首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The Everglades is the largest subtropical wetland in the United States. Because of its size, floral and faunal diversity, geological history and hydrological functions on the Florida landscape, the remaining Everglades are considered to be the crown jewel of U.S. wetlands. It is also called a “sentinel wetland” to test our society’s resolve for ecosystem restoration. Originally called Pa-hay-okee (“grassy lake”) by the American Indians, it was later popularized as the “river of grass” by Marjory Stoneman Douglas. This metaphor unfortunately has led to a simplistic view of the complexities of the Everglades ecosystem and how it functions on the landscape. Often incorrectly referred to as the “marsh” or “swamp,” the Everglades is a fen peatland or alkaline mire. These are important distinctions when one considers how different marshes and swamps are from peatlands in terms of their hydrologic controls, biogeochemistry, rate of peat development, plant and animal communities and-importantly-succession patterns. This paper provides a brief review of the geological processes that led to the development of the Everglades, compares historic and current hydrologic flow patterns, assesses nutrient conditions, presents information on vegetation communities and succession patterns, and provides a new peatland classification of the Everglades system, which may help in the development of a more appropriate restoration management framework.  相似文献   

2.
Successful restoration of wetland ecosystems requires knowledge of wetland hydrologic patterns and an understanding of how those patterns affect wetland plant and animal populations. Within the Everglades, Florida, USA restoration, an applied science strategy including conceptual ecological models linking drivers to indicators is being used to organize current scientific understanding to support restoration efforts. A key driver of the ecosystem affecting the distribution and abundance of organisms is the timing, distribution, and volume of water flows that result in water depth patterns across the landscape. American alligators (Alligator mississippiensis) are one of the ecological indicators being used to assess Everglades restoration because they are a keystone species and integrate biological impacts of hydrological operations through all life stages. Alligator body condition (the relative fatness of an animal) is one of the metrics being used and targets have been set to allow us to track progress. We examined trends in alligator body condition using Fulton's K over a 15 year period (2000–2014) at seven different wetland areas within the Everglades ecosystem, assessed patterns and trends relative to restoration targets, and related those trends to hydrologic variables. We developed a series of 17 a priori hypotheses that we tested with an information theoretic approach to identify which hydrologic factors affect alligator body condition. Alligator body condition was highest throughout the Everglades during the early 2000s and is approximately 5–10% lower now (2014). Values have varied by year, area, and hydrology. Body condition was positively correlated with range in water depth and fall water depth. Our top model was the “Current” model and included variables that describe current year hydrology (spring depth, fall depth, hydroperiod, range, interaction of range and fall depth, interaction of range and hydroperiod). Across all models, interaction between range and fall water depth was the most important variable (relative weight of 1.0) followed by spring and fall water depths (0.99), range (0.96), hydroperiod (0.95) and interaction between range and hydroperiod (0.95). Our work provides additional evidence that restoring a greater range in annual water depths is important for improvement of alligator body condition and ecosystem function. This information can be incorporated into both planning and operations to assist in reaching Everglades restoration goals.  相似文献   

3.
U.S. Department of the Interior is planning to remove two high dams (30 and 60 m) from the Elwha River, which will allow the river to erode sediment deposits in the reservoirs, and ultimately restore the river ecosystem. Fluvial sediment transport and deposition paradoxically represent ecological disturbance and restoration. A one-dimensional, movable boundary sediment-transport model was applied at a daily time step to simulate changes in river-bed elevations and particle-size distributions and concentrations of suspended sediment. The simulations included a three-year dam removal period and a four-year recovery period. Simulated concentrations of suspended sediment recover rapidly during the recovery period. Simulated bed elevation and particle-size distributions are stable for much of the river during the recovery period, but high flows periodically disturb the river bed, causing changes in river-bed elevation and particle-size distribution, especially during autumn, when summer/autumn chinook salmon are incubating in redds. Although the river bed will become increasingly stable after dam removal, episodic high flows will interrupt recovery trends. Productivity and diversity of the ecosystem may be lower because of excess sediment immediately after dam removal but should increase during recovery above current levels as the river. Monitoring of the recovery of the Elwha River ecosystem can target ecologically significant physical parameters indicating the transition from a sediment transport-limited state to a supply-limited state.  相似文献   

