共查询到20条相似文献,搜索用时 187 毫秒
1.
Osteogenic protein-1 (OP-1, BMP-7) induces osteoblastic cell differentiation of the pluripotent mesenchymal cell line C2C12 总被引:1,自引:0,他引:1
The effects of Osteogenic Protein-1 (OP-1, BMP-7) on the differentiation of the pluripotent mesenchymal cell line, C2C12, were examined. OP-1 at 50 ng/ml partially inhibited myotube formation in C2C12 cells, while OP-1 at 200 ng/ml completely inhibited myotube formation and induced the formation of cells displaying osteoblastic morphology. High concentrations of OP-1 elevated the alkaline phosphatase (AP) activity dramatically, both as a function of time and OP-1 concentration. Osteocalcin (OC) mRNA expression was detected as early as 8 days in OP-1-treated cultures and subsequently increased considerably. Expression of bone sialoprotein (BSP) mRNA was low in control cultures and stimulated by OP-1. Collagen type I mRNA expression was enhanced by OP-1 during the early days in culture, but gradually decreased thereafter. MyoD mRNA expression, high in control cultures, was suppressed by OP-1 in a dose- and time-dependent manner. OP-1 enhanced ActR-I mRNA expression and significantly elevated the mRNA expressions of BMP-1, BMP-4, BMP-5, GDF-6, and GDF-8. The present results indicate that OP-1 is a potent inducer of C2C12 differentiation into osteoblastic cells. 相似文献
2.
J. M. Gimble C. Morgan K. Kelly X. Wu V. Dandapani C.-S. Wang V. Rosen 《Journal of cellular biochemistry》1995,58(3):393-402
The bone morphogenetic proteins were originally identified based on their ability to induce ectopic bone formation in vivo and have since been identified as members of the transforming growth factor-β gene superfamily. It has been well established that the bone morphogenetic cytokines enhance osteogenic activity in bone marrow stromal cells in vitro. Recent reports have described how bone morphogenetic proteins inhibited myogenic differentiation of bone marrow stromal cells in vitro. In vivo, bone marrow stromal cells differentiate along the related adipogenic pathway with advancing age. The current work reports the inhibitory effects of the bone morphorphogenetic proteins on adipogenesis in a multipotent murine bone marrow stromal cell line, BMS2. When exposed to bone morphogenetic protein-2, the pre-adipocyte BMS2 cells exhibited the expected induction of the osteogenic-related enzyme, alkaline phosphatase. Following induction of the BMS2 cells with adipogenic agonists, adipocyte differentiation was assessed by morphologic, enzymatic, and mRNA markers. Flow cytometric analysis combined with staining by the lipophilic fluorescent dye, Nile red, was used to quantitate the extent of lipid accumulation within the BMS2 cells. By this morphologic criteria, the bone morphogenetic proteins inhibited adipogenesis at concentrations of 50 to 500 ng/ml. This correlated with decreased levels of adipocyte specific enzymes and mRNAs. The BMS2 pre-adipocytes constitutively expressed mRNA encoding bone morphogenetic protein-4 and this was inhibited by adipogenic agonists. Together, these findings demonstrate that bone morphogenetic proteins act as adipogenic antagonists. This supports the hypothesis that adipogenesis and osteogenesis in the bone marrow microenvironment are reciprocally regulated. 相似文献
3.
4.
Chronic infection of hepatitis C virus (HCV) leads to hepatic fibrosis and subsequently cirrhosis, although the underlying mechanisms have not been established. Previous studies have indicated that the binding of HCV E2 protein and CD81 on the surface of hepatic stellate cells (HSCs) lead to the increased protein level and activity of matrix metallopeptidase (MMP) 2, indicating that E2 may involve in the HCV-induced fibrosis. This study was designed to investigate the involvement of HCV E2 protein in the hepatic fibrogenesis. Results showed that E2 protein may promote the expression levels of α-smooth muscle actin (α-SMA) and collagen α(I). Furthermore, several pro-fibrosis or pro-inflammatory cytokines, including transforming growth factor (TGF)-β1, connective tissue growth factor (CTGF), interleukin (IL)-6 and IL-1β, were significantly increased in E2 transfected-HSC cell lines, while the expression of MMP-2 are also considerably increased. Moreover, the significant increases of CTGF and TGF-β1 in a stable E2-expressing Huh7 cell line were also observed the same results. Further molecular studies indicated that the impact of E2 protein on collagen production related to higher production of ROS and activated Janus kinase (JAK)1, JAK2 and also enhance the activation of ERK1/2 and p38, while catalase and inhibitors specific for JAK, ERK1/2, and p38 abolish E2-enhanced expression of collagen α(I). Taken together, this study indicated that E2 protein involve in the pathogenesis of HCV-mediated fibrosis via an up-regulation of collagen α(I) and oxidative stress, which is JAK pathway related. 相似文献
5.
