of expression of the gene sws and the distribution of the product of this gene in neurons and glia.  相似文献   

12.
Niche conservatism (NC) presence is a controversial question in evolutionary ecology. In Drosophila, little is known about which is the preponderant evolutionary pattern, since the adaptive radiation hypothesis first proposed by Throckmorton assumed niche divergence (ND) according to a niche occupancy scenario. Nevertheless, this hypothesis has not yet been straightforwardly tested. Our aim here was to test the role of NC patterns across evolution of American drosophilids belonging to the tripunctata and virilis-repleta lineages of the Drosophila subgenus, through measures of geographical, abiotic and biotic niche overlap and evaluations regarding the presence of phylogenetic signal or niche identity. We recovered phylogenetic signal attributable to phylogenetic niche conservatism when all species were analyzed together, but not in more restricted groups. Identity tests showed that niche equivalency was seldom rejected for the tripunctata lineage species. So, in general, neither the results for the Drosophila subgenus nor those for the tripunctata lineage support the hypothesis of an adaptive radiation. Notwithstanding, there were also several isolated cases supporting a scenario of ND, and ecological speciation was evident in some of the evaluated sister species pairs.  相似文献   

13.
We studied the in vitro effect of Sertoli cells on boar spermatogonia isolated from the testes of 60-day-old crossbred boars. In order to enrich the culture with spermatogonia, the cells were purified by density gradient centrifugation with the use of Percoll gradient followed by separation based on adhesive capacities of cells. We found lipid drops stained by Oil Red O in Sertoli cells. The experiments showed that the cultivation of boar spermatogonia in the presence of Sertoli cells (for up to 35 days) provide the same way of differentiation as in testes in natural conditions. After 10 days of cultivation, spermatogenic cells form groups, chains, and suspension clusters. By this time, spermatogenic colonies are formed; we analyzed the expression of Nanog and Plzf genes in these colonies by real-time PCR. The expression rate of Nanog gene in experimental cell clones obtained by the short-term cultivation of spermatogonia cells in the presence of Sertoli cells was 200 times higher than in freshly isolated spermatogonia cells. The product of Plzf gene expression was found both in freshly isolated spermatogenic cells and in cell clones obtained in vitro. After long-term cultivation of spermatogonia on Sertoli cells, we observed in vitro differentiation to the lineage of spermatogenesis and formation of separate motile sperm cells after 30–33 days. At this stage, the cell population was heterogeneous. In the absence of Sertoli cells, the differentiation of boar spermatogonia cells in culture stopped after 7 days of cultivation. The data show that the cultivation of boar spermatogonia cells on Sertoli cells contributes to their in vitro differentiation to the lineage of spermatogenesis and can help to obtain boar sperm cell culture.  相似文献   

14.
15.
Two species of true fruit flies (taxonomic family Tephritidae) are considered pests of fruit and vegetable production in Argentina: the cosmopolitan Mediterranean fruit fly (Ceratitis capitata Wiedemann) and the new world South American fruit fly (Anastrepha fraterculus Wiedemann). The distribution of these two species in Argentina overlaps north of the capital, Buenos Aires. Regarding the control of these two pests, the varied geographical fruit producing regions in Argentina are in different fly control situations. One part is under a programme using the sterile insect technique (SIT) for the eradication of C. capitata, because A. fraterculus is not present in this area. The application of the SIT to control C. capitata north of the present line with the possibility of A. fraterculus occupying the niche left vacant by C. capitata becomes a cause of much concern. Only initial steps have been taken to investigate the genetics and biology of A. fraterculus. Consequently, only fragmentary information has been recorded in the literature regarding the use of SIT to control this species. For these reasons, the research to develop a SIT protocol to control A. fraterculus is greatly needed. In recent years, research groups have been building a network in Argentina in order to address particular aspects of the development of the SIT for Anastrepha fraterculus. The problems being addressed by these groups include improvement of artificial diets, facilitation of insect mass rearing, radiation doses and conditions for insect sterilisation, basic knowledge supporting the development of males-only strains, reduction of male maturation time to facilitate releases, identification and isolation of chemical communication signals, and a good deal of population genetic studies. This paper is the product of a concerted effort to gather all this knowledge scattered in numerous and often hard-to-access reports and papers and summarize their basic conclusions in a single publication.  相似文献   

16.

Background

The tsetse fly (Glossina sp.) midgut is colonized by maternally transmitted and environmentally acquired bacteria. Additionally, the midgut serves as a niche in which pathogenic African trypanosomes reside within infected flies. Tsetse’s bacterial microbiota impacts many aspects of the fly’s physiology. However, little is known about the structure of tsetse’s midgut-associated bacterial communities as they relate to geographically distinct fly habitats in east Africa and their contributions to parasite infection outcomes. We utilized culture dependent and independent methods to characterize the taxonomic structure and density of bacterial communities that reside within the midgut of tsetse flies collected at geographically distinct locations in Kenya and Uganda.