4.
Acosta  Charles A.  Perry  Sue A. 《Hydrobiologia》2002,477(1-3):221-230
Hydropattern disturbance has had wide-ranging impacts on wetland communities of the Florida Everglades, especially on the habitats and the aquatic biota of the seasonally flooded marl marshes. We used the Everglades crayfish Procambarus alleni as a model to study the associations among hydrology, vegetation distribution, and population dynamics to assess the potential impacts of hydrological changes on the aquatic faunal community in Everglades National Park. To classify benthic habitats as sources or sinks for the crayfish population, we quantified vegetation community structure using GIS maps in which dominant vegetation types were weighted by local hydroperiod (length of inundation). Regression analysis showed that this habitat classification was associated with crayfish density distribution. We then used a spatially explicit, stage-structured population model to describe crayfish population fluctuations under current environmental conditions and to simulate the potential population-level responses to habitat changes that might occur following hydrological restoration. In habitat that was initially saturated with crayfish, the crayfish population size declined under current environmental conditions and then stabilized at about 13% of the initial density over a 50-year period. A 4-month increase in hydroperiod was then simulated by converting shorter-hydroperiod Muhlenbergia-dominated marsh habitat to longer-hydroperiod Cladium-dominated marshes. The model predicted a rapid 7-fold increase in crayfish density following the simulated habitat restoration. This indicated that several functional effects may result from the restoration of historical hydropatterns in marl marshes: (1) the areal extent of habitat sinks will be reduced to isolated patches, whereas the spatial distribution of aquatic source habitats will expand; (2) crayfish population size will increase and persist over time; (3) the minimum threshold needed to increase secondary aquatic productivity may be a 7-month hydroperiod over 90% of the marl marsh landscape. Restoration of historical hydropatterns could thus have cascading positive effects throughout the Everglades aquatic food web.  相似文献   

5.
Sediment characteristics and vegetation composition were measured in a restored and natural saltmarsh and mudflat at Wallasea Island managed realignment scheme (Essex, UK) from January to December 2007. The similar sediment characteristics in the restored and natural mudflat indicated that the sediment in the restored mudflat was approaching natural conditions. However, the sediment characteristics in the restored saltmarsh were not becoming similar to those in the natural saltmarsh. The sediment moisture content, organic matter content and porosity were lower while the sediment bulk density, salinity and pH were higher in the restored compared to the natural saltmarsh. The dissimilarities were mainly due to differences in the vegetation abundance and organic matter content. Although, 18 months after restoration the restored saltmarsh was only sparsely vegetated and there was no net change in the sediment characteristics, the occurrence of Salicornia europaea L. demonstrated that pioneer saltmarsh vegetation establishment preceded the development of sediment characteristics.  相似文献   

6.
Tree island ecosystems are important and distinct features of Florida Everglades wetlands. We described the inter-relationships among abiotic factors describing seasonally flooded tree islands and characterized plant–soil relationships in tree islands occurring in a relatively unimpacted area of the Everglades. We used Principal Components Analysis (PCA) to reduce our multi-factor dataset, quantified forest structure and vegetation nutrient dynamics, and related these vegetation parameters to PCA summary variables using linear regression analyses. We found that, of the 21 abiotic parameters used to characterize the ecosystem structure of seasonally flooded tree islands, 13 parameters were significantly correlated with four principal components, and they described 78% of the variance among the study islands. Most variation was described by factors related to soil oxidation and hydrology, exemplifying the sensitivity of tree island structure to hydrologic conditions. PCA summary variables describing tree island structure were related to variability in Chrysobalanus icaco (L.) canopy cover, Ilex cassine (L.) and Salix caroliniana (Michx.) canopy cover, Myrica cerifera (L.) plot frequency, litter turnover, % phosphorus resorption of co-dominant species, and nitrogen nutrient-use efficiency. This study supported findings that vegetation characteristics can be sensitive indicators of variability in tree island ecosystem structure. This study produced valuable, information which was used to recommend ecological targets (i.e. restoration performance measures) for seasonally flooded tree islands in more impacted regions of the Everglades landscape.  相似文献   

