首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nitrate-nitrogen retention in wetlands in the Mississippi River Basin   总被引:1,自引:0,他引:1  
《Ecological Engineering》2005,24(4):267-278
Nitrate-nitrogen retention as a result of river water diversions is compared in experimental wetland basins in Ohio for 18 wetland-years (9 years × 2 wetland basins) and a large wetland complex in Louisiana (1 wetland basin × 4 years). The Ohio wetlands had an average nitrate-nitrogen retention of 39 g-N m−2 year−1, while the Louisiana wetland had a slightly higher retention of 46 g-N m−2 year−1 for a similar loading rate area. When annual nitrate retention data from these sites are combined with 26 additional wetland-years of data from other wetland sites in the Basin Mississippi River (Ohio, Illinois, and Louisiana), a robust regression model of nitrate retention versus nitrate loading is developed. The model provides an estimate of 22,000 km2 of wetland creation and restoration needed in the Mississippi River Basin to remove 40% of the nitrogen estimated to discharge into the Gulf of Mexico from the river basin. This estimated wetland restoration is 65 times the published net gain of wetlands in the entire USA over the past 10 years as enforced by the Clean Water Act and is four times the cumulative total of the USDA Wetland Reserve Program wetland protection and restoration activity for the entire USA.  相似文献   

2.
《Ecological Indicators》2007,7(2):339-361
Indicators of riparian ecosystem condition for headwater coastal plain streams were identified from data obtained from a reference population of reaches ranging widely in ecological condition. Each indicator was associated with some facet of hydrologic, biogeochemical, and/or habitat functioning and to channel condition, riparian zone condition, or both. Variation in the condition of the indicators among reference reaches provided a framework for developing narratives that could be used to partition and score the condition of the indicators from 0 (severely altered) to 100 (relatively unaltered). The developed narratives were the basis for creating a scoring approach for assessing stream condition at the reach scale (100-m long × 60-m wide segment). This approach was designed to be a rapid, field-based assessment method (<1 h/site) that could be applied by resource professionals with several days of training in the method. Although most alterations to riparian reaches usually affect both channels and riparian zones together, the ability to score channel and riparian zone condition separately is useful for diagnosing problems and suggesting viable restoration options at the reach scale. The assessment method is also useful for comparing the condition of reaches relative to one another, thus offering guidance for prioritizing restoration efforts at a watershed scale.  相似文献   

3.
《Ecological Engineering》2005,24(4):359-377
Despite the fact that landscape level processes dominate wetland ecosystem development and sustainability, restoration decisions (including those for compensatory mitigation) are typically made on a project-by-project basis. Watershed planning designed to strategically restore wetlands has the potential to provide dramatic benefits by restoring ecosystem-level processes (functions) that maintain water resource integrity. We developed a GIS-based model to predict the suitability for wetland restoration for all locations in the Cuyahoga River watershed (2107 km2), in northeastern Ohio (U.S.A.). The model offers a useful tool to focus and set goals for wetland restoration efforts in a spatially explicit way. A two-phase approach was used: the first is to develop criteria, or environmental indicators, to identify the total population of sites suitable for wetland restoration. Locations are identified where restoration has a high likelihood of success and will be sustainable over the long term. Criteria used include hydric soils, land use, topography, stream order, and a saturation index based on slope and flow accumulation in each grid cell in the model. The second phase “filters” the total population of available sites in order to prioritize them according to their potential to contribute to water resource integrity once restored. We generated three versions of the suitability model depicting restoration potential. All versions rely on the same criteria but vary in how the factors were weighted or the hydrology criterion was calculated.  相似文献   