Michael Centrella Vicki Rosen John M. Wozney Sandra R. Casinghino Thomas L. McCarthy 《Journal of cellular biochemistry》1997,67(4):528-540
Glucocorticoid in excess produces bone loss in vivo. Consistent with this, it reduces the stimulatory effect of transforming growth factor β (TGF-β) on collagen synthesis in osteoblast-enriched cultures in vitro, where it also suppresses TGF-β binding to its type I receptors. Analogous studies with bone morphogenetic protein-2 (BMP-2) show directly opposite results. These findings prompted us to assess the effect of glucocorticoid on BMP-2 activity in cultured bone cells, and whether either agent had a dominant influence on TGF-β binding or function. BMP-2 activity was retained in part in osteoblast-enriched cultures pre-treated or co-treated with cortisol, and was fully evident when glucocorticoid exposure followed BMP-2 treatment. In addition, BMP-2 suppressed the effects of cortisol on TGF-β activity, on TGF-β binding, and on gene promoter activity directed by a glucocorticoid sensitive transfection construct. While BMP-2 also alters the function of less-differentiated bone cells, it only minimally prevented cortisol activity in these cultures. Our studies indicate that BMP-2 can oppose certain effects by cortisol on differentiated osteoblasts, and may reveal useful ways to diminish glucocorticoid-dependent bone wasting. J. Cell. Biochem. 67:528–540, 1997. © 1997 Wiley-Liss, Inc. 相似文献
6.
7.
In chick skeletal muscle cell primary cultures, we previously demonstrated that 1alpha,25(OH)2-vitamin D3 [1alpha,25(OH)2D3], the hormonally active form of vitamin D, increases the phosphorylation and activity of the extracellular signal-regulated mitogen-activated protein (MAP) kinase isoforms ERK1 and ERK2, their subsequent translocation to the nucleus and involvement in DNA synthesis stimulation. In this study, we show that other members of the MAP kinase superfamily are also activated by the hormone. Using the muscle cell line C2C12 we found that 1alpha,25(OH)2D3 within 1 min phosphorylates and increases the activity of p38 MAPK. The immediately upstream mitogen-activated protein kinase kinases 3/6 (MKK3/MKK6) were also phosphorylated by the hormone suggesting their participation in p38 activation. 1Alpha,25(OH)2D3 was able to dephosphorylate/activate the ubiquitous cytosolic tyrosine kinase c-Src in C2C12 cells and studies with specific inhibitors imply that Src participates in hormone induced-p38 activation. Of relevance, 1alpha,25(OH)2D3 induced in the C2C12 line the stimulation of mitogen-activated protein kinase activating protein kinase 2 (MAPKAP-kinase 2) and subsequent phosphorylation of heat shock protein 27 (HSP27) in a p38 kinase activation-dependent manner. Treatment with the p38 inhibitor, SB203580, blocked p38 phosphorylation caused by the hormone and inhibited the phosphorylation of its downstrean substrates. 1Alpha,25(OH)2D3 also promotes the phosphorylation of c-jun N-terminal protein kinases (JNK 1/2), the response is fast (0.5-1 min) and maximal phosphorylation of the enzyme is observed at physiological doses of 1alpha,25(OH)2D3 (1 nM). The relative contribution of ERK-1/2, p38, and JNK-1/2 and their interrelationships in hormonal regulation of muscle cell proliferation and differentiation remain to be established. 相似文献
8.
9.
Chelikani P Reeves PJ Rajbhandary UL Khorana HG 《Protein science : a publication of the Protein Society》2006,15(6):1433-1440
High-level expression of G-protein-coupled receptors (GPCRs) in functional form is required for structure-function studies. The main goal of the present work was to improve expression levels of beta2-adrenergic receptor (beta2-AR) so that biophysical studies involving EPR, NMR, and crystallography can be pursued. Toward this objective, the total synthesis of a codon-optimized hamster beta2-AR gene suitable for high-level expression in mammalian systems has been accomplished. Transient expression of the gene in COS-1 cells resulted in 18 +/- 3 pmol beta2-AR/mg of membrane protein, as measured by saturation binding assay using the beta2-AR antagonist [3H] dihydroalprenolol. Previously, we reported the development of an HEK293S tetracycline-inducible system for high-level expression of rhodopsin. Here, we describe construction of beta2-AR stable cell lines using the HEK293S-TetR-inducible system, which, after induction, express wild-type beta2-AR at levels of 220 +/- 40 pmol/mg of membrane protein corresponding to 50 +/- 8 microg/15-cm plate. This level of expression is the highest reported so far for any wild-type GPCR, other than rhodopsin. The yield of functional receptor using the single-step affinity purification is 12 +/- 3 microg/15-cm plate. This level of expression now makes it feasible to pursue structure-function studies using EPR. Furthermore, scale-up of beta2-AR expression using suspension cultures in a bioreactor should now allow production of enough beta2-AR for the application of biophysical techniques such as NMR spectroscopy and crystallography. 相似文献
10.