7.
Conservation and restoration of riparian vegetation in agricultural landscapes has had mixed success at protecting in‐stream habitat, potentially due to the mismatch between watershed‐scale impacts and reach‐scale restoration. Prioritizing contiguous placement of small‐scale restoration interventions may effectively create larger‐scale restoration projects and improve ecological outcomes. We performed a multi‐site field study to evaluate whether greater linear length of narrow riparian tree corridors resulted in measurable benefits to in‐stream condition. We collected data at 41 sites with varying upstream tree cover nested within 13 groups in rangeland streams in coastal northern California, United States. We evaluated the effect of riparian tree corridor length on benthic macroinvertebrate communities, as well as food resources, water temperature, and substrate size. Sites with longer riparian corridors had higher percentages of invertebrates sensitive to disturbance (including clingers and EPT taxa) as well as lower water temperatures and less fine sediment, two of the most important aquatic stressors. Despite marked improvement, we found no evidence that macroinvertebrate communities fully recovered, suggesting that land use continued to constrain conditions. The restoration of long riparian corridors may be an economically viable and rapidly implementable technique to improve habitat, control sediment, and counter increasing water temperatures expected with climate change within the context of ongoing land use.  相似文献   

8.
One of the most important waterway components is vegetation, which play a pivotal role in the flow and sediment transport. Vegetation environment and characteristics, including vegetation porosity or density, shape, flexibility and vegetation height, are significantly affected in vegetated channels. Various vegetation positions and arrangements such as patches significantly affect the sediment deposition rate and flow turbulence. This paper reviews recent works conducted on vegetated open channels, which include the effect of different vegetation arrangements and vegetation characteristics on mass transport and turbulence structure. Studies based on laboratory, field works, and modeling, have been reviewed based on previous methods used by different researchers. Methods used in vegetation porosity evaluation, rate of flow and sediment transport properties are presented. In short, flow and transport depend on the vegetation properties and flow structure conditions.  相似文献   

9.
Bauxite residue disposal areas may be amended and re‐vegetated to facilitate the ecosystem restoration process. However, the development of the belowground system during restoration is frequently overlooked. In turn, although vegetation establishment on bauxite residue is well studied, virtually nothing is known about concurrent changes in the soil biota. In order to understand how different amendments and re‐vegetation influence the belowground community, we compared nematode assemblages from bauxite residues that differed in their treatment history (compost addition, gypsum addition, and time since re‐vegetation), and examined whether any differences were related to changes in soil properties. No nematodes were present in the unamended treatment, thus indicating a need for amelioration of substrate properties. However, there were differences in the nematode assemblage between the other amended treatments. The quantity of gypsum reduced nematode density, but had no effect on taxa richness or the Maturity Index in treatments amended in the same year. Nematode taxa richness and the Maturity Index were greatest in the treatment re‐vegetated earliest. Moreover, the Maturity Index was negatively correlated to soil pH and percentage Na. These findings indicate that sufficient amendment and re‐vegetation are crucial to address inhibitory characteristics of the residue and aid restoration of the belowground system in bauxite residues.  相似文献   

10.
Changes in the seascape often result in altered hydrodynamics that lead to coinciding changes in sediment dynamics. Little is known on how altered sediment dynamics affect long-term seagrass persistence. We studied the thresholds of sediment dynamics in relation to seagrass presence by comparing sediment characteristics and seagrass presence data of seven separate seagrass meadows. All meadows had a long-term (>20 years) presence. Within these meadows, we distinguish so-called “hotspots” (areas within a meadow where seagrass was found during all mapping campaigns) and “coldspots” (with infrequent seagrass presence). We monitored static sediment characteristics (median grain size, bulk density, silt content) and sediment dynamics (that is, bed level change and maximum sediment disturbance depth), bioturbation (that is, lugworm densities and induced fecal pit and mound relief), and seagrass cover. We statistically analyzed which sediment characteristic best explains seagrass cover. Densely vegetated hotspots were shown to have lower sediment dynamics than sparsely vegetated hotspots and coldspots, whereas static sediment characteristics were similar (grain size, bulk density). The vegetation cover was either low (2–15%) or high (>30%) and sediment dynamics showed a threshold for vegetation cover. From this correlative finding, we postulate a self-sustaining feedback of relatively dense seagrass via sediment stabilization and accordingly a runaway feedback once the seagrass cover becomes too sparse. The sensitivity for sediment dynamics shown in our study implies that future existence of seagrass meadows may be at risk as ongoing climate change might directly (increased environmental extremes) or indirectly (changing seascapes) negatively affect seagrass beds.  相似文献   

11.
海草是分布在全球海岸带的沉水被子植物,与周围环境共同形成的海草床生态系统是三大典型海洋生态系统之一,具有十分重要的生态功能。20世纪以来,全球海草床衰退严重,研究海草床的生态修复迫在眉睫,现有修复方法未能足够重视微生物在海草床中的重要作用。本文综合阐述了微生物在海草床生态系统有机物矿化和营养流动过程中起到的作用,分析了微生物驱动下的海草床水体与沉积物之间的元素循环,提出了人类活动引起海草床退化的原因,总结了海草床微生物的系统研究方法,并在此基础上提出从微生物生态的角度修复海草床的新思路。  相似文献   