4.
Mapping, monitoring and managing the environmental condition of riparian zones are major focus areas for local and state governments in Australia. New remotely sensed data techniques that can provide the required mapping accuracies, complete spatial coverage and processing and mapping transferability are currently being developed for use over large spatial extents. The research objective was to develop and apply an approach for mapping riparian condition indicators using object-based image analysis of airborne Light Detection and Ranging (LiDAR) data. The indicators assessed were: streambed width; riparian zone width; plant projective cover (PPC); longitudinal continuity; coverage of large trees; vegetation overhang; and stream bank stability. LiDAR data were captured on 15 July 2007 for two 5 km stretches along Mimosa Creek in Central Queensland, Australia. Field measurements of riparian vegetation structural and landform parameters were obtained between 28 May and 5 June 2007. Object-based approaches were developed for mapping each riparian condition indicator from the LiDAR data. The validation and empirical modelling results showed that the object-based approach could be used to accurately map the riparian condition indicators (R2 = 0.99 for streambed width, R2 = 0.82 for riparian zone width, R2 = 0.89 for PPC, R2 = 0.40 for bank stability). These research findings will be used in a 26,000 km mapping project assessing riparian vegetation and physical form indicators from LiDAR data in Victoria, Australia.  相似文献   

5.
《Ecological Engineering》2007,29(3):249-258
Over the course of a year, we conducted a study on future restoration work in the Sanyang wetland, a degraded permanent river wetland that is close to the center of Wenzhou city, China. Our main objective was to plan the restoration by using both structural indices and a valuation of the wetland's ecosystem services, thereby linking the science to human welfare. Based on field surveys and research into the history of the study area, we calculated both the potential and current values of the main ecosystem services. The results showed that the potential value at the Sanyang wetland was 55,332 yuan ha−1 yr−1, while the current value was only 5807 yuan ha−1 yr−1. In other words, 89.5% of the service value needs to be restored for the wetland to reach its potential value. We recommend that the service provided by the wetland's ability to purify the environment needs to be the top priority in restoration. In addition, water and sediment quality should also be greatly improved.  相似文献   

6.
A field study was conducted at Little Topashaw Creek in northern Mississippi, aimed at expanding the limited database on the survivorship of Salix nigra (black willow) cuttings planted on riparian restoration sites. We tested the hypothesis that sediment moisture availability (deficit, excess) as mediated by sediment texture and depth to the prevailing water table is a major factor governing black willow survival during the initial stage of establishment following transplanting. Replicated plots were established across elevational gradients and a range of soil texture. Each plot contained 16 planted cuttings (2.5 cm diameter × 2.5 m length). Plot depth to water table, soil texture, and soil redox potential were measured. Plant gas exchange, leaf chlorophyll content, growth, and survival were monitored periodically over two growing seasons. Survival was best at low elevation compared to cuttings planted at mid- and high elevations. Poor survival and growth were noted for cuttings that encountered sediment moisture deficits in plots with coarse texture while the best cutting survival was recorded for intermediate sand content plots. Results indicated that plot location on the bank and soil texture are two important factors that influence riverbank restoration success. Therefore, any riparian restoration plan should include careful assessment of these factors prior to undertaking such efforts.  相似文献   

7.
The ability of riverine ecosystems to retain nutrients depends on different hydrological, chemical and biological conditions including exchange processes between streams and wetlands. We investigated nutrient retention in a stream wetland complex on the time scale of daily hydrological exchange between both systems. Daily mass balances of NO3-N, NH4-N, TP and SRP were calculated with data obtained by two automated measurement stations in a stream reach upstream and downstream of a wetland. The pattern of hydrological exchange between stream and wetland was used to classify characteristic hydrological periods like floods, base and low flows. The nutrient retention function of the stream wetland complex varied considerably during phases of similar hydrologic conditions. Despite re-wetting measures in the wetland, an overall net export of all nutrients except for NH4-N characterised the whole growing season. Nitrate retention occurred during summer flood (retention in the wetland, 23 kg NO3-N d?1, 17% of the input load) and low flow (retention in the stream, 1 kg NO3-N d?1, 2% of the input load). TP retention during summer could be assigned to sedimentation (0.7 kg TP d?1, 7% during flooding in the wetland, 0.2 kg TP d?1, 4% during low flow in the stream). SRP retention was only intermittent. We concluded that the nutrient retention of streams and wetlands can only be optimised by restoration measures that regard both systems as one functional unit in terms of nutrient retention.  相似文献   