Results

Using culture dependent methods, we isolated 34 strains of bacteria from four different tsetse species (G. pallidipes, G. brevipalpis, G. fuscipes and G. fuscipleuris) captured at three distinct locations in Kenya. To increase the depth of this study, we deep sequenced midguts from individual uninfected and trypanosome infected G. pallidipes captured at two distinct locations in Kenya and one in Uganda. We found that tsetse’s obligate endosymbiont, Wigglesworthia, was the most abundant bacterium present in the midgut of G. pallidipes, and the density of this bacterium remained largely consistent regardless of whether or not its tsetse host was infected with trypanosomes. These fly populations also housed the commensal symbiont Sodalis, which was found at significantly higher densities in trypanosome infected compared to uninfected flies. Finally, midguts of field-captured G. pallidipes were colonized with distinct, low density communities of environmentally acquired microbes that differed in taxonomic structure depending on parasite infection status and the geographic location from which the flies were collected.

Conclusions

The results of this study will enhance our understanding of the tripartite relationship between tsetse, its microbiota and trypanosome vector competence. This information may be useful for developing novel disease control strategies or enhancing the efficacy of those already in use.
  相似文献   

17.
18.

Background

GGAs (Golgi-localised, γ-ear containing, ADP ribosylation factor-binding) are a family of clathrin adaptors that sort a number of biologically important transmembrane proteins into clathrin-coated vesicles. Knockout and knockdown studies to determine GGA function are confounded by the fact that there are 3 GGA genes in mammalian cells. Thus Drosophila melanogaster is a useful model system to study tissue expression profiles and knockdown phenotypes as there is a single GGA ortholog.

Results

Here we have quantified protein expression in Drosophila and show that there is >3-fold higher expression of GGA in male flies relative to female flies. In female flies the majority of GGA expression is in the head. In male flies GGA is not only expressed at high levels in the head but there is a gender specific increased expression which is due to the abundant expression of GGA in the testes. Using a highly specific antibody we have localised endogenous GGA protein in testes squashes, and visualised it in somatic and germ line cells. We show that GGA is expressed during multiple stages of sperm development, and co-stains with a marker of the trans-Golgi Network. This is most striking at the acroblast of early spermatids. In spite of the high expression of GGA in testes, knocking down its expression by >95% using transgenic RNAi fly lines did not affect male fertility. Therefore spermatogenesis in the male flies appears to progress normally with <5% GGA, most likely because alternative adaptors may be able to substitute partially or completely for the function of GGA. We also identify 'cueball' as a novel cargo for GGA, and mutants of cueball have been shown to have a male sterility phenotype.

Conclusion

In Drosophila we have uncovered a potential role for GGA in the testes of male flies. The gender specific higher expression of GGA, its specific enrichment in testes and its localisation to developing spermatocytes and at the acroblast of spermatids supports a role for GGA function in Drosophila spermatogenesis, even though spermatogenesis still occurs when GGA expression is depleted to <5% of control.  相似文献   

19.
Drosophila suzukii (Diptera: Drosophilidae) is native to Southeast Asia and now has become a severe pest of several soft fruits in Europe and the Americas. It causes considerable damage to Chinese bayberry, Myrica rubra, in China. In the present study, we employed gas chromatograph–electroantennographic detection (GC–EAD) together with behavioural bioassays and trapping experiments to identify volatile semiochemicals emitted by Chinese bayberry attracting D. suzukii. Electrophysiological experiments revealed the presence of six EAD-active compounds from ripe bayberry fruits, including methyl (E)-3-hexenoate, methyl (E)-2-hexenoate, ethyl (E)-2-hexenoate, α-ylangene, α-humulene and an unidentified compound that elicited consistent antennal response. In two-choice bioassays, bayberry fruits attracted all responding flies, and significantly more flies responded to the volatile extract of bayberry fruits. Four EAD-active compounds were attractive to mated female D. suzukii at lower doses (0.01 and 0.1 µg), but showed repellency at higher doses (10 and 100 µg). Mixtures of these four compounds at different ratios attracted D. suzukii flies at all test doses (0.1, 1 and 10 µg). Both male and female flies were trapped by a mixture of synthetic methyl (E)-3-hexenoate, methyl (E)-2-hexenoate, ethyl (E)-2-hexenoate and α-humulene in a ratio of 1:1.3:1:6.4 in the field trapping experiment. Significantly more males than females were captured in the trap baited with the synthetic blend, and the percentages of D. suzukii captured out of all flies by the traps baited with lure were higher than that baited with blank control. Our findings may provide insights into the olfactory responses of D. suzukii to specific host plant volatiles, and contribute to further development of an effective lure for monitoring D. suzukii in the field.  相似文献   

20.
Wolbachia are intracellular prokaryotic endosymbionts associated with a wide distribution of arthropod and nematode hosts. Their association ranges from parasitism to mutualism, and there is growing evidence that Wolbachia can have dramatic effects on host reproduction, physiology, and immunity. Although all Wolbachia are currently considered as single species, W. pipientis, phylogenetic studies reveal about a dozen monophyletic groups, each designated as a supergroup. This study uses 16S rRNA gene sequences to examine the genetic diversity of Wolbachia present in three species of Great Salt Lake brine flies, Cirrula hians, Ephydra gracilis, and Mosillus bidentatus. The brine fly Wolbachia sequences are highly similar, with an average nucleotide sequence divergence among the three species of 0.00174. The brine fly Wolbachia form a monophyletic group that is affiliated with a subset of supergroup B, indicating that this supergroup may be more diverse than previously thought. These findings expand the phylogenetic diversity of Wolbachia and extend their host range to taxa adapted to a hypersaline environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号