12.
A study was undertaken to evaluate the interrelationship between the presence of seagrasses, Zostera marina and Halodule wrightii, and the physical and chemical properties of sediments in a coastal plain estuary near Beaufort, North Carolina. In sediments underlying a cover of seagrass, silt-clay, organic matter, exchangeable ammonium, ammonium dissolved in pore waters and total nitrogen were larger than in unvegetated profiles. The magnitude of the physical and chemical properties of sediments varied according to the location of the station in relation to the vegetation, as well as the continuity in the distribution of the seagrass. The largest pools of nitrogen, the finest sediment texture, and the greatest organic matter content were in sediments associated with the mid bed regions of seagrass meadows, intermediate at the edges of the bed and small isolated patches of grass, and least in unvegetated substrate.General conclusions from this study are: 1) once established, seagrasses appear capable of modifying the sediment texture as well as the organic matter and nitrogen content; 2) nitrogen accumulates beneath the vegetation suggesting that vegetated sediments are sinks; however, functional recycling mechanisms seem to be operating as suggested by the larger magnitude of remineralized nitrogen in the vegetated profiles; and 3) the establishment of seagrasses in this geographical region are not necessarily restricted by the sediment properties measured in this study. These data and conclusions are discussed in regard to an application of contemporary theories of ecosystem development to seagrass systems.Contribution Number 82-22-B  相似文献   

13.
杜建会  严平  董玉祥 《生态学杂志》2012,31(8):2137-2144
斑块状分布是植被在水分匮乏环境中长期适应的结果,其演替过程可以作为生态系统响应气候变化和人类活动产生突变的"指示器"。本文通过对斑块状植被的起源、生态水文过程及其对干旱区植被恢复的启示等方面进行综述,提出了我国干旱区植被恢复中目前尚存在的主要问题。认为斑块状植被的形成可能受气候变化、人类活动、植物自身的生物学特性及其对环境胁迫的适应等方面的影响,但不是主要因素,植被斑块和裸地斑块之间在不同空间尺度的水分再分配是其在干旱半干旱地区形成并且能够维持稳定的关键。斑块状植被是一个高效的雨水集流系统,裸地斑块是整个系统径流的"源",而植被斑块是整个系统径流的"汇",保护植被斑块的同时维持一定面积的裸地对于整个生态系统的稳定都具有极其重要的意义。斑块状植被也是一个非常脆弱的生态系统,气候的剧烈波动以及人类的过度活动都可能导致生态系统功能丧失,最终产生不可逆转的影响,因此需要加以严格保护。  相似文献   

14.
1. Riparian vegetation in dry regions is influenced by low‐flow and high‐flow components of the surface and groundwater flow regimes. The duration of no‐flow periods in the surface stream controls vegetation structure along the low‐flow channel, while depth, magnitude and rate of groundwater decline influence phreatophytic vegetation in the floodplain. Flood flows influence vegetation along channels and floodplains by increasing water availability and by creating ecosystem disturbance. 2. On reference rivers in Arizona's Sonoran Desert region, the combination of perennial stream flows, shallow groundwater in the riparian (stream) aquifer, and frequent flooding results in high plant species diversity and landscape heterogeneity and an abundance of pioneer wetland plant species in the floodplain. Vegetation changes on hydrologically altered river reaches are varied, given the great extent of flow regime changes ranging from stream and aquifer dewatering on reaches affected by stream diversion and groundwater pumping to altered timing, frequency, and magnitude of flood flows on reaches downstream of flow‐regulating dams. 3. As stream flows become more intermittent, diversity and cover of herbaceous species along the low‐flow channel decline. As groundwater deepens, diversity of riparian plant species (particularly perennial species) and landscape patches are reduced and species composition in the floodplain shifts from wetland pioneer trees (Populus, Salix) to more drought‐tolerant shrub species including Tamarix (introduced) and Bebbia. 4. On impounded rivers, changes in flood timing can simplify landscape patch structure and shift species composition from mixed forests composed of Populus and Salix, which have narrow regeneration windows, to the more reproductively opportunistic Tamarix. If flows are not diverted, suppression of flooding can result in increased density of riparian vegetation, leading in some cases to very high abundance of Tamarix patches. Coarsening of sediments in river reaches below dams, associated with sediment retention in reservoirs, contributes to reduced cover and richness of herbaceous vegetation by reducing water and nutrient‐holding capacity of soils. 5. These changes have implications for river restoration. They suggest that patch diversity, riparian plant species diversity, and abundance of flood‐dependent wetland tree species such as Populus and Salix can be increased by restoring fluvial dynamics on flood‐suppressed rivers and by increasing water availability in rivers subject to water diversion or withdrawal. On impounded rivers, restoration of plant species diversity also may hinge on restoration of sediment transport. 6. Determining the causes of vegetation change is critical for determining riparian restoration strategies. Of the many riparian restoration efforts underway in south‐western United States, some focus on re‐establishing hydrogeomorphic processes by restoring appropriate flows of surface water, groundwater and sediment, while many others focus on manipulating vegetation structure by planting trees (e.g. Populus) or removing trees (e.g. Tamarix). The latter approaches, in and of themselves, may not yield desired restoration outcomes if the tree species are indicators, rather than prime causes, of underlying changes in the physical environment.  相似文献   