8.
The aim of this study was to determine the effects of catchment and riparian stream buffer-wide urban and non-urban land cover/land use (LC/LU) on total nitrogen (TN) and total phosphorus (TP) runoff to the Chesapeake Bay. The effects of the composition and configuration of LC/LU patches were explored in particular. A hybrid-statistical-process model, the SPAtially Referenced Regression On Watershed attributes (SPARROW), was calibrated with year 1997 watershed-wide, average annual TN and TP discharges to Chesapeake Bay. Two variables were predicted: (1) yield per unit watershed area and (2) mass delivered to the upper estuary. The 166,534 km2 watershed was divided into 2339 catchments averaging 71 km2. LC/LU was described using 16 classes applied to both the catchments and also to riparian stream buffers alone. Seven distinct landscape metrics were evaluated. In all, 167 (TN) and 168 (TP) LC/LU class metric combinations were tested in each model calibration run. Runs were made with LC/LU in six fixed riparian buffer widths (31, 62, 125, 250, 500, and 1000 meters (m)) and entire catchments. The significance of the non-point source type (land cover, manure and fertilizer application, and atmospheric deposition) and factors affecting land-to-water delivery (physiographic province and natural or artificial land surfaces) was assessed. The model with a 31 m riparian stream buffer width accounted for the highest variance of mean annual TN (r2 = 0.9366) and TP (r2 = 0.7503) yield (mass for a specified time normalized by drainage area). TN and TP loadings (mass for a specified time) entering the Chesapeake Bay were estimated to be 1.449 × 108 and 5.367 × 106 kg/yr, respectively. Five of the 167 TN and three of the 168 TP landscape metrics were shown to be significant (p-value  0.05) either for non-point sources or land-to-water delivery variables. This is the first demonstration of the significance of riparian LC/LU and landscape metrics on water quality simulation in a watershed as large as the Chesapeake Bay. Land cover metrics can therefore be expected to improve the precision of estimated TN and TP annual loadings to the Chesapeake Bay and may also suggest changes in land management that may be beneficial in control of nutrient runoff to the Chesapeake Bay and similar watersheds elsewhere.  相似文献   

9.
10.
Water loss compromises functions performed by wetland ecosystems. Efforts to rehabilitate wetland function typically begin with attempts to reestablish hydrology. These activities are often not monitored, so tools to extract information from them could partly offset the lost opportunity to learn from whole-ecosystem hydrological manipulation. In 2002, groundwater abstraction was lessened by 35% throughout 1700 km2 of west-central Florida (USA). I assembled a pathway of correlations to project how this hydrological manipulation affected water levels and soil carbon (C) storage in overlying wetlands. Parameter values and residual error in these statistical models were resampled from known variances, thereby propagating uncertainty through the pathway of relationships, and expressing the response of soil C probabilistically. Projected soil C probability distributions were most distinguishable between full and moderate (30% less) abstraction. With more severe abstraction cutbacks, gains in projected soil C became more marginal and uncertain, suggesting that wetland soil C pools are not notably impacted by low-volume groundwater abstraction. Reducing uncertainty in projected soil C will require better understanding the dynamic response of soil C to increases in the amount of time that wetland soil is inundated. The step-by-step error propagation routine presented here is a platform for assimilating information from diverse sources in order to project probabilistic responses of ecosystem function to wetland restoration attempts, and it helps identify where further certainty is most wanted in a pathway of cause–effect relationships.  相似文献   

11.
Water quality in Upper Sandy Creek, a headwater stream for the Cape Fear River in the North Carolina Piedmont, is impaired due to high N and P concentrations, sediment load, and coliform bacteria. The creek and floodplain ecosystem had become dysfunctional due to the effects of altered storm water delivery following urban watershed development where the impervious surface reached nearly 30% in some sub-watersheds. At Duke University, an 8-ha Stream and Wetland Assessment Management Park (SWAMP) was created in the lower portion of the watershed to assess the cumulative effect of restoring multiple portions of stream and former adjacent wetlands, with specific goals of quantifying water quality improvements. To accomplish these goals, a three-phase stream/riparian floodplain restoration (600 m), storm water reservoir/wetland complex (1.6 ha) along with a surface flow treatment wetland (0.5 ha) was ecologically designed to increase the stream wetland connection, and restore groundwater wetland hydrology. The multi-phased restoration of Sandy Creek and adjacent wetlands resulted in functioning riparian hydrology, which reduced downstream water pulses, nutrients, coliform bacteria, sediment, and stream erosion. Storm water event nutrient budgets indicated a substantial attenuation of N and P within the SWAMP project. Most notably, (NO2 + NO3)-N loads were reduced by 64% and P loads were reduced by 28%. Sediment retention in the stormwater reservoir and riparian wetlands showed accretion rates of 1.8 cm year−1 and 1.1 cm year−1, respectively. Sediment retention totaled nearly 500 MT year−1.  相似文献   

