首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bioengineering features of native vegetation are currently being evolved to enhance soil stiffness, slope stabilisation and erosion control. The effects of tree roots on soil moisture content and ground settlement are discussed in this paper. Matric suction induced by tree roots is a key factor, governing the properties of unsaturated soils, directly imparting stability to slopes and resistance for yielding behaviour. A mathematical model for the rate of root water uptake that considers ground conditions, type of vegetation and climatic parameters has been developed. This study highlights the inter-related parameters contributing to the development of a conceptual evapo-transpiration and root moisture uptake equilibrium model that is then incorporated in a comprehensive numerical finite element model. The developed model considers fully coupled-flow-deformation behaviour of soil. Field measurements obtained by the Authors from a site in Victoria, South of Australia, are used to validate the model. In this study, the active tree root distribution has been predicted by measuring soil organic content distribution. The predicted results show acceptable agreement with the field data in spite of the assumptions made for simplifying the effects of soil heterogeneity and anisotropy. The results prove that the proposed root water uptake model can reliably predict the region of the maximum matric suction away from the tree axis.  相似文献   

2.
Modeling soil water movement with water uptake by roots   总被引:16,自引:0,他引:16  
Wu  Jinquan  Zhang  Renduo  Gui  Shengxiang 《Plant and Soil》1999,215(1):7-17
Soil water movement with root water uptake is a key process for plant growth and transport of water and chemicals in the soil-plant system. In this study, a root water extraction model was developed to incorporate the effect of soil water deficit and plant root distributions on plant transpiration of annual crops. For several annual crops, normalized root density distribution functions were established to characterize the relative distributions of root density at different growth stages. The ratio of actual to potential cumulative transpiration was used to determine plant leaf area index under water stress from measurements of plant leaf area index at optimal soil water condition. The root water uptake model was implemented in a numerical model. The numerical model was applied to simulate soil water movement with root water uptake and simulation results were compared with field experimental data. The simulated soil matric potential, soil water content and cumulative evapotranspiration had reasonable agreement with the measured data. Potentially the numerical model implemented with the root water extraction model is a useful tool to study various problems related to flow transport with plant water uptake in variably saturated soils. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

3.
In recent years, a polymer tensiometer (POT) was developed and tested to directly measure matric potentials in dry soils. By extending the measurement range to wilting point (a 20-fold increase compared to conventional, water-filled tensiometers), a myriad of previously unapproachable research questions are now open to experimental exploration. Furthermore, the instrument may well allow the development of more water-efficient irrigation strategies by recording water potential rather than soil water content. The principle of the sensor is to fill it with a polymer solution instead of water, thereby building up osmotic pressure inside the sensor. A high-quality ceramic allows the exchange of water with the soil while retaining the polymer. The ceramic has pores sufficiently small to remain saturated even under very negative matric potentials. Installing the sensor in an unsaturated soil causes the high pressure of the polymer solution to drop as the water potentials in the soil and in the POT equilibrate. As long as the pressure inside the polymer chamber remains sufficiently large to prevent cavitation, the sensor will function properly. If the osmotic potential in the polymer chamber can produce a pressure of approximately 2.0 MPa when the sensor is placed in water, proper readings down to wilting point are secured. Various tests in disturbed soil, including an experiment with root water uptake, demonstrate the operation and performance of the new polymer tensiometer and illustrate how processes such as root water uptake can be studied in more detail than before. The paper discusses the available data and explores the long term perspectives offered by the instrument.  相似文献   

