首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
Tissue-specific promoters can drive genes specifically expressed in the target organs and have been widely used in plant molecular breeding. In this study, a 1.2-kb promoter region of an anther-specific gene PhLRR from Petunia hybrida “Fantasy” was isolated and fused to the β-glucuronidase (GUS) gene. The pPhLRR::GUS vector was heterogeneously transformed into tobacco in which the GUS staining was only detected in the early development stage of anthers and no GUS expression in any other three floral whirls or vegetative organs was observed. It is very different from other well-studied anther-specific promoters which drive genes specifically expressed in the later development stage of anthers or only in the pollens. Furthermore, the pPhLRR::Barnase was introduced into petunia and induced complete male sterility without influencing the ornamental characteristics or the female fertility in transformed plants. These results indicate that PhLRR promoter is a new kind of petunia anther-specific promoter and could be taken as a valuable tool in ornamental plant breeding.  相似文献   

6.
Anthocyanins play important role in plant protection and were closely involved with the plant evolution. Anthocyanidin synthase (ANS) is a late key enzyme in the flavonoid pathway which can catalyze leucoanthocyanidins to anthocyanidins. By our study, we found a miniature inverted-repeat transposable element (MITE) inserting in the promoter of ANS gene of mulberry. We used strawberry to evaluate the activities of ANS promoters from Morus alba and Morus notabilis with the method of Agrobacterium-mediated transient expression. The expression patterns of different promoters were also analyzed in transgenic lines of Arabidopsis thaliana and in this study, GUS was used as reporter gene. The 564-bp MITE insertion was strongly required for the activities of ANS promoter and it may reprogram the expression profiles of ANS gene in mulberry. Our results suggested that the MITE insertion was probably involved in either domestication or natural selection.  相似文献   

7.
Cryptic promoter elements play a significant role in evolution of plant gene expression patterns and are prospective tools for creating gene expression systems in plants. In a previous report, a 452 bp promoter fragment designated as cryptic root-specific promoter (AY601849) was identified immediately upstream to T-DNA insertion, in the intergenic region between divergent genes SAHH1 and SHMT4, in T-DNA tagged mutant M57 of Arabidopsis thaliana. In silico analysis of 452 bp promoter revealed typical eukaryotic promoter architecture, presence of root-specific motifs and other cis-regulatory motifs responsible for the spatial and temporal expression. GUS expression driven by 452 bp in M57 was developmentally as well as light-regulated. The AT-rich 452 bp promoter does not show homology to any known sequences. The 452 bp promoter was further proved cryptic and detailed molecular characterization of the promoter carried out through serial 5′ and 3′ deletion analysis, by cloning the promoter fragments upstream to promoter-less GUS vector. A 279 bp fragment obtained by deleting 173 bp from 5′ end of 452 bp was capable of driving root-specific expression, similar to that of full-length promoter. Further, root tip-specific, root-specific and core-regulatory motifs for root-specific expression were identified at positions 173–227, 251–323 and 408–452 bp, respectively, from the 5′ end of 452 bp. The 452 bp promoter was equally functional in inverse orientation, hence bidirectional and symmetric. In heterologous systems, such as Brassica juncea and Oryza sativa, the promoter activity was not significant since GUS was not visually detected in transient assays.  相似文献   

8.
9.
We identified a peel-specific expressed gene in Citrus unshiu fruits by differentially expressed gene (DEG) analysis, which showed a homology with carotenoid isomerase-like genes identified from other plants and, therefore, designated as CuCRTISO-like. Here we determined the promoter sequence of CuCRTISO-like and analyzed histochemical GUS activity using transgenic Arabidopsis plants harboring CuCRTISO-like promoter-GUS gene constructs (pCRTL-Prom1~pCRTL-Prom5 lines). The promoter activity of CuCRTISO-like was detected in the cotyledon at 5 and 10 days after germination (DAG), young leaf, and anther, but not in the cotyledon at 15 DAG and mature leaf. Several cis-acting elements involved in hormones and abiotic stresses are located on the CuCRTISO-like promoter. Salicylic acid and ethylene treatments induced the GUS activity in the pCRTL-prom1 and pCRTL-Prom4 line, respectively. Treatment of drought and wounding stress induced the GUS activity in the pCRTL-Prom4 and pCRTL-Prom3 line, respectively. Heat stress treatment induced GUS activity more strongly as the promoter length decreased except for no GUS activity in the pCRTL-Prom5 line. The CuCRTISO-like expression during fruit maturation of C. unshiu showed a peel-specific expression pattern. Our results suggest that CuCRTISO-like promoter activity is regulated in a developmental and organ-specific manner, and responds to hormones and abiotic stresses.  相似文献   