12.
Tidal salt marshes in the San Francisco Estuary region display heterogeneous vegetation patterns that influence wetland function and provide adequate habitat for native or endangered wildlife. In addition to analyzing the extent of vegetation, monitoring the dynamics of vegetation pattern within restoring wetlands can offer valuable information about the restoration process. Pattern metrics, derived from classified remotely sensed imagery, have been used to measure composition and configuration of patches and landscapes, but they can be unpredictable across scales, and inconsistent across time. We sought to identify pattern metrics that are consistent across spatial scale and time – and thus robust measures of vegetation and habitat configuration – for a restored tidal marsh in the San Francisco Bay, CA, USA. We used high-resolution (20 cm) remotely sensed color infrared imagery to map vegetation pattern over 2 years, and performed a multi-scale analysis of derived vegetation pattern metrics. We looked at the influence on metrics of changes in grain size through resampling and changes in minimum mapping unit (MMU) through smoothing. We examined composition, complexity, connectivity and heterogeneity metrics, focusing on perennial pickleweed (Sarcocornia pacifica), a dominant marsh plant. At our site, pickleweed patches grew larger, more irregularly shaped, and closely spaced over time, while the overall landscape became more diverse. Of the two scale factors examined, grain size was more consistent than MMU in terms of identifying relative change in composition and configuration of wetland marsh vegetation over time. Most metrics exhibited unstable behavior with larger MMUs. With small MMUs, most metrics were consistent across grain sizes, from fine (e.g. 0.16 m2) to relatively large (e.g. 16 m2) pixel sizes. Scale relationships were more variable at the landcover class level than at the landscape level (across all classes). This information may be useful to applied restoration practitioners, and adds to our general understanding of vegetation change in a restoring marsh.  相似文献   

13.
Riparian zones are central landscape features providing several ecosystem services and are exceptionally rich in biodiversity. Despite their relatively low area coverage, riparian zones consequently represent a major concern for land and water resource managers confirmed within several European directives. These directives involve effective multi-scale monitoring to assess their conditions and their ability to carry out their functions. The objective of this research was to develop automated tools to provide from a single aerial LiDAR dataset new mapping tools and keystone riparian zone attributes assessing the ecological integrity of the riparian zone at a network scale (24 km).Different metrics were extracted from the original LiDAR point cloud, notably the Digital Terrain Model and Canopy Height Model rasters, allowing the extraction of riparian zones attributes such as the wetted channel (0.89 m; mean residual) and floodplain extents (6.02 m; mean residual). Different riparian forest characteristics were directly extracted from these layers (patch extent, overhanging character, longitudinal continuity, relative water level, mean and relative standard deviation of tree height). Within the riparian forest, the coniferous stands were distinguished from deciduous and isolated trees, with high accuracy (87.3%, Kappa index).Going further the mapping of the indicators, our study proposed an original approach to study the riparian zone attributes within different buffer width, from local scale (50 m long channel axis reach) to a network scale (ca. 2 km long reaches), using a disaggregation/re-agraggation process. This novel approach, combined to graphical presentations of the results allow natural resource managers to visualise the variation of upstream–downstream attributes and to identify priority action areas.In the case study, results showed a general decrease of the riparian forests when the river crosses built-up areas. They also highlighted the lower flooding frequency of riparian forest patches in habitats areas.Those results showed that LiDAR data can be used to extract indicators of ecological integrity of riparian zones in temperate climate zone. They will enable the assessment of the ecological integrity of riparian zones to be undertaken at the regional scale (13,000 km, completely covered by an aerial LIDAR survey in 2014).  相似文献   