4.
干旱胁迫下尖果沙枣幼苗的根系活力和光合特性   总被引:8,自引:0,他引:8  
Qiman Y  Muhtar Z  Tayer A 《应用生态学报》2011,22(7):1789-1795
以尖果沙枣1年生实生苗为材料,研究了自然干旱时不同土壤相对含水量对幼苗叶片细胞质膜相对透性、叶片相对含水量、根系活力、光合色素含量和光合参数等指标的影响.结果表明:土壤相对含水量从70%(CK)降到40%时,幼苗根系活力和净光合速率均逐渐上升并达到最大值,分别为1178μg.g-1.h-1和21.9μmol.m-2.s-1;光合色素含量稳步上升;蒸腾速率和水分利用效率均保持稳定;叶片细胞质膜相对透性保持较低水平.土壤相对含水量从40%降到20%时,幼苗叶片相对含水量仍在50%以上,叶片细胞质膜相对透性仍保持较低水平;根系活力和光合色素含量仍较高;但其他光合参数开始缓慢下降.土壤相对含水量从10%降到5%时,幼苗叶片细胞质膜相对透性急剧上升;叶片相对含水量、根系活力、总叶绿素含量、光合参数均极显著下降;而土壤相对含水量为10%时幼苗表现出最高的水分利用效率.尖果沙枣土壤相对含水量最好控制在40%~50%,其1年生实生苗的永久萎蔫系数为4.3%(土壤相对含水量).  相似文献   

5.
The effect of changing the transpiration rate on leaf waterpotential and water balance has been examined to show if permeabilityof the plant (predominantly the roots) is constant or varieswith the transpiration rate. Measurements of leaf effectivethickness, water potential, transpiration, and uptake of waterby roots were made on sunflower, barley, and maize plants grownin solution culture and subjected to a range of atmosphericconditions and root treatments: cooling, low osmotic potential,and removal of part of the root system. Leaf water potential changed little under a wide range of atmosphericconditions and rates of water flux in the three species, sothat the root permeability to water increases as the rate oftranspiration, and therefore flow across the root surface, increases.Equality between uptake and loss of water and thereby maintenanceof constant leaf water potential is assisted by stomatal changes,which appear to be in response to conditions at or in the rootrather than a direct response to changes in bulk leaf waterpotential.  相似文献   

6.
The shear strength of soil is an important parameter that affects tree stability and can vary depending on the magnitude of the soil’s negative pore-water pressure (matric suction). The surface flux boundary condition affects the matric suction of soil, and therefore is important for tree stability. Field measurements were performed around a roadside tree for 2 years. The instrumentation results show that the matric suction in the soil fluctuated between 0 and 35 kPa. Matric suction changes in the soil could lead to a decrease in the tree resistive moment of up to 80 %.  相似文献   

7.
The suitability of microtensiometers to measure the spatial variation of soil matric potential and its diurnal change was tested in a pot experiment with pearl millet (Pennisetum americanum [L.] Leeke) in a sandy soil as the soil dried out.The temporal and spatial resolution of this technique allowed precise measurement of soil matric potential and thus estimation of soil water extraction from different compartments as well as from the whole rooting zone. The technique also allowed the measurement of rehydration of plants at night and root water uptake rate per unit soil volume or per unit root length. The precision of determination of root water uptake depended greatly on the accuracy of the estimate of hydraulic conductivity, which was derived from a bare soil and might be different for a cropped soil owing to aggregation induced by the root system. A linear relationship between root length and water uptake was found (r2=0.82), irrespective of variation in soil water content between compartments and despite the variation in root age, xylem differentiation and suberin formation expected to exist between different compartments of the rooting zone. As the experiment was carried out in a range of soil matric potentials between –4 and –30 kPa, drought stress did not occur. Further information at lower soil matric potentials are required, to address questions such as the importance of soil resistance for water uptake, or which portion of the root system has to be stressed to induce hormonal signals to the shoot. The microtensiometer technique can be applied to soil matric potentials up to –80 kPa.  相似文献   