15.
Recent theoretical studies have shown that spatial redistribution of surface water may explain the occurrence of patterns of alternating vegetated and degraded patches in semiarid grasslands. These results implied, however, that spatial redistribution processes cannot explain the collapse of production on coarser scales observed in these systems. We present a spatially explicit vegetation model to investigate possible mechanisms explaining irreversible vegetation collapse on coarse spatial scales. The model results indicate that the dynamics of vegetation on coarse scales are determined by the interaction of two spatial feedback processes. Loss of plant cover in a certain area results in increased availability of water in remaining vegetated patches through run-on of surface water, promoting within-patch plant production. Hence, spatial redistribution of surface water creates negative feedback between reduced plant cover and increased plant growth in remaining vegetation. Reduced plant cover, however, results in focusing of herbivore grazing in the remaining vegetation. Hence, redistribution of herbivores creates positive feedback between reduced plant cover and increased losses due to grazing in remaining vegetated patches, leading to collapse of the entire vegetation. This may explain irreversible vegetation shifts in semiarid grasslands on coarse spatial scales.  相似文献   

16.
The clearing of natural vegetation for agriculture has reduced the capacity of natural systems to provide ecosystem functions. Ecological restoration can restore desirable ecosystem functions, such as creating habitat for animal conservation and carbon sequestration as woody biomass. In order to maintain these beneficial ecosystem functions, restoration projects need to mature into self‐perpetuating communities. Here we compared the ecological attributes of two types of restoration, “active” tree plantings with “passive” natural forest regeneration (“natural regrowth”) to existing remnant vegetation in a cleared agricultural landscape. Specifically, we measured differences between forest categories in factors that may predict future restoration failure or ecosystem collapse: aboveground plant biomass and biomass accrual over time (for regrowing stands), plant density and size class distributions, and diversity of functional groups based on seed dispersal and growth strategy traits. We found that natural regrowth and planted forests were similar in many ecological characteristics, including biomass accrual. Despite this, planted stands contained fewer tree recruit and shrub individuals, which may be due to limited recruitment in plantings. If this continues, these forests may be at risk of collapsing into nonforest states after mature trees senesce. Lower shrub density and richness of mid‐story trees may lead to lower structural complexity in planting plots, and alongside lower richness of fleshy‐fruited plant species may reduce animal resources and animal use of the restored stand. In our study region, natural regrowth may result in restored woodland communities with greater conservation and carbon mitigation value.  相似文献   

17.
Modeling capabilities for shallow, vegetated, systems are reviewed to assess hydrodynamic, wind and wave, submersed plant friction, and sediment transport aspects. Typically, ecosystems with submersed aquatic vegetation are relatively shallow, physically stable and of moderate hydrodynamic energy. Wind-waves are often important to sediment resuspension. These are open systems that receive flows of material and energy to various degrees around their boundaries. Bed shear-stress, erosion, light extinction and submersed aquatic vegetation influence each other. Therefore, it is difficult to uncouple these components in model systems. Spatial changes in temperature, salinity, dissolved and particulate material depend on hydrodynamics. Water motions range from wind-wave scales on the small end, which might be important to erosion, to sub-tidal or seasonal scales on the large end, which are generally important to flushing. Seagrass modifies waves and, therefore, affects the relationships among the non-dimensional scaling parameters commonly used in wave analysis. Seagrass shelters the bed, often causing aggradation and changes in grain size, while increasing total resistance to flow. Hydrodynamic friction can not be well characterized by a single-parameter equation in seagrass beds, and models need appropriate enhancement when applied to these systems.Presently, modeling is limited by computational power, which is, however, improving. Other limitations include information on seagrass effects expressed in frictional resistance to currents, bed-sheltering, and wave damping in very shallow water under conditions of both normal and high bed roughness. Moreover, quantitative information on atmospheric friction and shear stress in shallow water and seagrass areas are needed. So far, various empirical equations have been used with wind or wave forcing to describe resuspension in shallow water. Although these equations have been reasonably successful in predicting suspended sediment concentrations, they require site-specific data. More detailed laboratory and field measurements are needed to improve the resuspension equations and model formulation pertaining to seagrass beds.  相似文献   