14.
We compared potential denitrification and phosphorus (P) sorption in restored depressional wetlands, restored riparian buffers, and natural riparian buffers of central Ohio to determine to what extent systems restored under the U.S. Department of Agriculture's Wetland Reserve Program (WRP) and Conservation Reserve Program (CRP) provide water quality improvement benefits, and to determine which practice is more effective at nutrient retention. We also measured soil nutrient pools (organic C, N, and P) to evaluate the potential for long‐term C sequestration and nutrient accumulation. Depressional wetland soils sorbed twice as much P as riparian soils, but had significantly lower denitrification rates. Phosphorus sorption and denitrification were similar between the restored and natural riparian buffers, although all Natural Resources Conservation Service (NRCS) practices had higher denitrification than agricultural soils. Pools of organic C (2570–3320 g/m2), total N (216–243 g/m2), and total P (60–71 g/m2) were comparable among all three NRCS practices but were greater than nearby agricultural fields and less than natural wetlands in the region. Overall, restored wetlands and restored and natural riparian buffers provide ecosystem services to the landscape that were lost during the conversion to agriculture, but the delivery of services differs among conservation practices, with greater N removal by riparian buffers and greater P removal by wetlands, attributed to differences in landscape position and mineral soil composition. At the landscape, and even global level, wetland and riparian restoration in agricultural landscapes will reintroduce multiple ecosystem services (e.g. C sequestration, water quality improvement, and others) and should be considered in management plans .  相似文献   

15.
A comprehensive study using ecological engineering analysis was conducted on the influence of the hydrology process in the Yellow River Delta. It was found that water and sediment played an important role in the formation and maintenance of the estuarine wetland. Based on hydrological data (1950–2005), meteorological data (1954–2005) and landscape data produced from integrated Landsat TM images of the Yellow River Delta, the relationship among all the above factors has been analyzed. The results indicated that runoff, sediment discharge and the area of the reed marsh wetland, meadow wetland and tidal wetland had evidently decreased from 1986 to 2001. The runoff and sediment discharge into the Yellow River Delta at a rate of 200–300 × 108 m3 and at 5–8 × 108 t, respectively, were probably the most optimal range for maintaining the stable wetland landscape pattern. Regression analysis and principal component analysis showed that there was a strong positive correlation between the area of wetland landscape and runoff, sediment discharge, whereas there was a negative correlation between the area and the temperature, and there was no significant trend with precipitation levels. The water and sediment discharge are the dominant variable factors of the wetland. Human activities also have an important influence on transformation of wetland types as well as wetland degradation. Therefore, with economic development, climate change and sustainable utilization of resources, great attention should be paid to the changes of natural landscape and their causes.  相似文献   

16.
Surveying terrestrial invertebrates often requires lethal techniques that can also kill non-target vertebrates. Removing the desirable components of biodiversity is at odds with the philosophy of ecological restoration and biodiversity conservation more generally. Moreover, commonly used metrics generated by such survey approaches (e.g. abundance and species richness) are only indirectly related to the ecosystem services (e.g. pollination) that are often of primary interest. We examined the relationship between rates of dung removal (a direct measure of an ecosystem service) and dung beetle abundance and species richness in a temperate region of New South Wales, Australia, and examined if dung removal in revegetated riparian areas of different ages were trending monotonically toward rates in areas with mature native vegetation. Pellets of pig manure and conventional traps were left at study sites for 48 h to examine the relationships between rates of dung removal and dung beetle abundance and richness. Regressions of abundance and richness with average percent dung removal were positive and significant, demonstrating the potential of the method as a non-lethal proxy. While the dung removal method cannot determine the species responsible, percentage dung removal was more time-efficient, costing 4 min per sample, while abundance and richness cost 13 and 17 min, respectively. Despite variability among replicates of the same habitat type, the trajectory across the restoration gradient showed an increase from sites recently revegetated toward those with mature woody vegetation. We interpreted these results as a positive response of dung beetle activity and an indication of recovery of this ecosystem service. We argue that responses that can be collected efficiently such as dung removal should be used if restorationists have limited resources for data collection and analysis; non-specialists are involved; knowledge of ecosystem function is required, and animal ethics constrain options.  相似文献   