8.
Water use and sodium chloride uptake by apple trees   总被引:2,自引:0,他引:2  
D. W. West 《Plant and Soil》1978,50(1-3):37-49
Summary Apple trees grown with their root systems split into halves were used to study the effects of non-uniform salinity stress within a root system upon salt and water uptake. Water uptake declined rapidly when sodium chloride solution (90 meq l−1) was added to any root zone but uptake increased correspondingly in the non-saline root zone of each tree. This changed pattern of water uptake with partial salinization did not change the total water use by the trees compared with their water use when neither root zone was salt stressed. After a‘steady-state’ condition of water uptake had been reached 80 to 85% of the water was taken up in the non-saline root zone. Irrigation at three soil matric potential intervals of −6.6, −33 and −66 kPa allowed to develop in the non-saline root zone of each tree did not affect water use responses. Leaf concentrations of Ca, Mg and K were unaffected by treatments. Chloride and Na concentrations increased in leaves with exposure to salinity stress in half root zones and with increasing soil matric potential stress. Some evidence was obtained using tritium enriched water that water was transferred from a non-saline root zone into a saline root zone but the volume involved was unmeasurable.  相似文献   

9.
Rattan Lal 《Plant and Soil》1974,40(3):589-606
Summary The effect of constant and fluctuating soil temperature and two soil moisture regimes on the growth, development, transpiration and nutrient uptake by maize seedlings was studied in a greenhouse investigation. The constant root temperatures were maintained at 30, 34, 35, 36, 37, and 38°C for both 250 and 750 cm of soil moisture suctions. The fluctuating root temperature, for 250 cm of soil moisture suction only, of 30–35, 30–39, 30–40, 30–45 and 30–48°C were maintained to simulate the soil temperature regime under field conditions. The constant root temperature of 35°C and fluctuating temperature between 30–40°C significantly decreased the shoot and root growth and transpiration rate. On the average, there was 1.3 and 0.7 g decrease in fresh shoot weight and 0.36 and 0.30 g in fresh root weight per degree increase in root temperature for 250 and 750 soil moisture suction, respectively. In general, the effect of high soil moisture suction on maize seedlings was more severe when at high root temperature. The shoot and root concentration of N, P, and K decreased while that of B increased with increase in root temperature. The root concentration of Zn also decreased with increase in root temperature.  相似文献   

10.
The objective of this study was to determine the effects of soil water and soil strength on root growth in situations where the individual effects of both of these factors were important. Three grain legumes were grown from pre-germinated seeds for five days on 50-mm compacted columns of two major soils of Sri Lanka. Four or five levels of bulk density (1.1 to 1.8 Mg.m–3) and five or six levels of matric potential (–0.02 to–2.0 MPa) were used.Soil strength and matric potential effects on root growth were independently significant for most crop and soil combinations. Under high (wet) matric potential (>–0.77 MPa) soil conditions, the effect of soil water on root growth was evident only in its effect on soil strength. Bulk density had a significant effect on root growth independent of soil strength and matric potential in three cases.For all crops and soils, root penetration was 80% of the maximum or greater when the average soil strength (soil water not limiting) was 0.75 MPa or less, and when the average matric potential (soil strength not limiting) was –0.77 MPa or greater (wetter). Root penetration was 20% of the maximum or less when the soil strength was greater than 3.30 MPa (soil water not limiting), and when matric potential (soil strength not limiting) was less than –3.57 MPa. The use of pre-germinated seeds, which contained imbibed water, combined with a lack of water loss from the closed chambers containing the plants is the probable cause for the very low (–3.57 MPa) matric potential that allowed root growth at 20% of the maximum.  相似文献   