Zheng R Xiong Q Zuo B Jiang S Li F Lei M Deng C Xiong Y 《Cell biochemistry and function》2008,26(5):548-556
Smad proteins are principal intracellular signaling mediators of transforming growth factor beta (TGF-beta) that regulate a wide range of biological processes. However, the identities of Smad partners mediating TGF-beta signaling are not fully understood. We firstly examined the expression of Smad2 and Smad3 induced by TGF-beta 1 in normal NIH/3T3 cells. The expression of Smad2 and Smad3 was assessed by RT-PCR and Western blotting. The results showed that the expression of Smad2 was increased after treatment with TGF-betaI, but Smad3 was more sensitive to TGF-betaI than Smad2. RNA interference (RNAi) provides a new approach for elucidation of gene function. Use of hairpin siRNA expression vectors for RNAi has provided a rapid and versatile method for assessing gene function in mammalian cells. Here, we have constructed Smad2 and Smad3 hairpin siRNA expression plasmids, and then transfected them into mouse NIH/3T3 cells. Endogenous Smad2 and Smad3 proteins decreased significantly at 48 h after transfection. We found the expression of Smad3 in Smad2-depleted cells was increased, however, the expression of Smad2 in Smad3-depleted cells was not changed. Consistently, the expression of Smad4 mRNA was also attenuated in Smad3-depleted cells. From these data, we suggest that Smad3, but not Smad2, may play a key role in TGF-beta signaling. 相似文献
11.
Expression and localization of estrogen receptor alpha in the C2C12 murine skeletal muscle cell line
The classical model of 17beta-estradiol action has been traditionally described to be mediated by the estrogen receptor (ER) localized exclusively in the nucleus. However, there is increasing functional evidence for extra nuclear localization of ER. We present biochemical, immunological and molecular data supporting mitochondrial-microsomal localization of ER alpha in the C2C12 skeletal muscle cell line. We first established [(3)H]17beta estradiol binding characteristics in whole cells in culture. Specific and saturable [(3)H]17beta estradiol binding sites of high affinity were then detected in mitochondrial fractions (K(d) = 0.43 nM; B(max) = 572 fmol/mg protein). Immunocytological studies revealed that estrogen receptors mainly localize at the mitochondrial and perinuclear level. These results were also confirmed using fluorescent 17beta estradiol-BSA conjugates. The immunoreactivity did not translocate into the nucleus by 17beta-estradiol treatment. Western and Ligand blot approaches corroborated the non-classical localization. Expression and subcellular distribution of ER alpha proteins were confirmed in C2C12 cells transfected with ER alpha siRNA and by RT-PCR employing specific primers. The non-classical distribution of native pools of ER alpha in skeletal muscle cells suggests an alternative mode of ER localization/function. 相似文献
12.
13.
14.
15.
Jingchao H Rong S Zhongchen S Lan C 《Biochemical and biophysical research communications》2011,(3):437-441
Extracts of enamel matrix proteins are used to regenerate periodontal tissues. Amelogenin, the most abundant enamel protein, plays an important role in the regeneration of these tissues. However, the molecular mechanisms by which amelogenin contributes to periodontal regeneration remain unknown. Using primary human bone marrow stroma cells (hBMSCs) transduced with lentivirus encoding human amelogenin (hAm), we performed genome-wide expression profiling to analyze the effects of hAm transduction on the regulation of genes involved in osteogenic differentiation. Our results revealed that BMP-2, BMP-6, OPN and VEGFC were up-regulated. These results suggest that hAm may be a key element in regulating hBMSCs osteogenic differentiation. 相似文献
16.
Glucocorticoid inhibition of C2C12 proliferation rate and differentiation capacity in relation to mRNA levels of the MRF gene family 总被引:3,自引:0,他引:3
The muscle regulatory factors (MRF) gene family regulate muscle fibre development. Several hormones and drugs also affect muscle development. Glucocorticoids are the only drugs reported to have a beneficial effect on muscle degenerative disorders. We investigated the glucocorticoid-related effects on C2C12 myoblast proliferation rate, morphological differentiation, and subsequent mRNA expression patterns of the MRF genes. C2C12 cells were incubated with the glucocorticoids dexamethasone or alpha-methyl-prednisolone. Both glucocorticoids showed comparable effects. Glucocorticoid treatment of C2C12 cells during the proliferative phase reduced the proliferation rate of the cells dose dependently, especially during the third and fourth day of culture, increased MyoD1, myf-5, and MRF4 mRNA levels, and reduced myogenin mRNA level, compared to untreated control cells. Thus, the mRNA level of proliferation-specific MyoD1 and myf-5 expression does not seem to associate with C2C12 myoblast proliferation rate. Glucocorticoid treatment of C2C12 cells during differentiation reduced the differentiation capacity dose dependently, which is accompanied by a dose dependent reduction of myogenin mRNA level, and increased MyoD1, myf-5, and MRF4 mRNA levels compared to untreated control cells. Therefore, we conclude that glucocorticoid treatment reduces differentiation of C2C12 myoblasts probably through reduction of differentiation-specific myogenin mRNA level, while inducing higher mRNA levels of proliferation-associated MRF genes. 相似文献
17.