17.
Indicators of landscape condition should be selected based on their sensitivity to environmental changes and their capacity to provide early warning detection of those changes. We assessed the performance of a suite of spatial-pattern metrics selected to quantify the condition of the ridge-slough landscape in the Everglades (South Florida, USA). Spatial pattern metrics (n = 14) that describe landscape composition, geometry and hydrologic connectivity were enumerated from vegetation maps of twenty-five 2 × 2 km primary sampling units (PSUs) that span a gradient of hydrologic and ecological condition across the greater Everglades ecosystem. Metrics were assessed in comparison with field measurements from each PSU of landscape condition obtained from regional surveys of soil elevation, which have previously been shown to capture dramatic differences between conserved and degraded locations. Elevation-based measures of landscape condition included soil elevation bi-modality (BISE), a binary measure of landscape condition, and also the standard deviation of soil elevation (SDSE), a continuous measure of condition. Metric performance was assessed based on the strength (sensitivity) and shape (leading vs. lagging) of the relationship between spatial pattern metrics and these elevation-based measures. We observed significant logistic regression slopes with BISE for only 4 metrics (slough width, ridge density, directional connectivity index – DCI, and least flow cost – LFC). More significant relationships (n = 8 metrics) were observed with SDSE, with the strongest associations for slough density, mean ridge width, and the average length of straight flow, as well as for a suite of hydrologic connectivity metrics (DCI, LFC and landscape discharge competence – LDC). Leading vs. lagging performance, inferred from the curvature of the association obtained from the exponent of fitted power functions, suggest that only DCI was a leading metric of the loss of soil elevation variation; most metrics were indeterminate, though some were clearly lagging. Our findings support the contention that soil elevation changes from altered peat accretion dynamics precede changes in landscape pattern, and offer insights that will enable efficient monitoring of the ridge-slough landscape as part of the ongoing Everglades restoration effort.  相似文献   

18.
Freshwater releases to restore degraded wetlands are a globally recognized way to maintain the biodiversity and enhance the health of wetland ecosystems. To better understand the efficacy of freshwater releases in the northern part of China’s Yellow River Delta Wetlands, we used macrobenthos functional groups in spring (before freshwater releases), summer (during), and autumn (after) as indicators of the ecological responses. We also created abundance–biomass comparison curves and analyzed secondary production of each trophic level to evaluate the magnitude of the disturbance of the macrobenthos community. Abundance, biomass, and biodiversity of macrobenthos functional groups generally improved after the freshwater releases. In contrast with an intertidal (reference) area, the macrobenthos community in the ecological restoration area tended to be freshwater species. In the ecological restoration area, strong and moderate ecological disturbance of the macrobenthos community was evident during and after freshwater releases because the abundance curve remained above the biomass curve. Secondary production was in the order trophic level III > II  IV in the summer, which indicates fragility of the macrobenthos community. The ecological restoration area had the highest sediment total organic carbon and moisture contents, but the lowest salinity and median particle size, and these differences were statistically significant. Our results suggest that adaptive freshwater releases, including a long-term freshwater release plan that more closely emulates natural flows and increasing the efficiency of freshwater utilization, will be necessary to achieve sustainable management of the wetland’s ecosystem and reduce the disturbance caused by the freshwater releases.  相似文献   

19.
This study estimates the economic values of and the dominant contributors to five key ecosystem services of wetlands in Beijing, by using the wetland inventory data in 2014 and economic valuation methods. Results indicate that the 51,434 ha of wetlands in Beijing annually provide 2.07 billion m3 of flood regulation, 944.01 million m3 of water provision, 42,154 tons of chemical oxygen demand (COD) purification, 3.03 PJ of heat absorption, and 9587 ha of habitat. Their economic values are estimated to be 15.89 billion RMB, 1.19 billion RMB, 169 million RMB, 421 million RMB, and 1.08 billion RMB in 2014 (RMB: Chinese currency, US$1 = RMB 6.14), respectively. The total values of five key wetland ecosystem services reach 18.76 billion RMB. In addition, the reservoir and river wetlands in Miyun, Yanqing, Fangshan, Huairou, and Mentougou Districts contribute 78% of key ecosystem services, whereas the urban wetlands in Xicheng, Dongcheng, Haidian, Chaoyang, and Tongzhou Districts more conveniently serve densely local people, hence they should be given particular attentions. In this paper, we develop the valuation methods of wetland ecosystem services, and recommend diversified strategies, regulations, and programs to protect the remaining wetlands in Beijing. This work can also provide a reference for the valuating of wetland ecosystem services for other urban-rural areas.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号