10.
11.
Breeding flowerless and/or fruitless varieties are highly desirable for London plane tree because it can prevent pollen- and fruit-mediated environmental contamination. Floral tissue-specific cell ablation is an efficient method to create such sterile plants. Here we isolated and characterized APETALA3 (AP3)-like and PISTILLATA (PI)-like genes and the promoters of PaAP3 and PaPI, in London plane tree respectively. The promoter fragments were fused to GUS (β-glucuronidase) and BARNASE gene, respectively, and transformed into tobacco plants. In pPaAP3::GUS transgenic plants, the GUS activity could be detected in various organs, including leaves, stems and all floral organs. Furthermore, most tobacco plants transformed with pPaAP3::BARNASE were dead and the survivals showed abortion of inflorescence. In contrast, heterologous expression of pPaPI::GUS in tobacco plants led to specific GUS activity in the inner three whorls of flowers. Accordingly, tobacco plants transformed with pPaPI::BARNASE lack petal, stamen and pistil, with only sepal left. The results suggest that sterile lines of P. acerifolia may be obtained by genetic engineering with pPaPI::BARNASE construct, which might solve the problems of shedding fruit hairs and disseminative pollens, reducing air pollution and reducing the allergens that harmful to human health.  相似文献   

12.
13.
Here, we report for the first time, the optimized conditions for microprojectile bombardment-mediated genetic transformation in Vassourinha (Scoparia dulcis L.), a Plantaginaceae medicinal plant species. Transformation was achieved by bombardment of axenic leaf segments with Binary vector pBI121 harbouring β-glucuronidase gene (GUS) as a reporter and neomycin phosphotransferase II gene (npt II) as a selectable marker. The influence of physical parameters viz., acceleration pressure, flight distance, gap width & macroprojectile travel distance of particle gun on frequency of transient GUS and stable (survival of putative transformants) expressions have been investigated. Biolistic delivery of the pBI121 yielded the best (80.0 %) transient expression of GUS gene bombarded at a flight distance of 6 cm and rupture disc pressure/acceleration pressure of 650 psi. Highest stable expression of 52.0 % was noticed in putative transformants on RMBI-K medium. Integration of GUS and npt II genes in the nuclear genome was confirmed through primer specific PCR. DNA blot analysis showed more than one transgene copy in the transformed plantlet genomes. The present study may be used for metabolic engineering and production of biopharmaceuticals by transplastomic technology in this valuable medicinal plant.  相似文献   

14.
15.
16.
17.
18.
Physiological changes associated with senescence of flowers and abscission of floral parts in Oncidesa (formerly Oncidium) cv. Gower Ramsey are caused by a plant hormone ethylene which is produced by pollinia cap dislodgment during postharvest handling and transportation. The ethylene receptor gene OgERS1 of Oncidesa has been previously cloned and characterized. To analyze promoter activity of OgERS1, transgenic Arabidopsis thaliana plants were generated to express the ß-glucuronidase (GUS) reporter gene under the control of 5’-upstream sequence of OgERS1 from Oncidesa. The expression pattern of the OgERS1 promoter at the cellular level was investigated by analysis of GUS activity. This promoter can activate gene expression in both actively dividing young tissues and abscission-related aging tissues. Expression of GUS was detected in the shoot meristem uniquely in 10 to 30 d-old-plants and was found in flower buds, axillary buds, flower stems, and abscission layers during later development. In 2- to 3-week-old transgenic Arabidopsis, exogenous ethylene, glucose, lactose, and maltose enhanced promoter activity implying that crosstalk between sugar and an ethylene receptor may exist. However, indole-3-acetic acid, benzylaminopurine, abscisic acid, heat, wounding, salinity, drought, and flooding slightly suppressed promoter activity. These results demonstrate that the promoter of OgERS1 was developmentally and environmentally regulated, and imply a potential for application of this bi-functional promoter to increase branching or enhanced dwarfing.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号