11.
为探明膜下滴灌土壤湿润范围对棉花根区水热环境及棉花根系耗水的影响,设置滴头流量1.69(W169)、3.46(W346)和6.33 L·h-1(W633)3个水平,观测分析了棉花生育期土壤基质势、土壤温度及棉花根系生长和耗水分布状况.结果表明: 膜下滴灌土壤温度主要受光照影响;不同类型土壤湿润区之间的土壤温度差异不明显,不同土壤湿润区的膜下土壤温度对棉花根系耗水也没有明显影响.但是随着土壤湿润区由窄深型向宽浅型过渡,棉花根区土壤基质吸力在水平方向上分布更趋于均匀,而棉花根系耗水强度主要受土壤基质吸力分布的影响.宽浅型土壤湿润区(W633)的棉花膜下内、边行根系耗水强度差值平均为0.67 mm·d-1,有利于内、边行棉株生长整齐;窄深型土壤湿润区(W169)的内、边行根系耗水强度差值平均为0.88 mm·d-1,不利于内、边行棉株均匀生长.可见,膜下滴灌技术设计中,土壤湿润区不应小于覆膜宽度,应使膜下土壤整体湿润.  相似文献   

12.
The estimation of root water uptake and water flow in plants is crucial to quantify transpiration and hence the water exchange between land surface and atmosphere. In particular the soil water extraction by plant roots which provides the water supply of plants is a highly dynamic and non-linear process interacting with soil transport processes that are mainly determined by the natural soil variability at different scales. To better consider this root-soil interaction we extended and further developed a finite element tree hydro-dynamics model based on the one-dimensional (1D) porous media equation. This is achieved by including in addition to the explicit three-dimensional (3D) architectural representation of the tree crown a corresponding 3D characterisation of the root system. This 1D xylem water flow model was then coupled to a soil water flow model derived also from the 1D porous media equation. We apply the new model to conduct sensitivity analysis of root water uptake and transpiration dynamics and compare the results to simulation results obtained by using a 3D model of soil water flow and root water uptake. Based on data from lysimeter experiments with young European beech trees (Fagus silvatica L.) is shown, that the model is able to correctly describe transpiration and soil water flow. In conclusion, compared to a fully 3D model the 1D porous media approach provides a computationally efficient alternative, able to reproduce the main mechanisms of plant hydro-dynamics including root water uptake from soil.  相似文献   

13.
Measurements with a pressure chamber were made of the xylem water potential of leaves, shoots and roots from bean plants (Pkaseolus vulgaris L. cv. Processor) grown with a 12 hour dark period and natural or artificial light conditions during the day. The water potentials were measured at the end of a dark period and during the light period. Measurements taken at the end of the dark period indicated normal potential gradients within the soil/plant system (leaf < shoot < root < soil), when the matric potential of soil water was relatively high (above ?0.02 bar), and the gradients then also remained normal during the day (natural light). When the soil water potential was ?1 bar or lower in the morning, however, the root xylem water potential was higher than the soil water potential; at very low soil water potentials (< ?4 bar) it remained higher during most of the day. In this case also leaf and shoot xylem water potentials were higher than the soil water potential in the early morning, although decreasing rapidly in daylight. Under artificial light, both leaf and root water potentials were higher than the soil water potential throughout the whole diurnal cycle when the latter potential was below ?4 bar. From measurements of stomatal diffusion resistance, transpiration, relative water content of leaves and of changes in the matric potential of soil water, it was concluded that when the matric potential of soil water was low, water could be taken up by the plant against a water potential gradient. Because leaf xylem water potential was always lower than root xylem water potential, the mechanism involved in the inversion of water potential gradient must be localized in the roots, and probably related to ion uptake. Symbols and abbreviations used in the text: Ψ: Plant water potential (thermocouple psychrometer); Ψx: Xylem water potential (pressure chamber); Ψs: Osmotic potential of xylem sap; Ψm: Matric potential of soil water; RWC: Relative water content.  相似文献   