18.
任海 《广西植物》2023,43(8):1516-1523
《昆明-蒙特利尔全球生物多样性框架》提出要高质量保护和恢复各30%的土地,最大化地实现保护生物多样性和缓解气候变化的目标,而演替理论和植被恢复可以为实现30%的保护和恢复目标服务。演替理论是植被生态学中的核心理论,演替是指在一个地点上由一群不同物种组成的生命体的结构或组成随时间而变化的过程; 植被恢复是以植物种植、配置为主,恢复或重建植物群落或天然更新恢复植物群落的过程,植被恢复是生态系统结构和功能从简单到复杂、从低级向高级变化的过程,最终目的是建立健康稳定的植物群落。演替是植被恢复的基础,植被恢复被视为对演替过程的操纵,以达到恢复受损植被生态系统的目标。演替理论可以指导植被恢复,而植被恢复对演替理论的发展有益。演替按裸地性质可以分为原生演替和次生演替,有研究建议将恢复过程视为第三演替,这将有助于理解通过人为干预促进植被恢复成功的管理选择,特别是通过强调退化生态系统中的环境和生物遗存的管理选择。此外,该文还提出了植被恢复理论和演替理论未来可能重点关注的科学和技术问题。  相似文献   

19.
Extensive hydrologic modifications in coastal regions across the world have occurred to support infrastructure development, altering the function of many coastal wetlands. Wetland restoration success is dependent on the existence of hydrologic regimes that support development of appropriate soils and the growth and persistence of wetland vegetation. In Florida, United States, the Comprehensive Everglades Restoration Program (CERP) seeks to restore, protect, and preserve water resources of the greater Everglades region. Herein we describe vegetation dynamics in a mangrove‐to‐marsh ecotone within the impact area of a CERP hydrologic restoration project currently under development. Vegetation communities are also described for a similar area outside the project area. We found that vegetation shifts within the impact area occurred over a 7‐year period; cover of herbaceous species varied by location, and an 88% increase in the total number of mangrove seedlings was documented. We attribute these shifts to the existing modified hydrologic regime, which is characterized by a low volume of freshwater sheet flow compared with historical conditions (i.e. before modification), as well as increased tidal influence. We also identified a significant trend of decreasing soil surface elevation at the impact area. The CERP restoration project is designed to increase freshwater sheet flow to the impact area. Information from our study characterizing existing vegetation dynamics prior to implementation of the restoration project is required to allow documentation of long‐term project effects on plant community composition and structure within a framework of background variation, thereby allowing assessment of the project's success in restoring critical ecosystem functions.  相似文献   

20.
The Florida Everglades is extremely oligotrophic and sensitive to small increases in phosphorus (P) concentrations. P enrichment is one of the dominant anthropogenic impacts on the ecosystem and is therefore a main focus of restoration efforts. In this review, we synthesize research on P biogeochemistry and the impact of P enrichment on ecosystem structure and function in the Florida Everglades. There are clear patterns of increased P concentrations and altered structure and processes along nutrient-enrichment gradients in the water, periphyton, soils, macrophytes, and consumers. Periphyton, an assemblage of algae, bacteria, and associated microfauna, is abundant and has a large influence on phosphorus cycling in the Everglades. The oligotrophic Everglades is P-starved, has lower P concentrations and higher nitrogen–phosphorus (N:P) ratios, and has oxidized to only slightly reduced soil profiles compared to other freshwater wetland ecosystems. Possible general causes and indications of P limitation in the Everglades and other wetlands include geology, hydrology, and dominance of oxidative microbial nutrient cycling. The Everglades may be unique with respect to P biogeochemistry because of the multiple causes of P limitation and the resulting high degree of limitation. Received 23 August 2000; Accepted 23 March 2001.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号