Identification of the role of bone morphogenetic protein (BMP) and transforming growth factor‐β (TGF‐β) signaling in the trajectory of serotonergic differentiation in a rapid assay in mouse embryonic stem cells in vitro 下载免费PDF全文
Atsushi Yamasaki Atsushi Kasai Akihiro Toi Maki Kurita Saki Kimoto Atsuko Hayata‐Takano Takanobu Nakazawa Kazuki Nagayasu Norihito Shintani Ryota Hashimoto Akira Ito Herbert Y. Meltzer Yukio Ago James A. Waschek Yusuke Onaka Toshio Matsuda Akemichi Baba Hitoshi Hashimoto 《Journal of neurochemistry》2015,132(4):418-428
The mechanism by which extracellular molecules control serotonergic cell fate remains elusive. Recently, we showed that noggin, which inactivates bone morphogenetic proteins (BMPs), induces serotonergic differentiation of mouse embryonic (ES) and induced pluripotent stem cells with coordinated gene expression along the serotonergic lineage. Here, we created a rapid assay for serotonergic induction by generating knock‐in ES cells expressing a naturally secreted Gaussia luciferase driven by the enhancer of Pet‐1/Fev, a landmark of serotonergic differentiation. Using these cells, we performed candidate‐based screening and identified BMP type I receptor kinase inhibitors LDN‐193189 and DMH1 as activators of luciferase. LDN‐193189 induced ES cells to express the genes encoding Pet‐1, tryptophan hydroxylase 2, and the serotonin transporter, and increased serotonin release without altering dopamine release. In contrast, TGF‐β receptor inhibitor SB‐431542 selectively inhibited serotonergic differentiation, without changing overall neuronal differentiation. LDN‐193189 inhibited expression of the BMP signaling target gene Id, and induced the TGF‐β target gene Lefty, whereas the opposite effect was observed with SB‐431542. This study thus provides a new tool to investigate serotonergic differentiation and suggests that inhibition of BMP type I receptors and concomitant activation of TGF‐β receptor signaling are implicated in serotonergic differentiation.
18.
Gene expression modulation in TGF‐β3‐mediated rabbit bone marrow stem cells using electrospun scaffolds of various stiffness 下载免费PDF全文
Qianping Guo Chen Liu Jun Li Caihong Zhu Huilin Yang Bin Li 《Journal of cellular and molecular medicine》2015,19(7):1582-1592
Tissue engineering has recently evolved into a promising approach for annulus fibrosus (AF) regeneration. However, selection of an ideal cell source, which can be readily differentiated into AF cells of various regions, remains challenging because of the heterogeneity of AF tissue. In this study, we set out to explore the feasibility of using transforming growth factor‐β3‐mediated bone marrow stem cells (tBMSCs) for AF tissue engineering. Since the differentiation of stem cells significantly relies on the stiffness of substrate, we fabricated nanofibrous scaffolds from a series of biodegradable poly(ether carbonate urethane)‐urea (PECUU) materials whose elastic modulus approximated that of native AF tissue. We cultured tBMSCs on PECUU scaffolds and compared their gene expression profile to AF‐derived stem cells (AFSCs), the newly identified AF tissue‐specific stem cells. As predicted, the expression of collagen‐I in both tBMSCs and AFSCs increased with scaffold stiffness, whereas the expression of collagen‐II and aggrecan genes showed an opposite trend. Interestingly, the expression of collagen‐I, collagen‐II and aggrecan genes in tBMSCs on PECUU scaffolds were consistently higher than those in AFSCs regardless of scaffold stiffness. In addition, the cell traction forces (CTFs) of both tBMSCs and AFSCs gradually decreased with scaffold stiffness, which is similar to the CTF change of cells from inner to outer regions of native AF tissue. Together, findings from this study indicate that tBMSCs had strong tendency to differentiate into various types of AF cells and presented gene expression profiles similar to AFSCs, thereby establishing a rationale for the use of tBMSCs in AF tissue engineering. 相似文献
19.