14.
Questions: For eucalypt savanna in northeast Australia subject to multi‐year rainfall deficits this paper asks whether (1) dominant tree species (Ironbarks, Boxes) are more drought susceptible than the sub‐dominant Bloodwoods; (2) whether soil moisture is beyond wilting point in surface soil layers but available at depth; (3) soil conditions (moisture availability and texture) are related to tree death during drought; (4) the root systems of the Boxes and Ironbarks are shallower than the Bloodwoods; and the survivors of drought within species have deeper root systems than those that died. Location: Central Queensland, Australia. Methods: Patterns of tree death between eucalypt species were compared from field data collected after drought. Soil conditions during drought were described and compared with patterns of tree death for the Ironbark Eucalyptus melanophloia. The basal area and orientation of coarse roots were measured on upturned trees after broad‐scale tree clearing, and compared between species, and between live and dead trees with tree size as a covariate. Results: Drought‐induced tree death was higher for dominant Ironbark‐Box than for sub‐dominant Bloodwoods. During a moderate to severe drought in 2004, 41% of 100 cm deep subsoils had soil matric potential less than‐5600 kPa. The drought hardy Bloodwoods had a greater root basal area and particularly so for vertical roots compared to the drought sensitive Ironbark‐Box. Within species there was no significant difference in root basal area characteristics between trees that were recently killed by drought and those that remained relatively healthy. Surface soil moisture availability was lower where tree densities were high, and tree death increased as surface soil moisture became less available. Tree death was also greater as the clay content of sub‐soils increased. Discussion: The study suggests species with roots confined to upper soil layers will suffer severe water stress. The results strongly indicate that root architecture, and the way it facilitates water use during drought, is important for the relative dominance of the tree species. Patchiness in drought‐induced tree death seems to be at least partially a product of heterogeneity in sub‐soil conditions and competition for soil moisture.  相似文献   

15.
采用根区渗灌控水技术,将土壤水势长期控制在0~-20kPa(W1)、-20~-40kPa(W2)、-40~-60kPa(W3)、-60~-80kPa(W4)、-80~-160kPa(W5)范围内,系统地研究了不同土壤水势条件下水曲柳幼苗的蒸腾过程、吸水过程、根叶水势日动态过程及SPAC体系的水流阻力.结果表明,在亚饱和土壤水分状态下(W1),细根水势最高,水分由土壤进入细根的阻力最小,根系吸水速率最高,从而支持了日间强烈的蒸腾作用.在田间持水量土壤水分状态下(W2),细根吸水阻力成倍增加,吸水速率和蒸腾速率显著下降,但尚未改变蒸腾作用日动态过程的单峰模式.当土壤水分在田间持水量状态以下(W3~W5)时,随着土壤水势递降,细根吸水阻力急剧增加至几倍乃至几十倍,根系吸水速率过低,吸水与蒸腾矛盾加剧,叶水势降至很低,气孔关闭,蒸腾作用受到严重抑制,呈现明显的午休低谷.在实验范围内(0~-160kPa),土壤水分对水曲柳幼苗是非等效的,当土壤水分在田间持水量状态以下(<-40kPa)时,水曲柳全光苗发生显著的水分胁迫.  相似文献   

16.
Unusual stomatal behaviour on partial root excision in wheat seedlings   总被引:6,自引:0,他引:6  
The excision of four out of five primary roots of wheat (Triticum durum Desf.) seedlings often leads to an enhanced rate of transpiration. Surprisingly this enhancement could be maintained for several hours after root excision and was particularly likely to occur at low irradiances or high atmospheric humidity. This long‐term enhancement could not be explained in terms of conventional hydropassive stomatal effects. Elevated rates of transpiration were associated with and possibly caused by increased cytokinin concentrations in shoots of plants with partially excised roots. The single root remaining after excision was able to maintain an adequate water uptake for the continued enhanced transpiration, after only a short transient reduction in leaf water content. The enhanced capacity for water uptake by the remaining root was confirmed by measuring the water flow from detached roots at negative hydrostatic pressure. Even without additional suction, flow from the reduced root system increased about 1.5 h after the start of treatment, suggesting an increase in membrane permeability for water. Although abscisic acid (ABA) concentrations in the roots increased after the root excision treatment, there was no evidence for any enhanced concentration in the xylem sap. The possible role that this accumulation of ABA in roots may have in the apparent increase in hydraulic conductivity after root excision is discussed.  相似文献   

17.
Johnson DW 《Oecologia》2008,155(1):43-52
The flow regimes of arid zone rivers are often highly variable, and shallow groundwater in the alluvial aquifers can be very saline, thus constraining the availability and quality of the major water sources available to riparian trees—soil water, shallow groundwater and stream water. We have identified water sources and strategies used by riparian trees in more highly saline and arid conditions than previously studied for riparian trees of arid zone rivers. Our research focused on the riparian species Eucalyptus coolabah, one of the major riparian trees of ephemeral arid zone rivers in Australia. The water sources available to this riparian tree were examined using δ18O isotope data from xylem, soil water, groundwater and surface water. Additionally, soil chloride and matric potential data were used to infer zones of water availability for root uptake. Despite the saline conditions, the trees used a mixture of soil water and groundwater sources, but they did not use surface water directly. The study identified three strategies used to cope with typically high groundwater and soil water salinities. Firstly, the trees preferentially grow in zones of most frequent flushing by infiltrating streamflow, such as the bank-tops of channels. Secondly, the trees limit water use by having low transpiration rates. Thirdly, the trees are able to extract water at very low osmotic potentials, with water uptake continuing at chloride concentrations of at least 20,000–30,000 mg L−1.  相似文献   

18.
19.
A coupled model of stomatal conductance, photosynthesis and transpiration   总被引:18,自引:1,他引:17  
A model that couples stomatal conductance, photosynthesis, leaf energy balance and transport of water through the soil–plant–atmosphere continuum is presented. Stomatal conductance in the model depends on light, temperature and intercellular CO2 concentration via photosynthesis and on leaf water potential, which in turn is a function of soil water potential, the rate of water flow through the soil and plant, and on xylem hydraulic resistance. Water transport from soil to roots is simulated through solution of Richards’ equation. The model captures the observed hysteresis in diurnal variations in stomatal conductance, assimilation rate and transpiration for plant canopies. Hysteresis arises because atmospheric demand for water from the leaves typically peaks in mid‐afternoon and because of uneven distribution of soil matric potentials with distance from the roots. Potentials at the root surfaces are lower than in the bulk soil, and once soil water supply starts to limit transpiration, root potentials are substantially less negative in the morning than in the afternoon. This leads to higher stomatal conductances, CO2 assimilation and transpiration in the morning compared to later in the day. Stomatal conductance is sensitive to soil and plant hydraulic properties and to root length density only after approximately 10 d of soil drying, when supply of water by the soil to the roots becomes limiting. High atmospheric demand causes transpiration rates, LE, to decline at a slightly higher soil water content, θs, than at low atmospheric demand, but all curves of LE versus θs fall on the same line when soil water supply limits transpiration. Stomatal conductance cannot be modelled in isolation, but must be fully coupled with models of photosynthesis/respiration and the transport of water from soil, through roots, stems and leaves to the atmosphere.  相似文献   

20.
Correct modeling of root water uptake partitioning over depth is an important issue in hydrological and crop growth models. Recently a physically based model to describe root water uptake was developed at single root scale and upscaled to the root system scale considering a homogeneous distribution of roots per soil layer. Root water uptake partitioning is calculated over soil layers or compartments as a function of respective soil hydraulic conditions, specifically the soil matric flux potential, root characteristics and a root system efficiency factor to compensate for within-layer root system heterogeneities. The performance of this model was tested in an experiment performed in two-compartment split-pot lysimeters with sorghum plants. The compartments were submitted to different irrigation cycles resulting in contrasting water contents over time. The root system efficiency factor was determined to be about 0.05. Release of water from roots to soil was predicted and observed on several occasions during the experiment; however, model predictions suggested root water release to occur more often and at a higher rate than observed. This may be due to not considering internal root system resistances, thus overestimating the ease with which roots can act as conductors of water. Excluding these erroneous predictions from the dataset, statistical indices show model performance to be of good quality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号