首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bees rely on floral pollen and nectar for food. Therefore, pollinator friendly plantings are often used to enrich habitats in bee conservation efforts. As part of these plantings, non‐native plants may provide valuable floral resources, but their effects on native bee communities have not been assessed in direct comparison with native pollinator friendly plantings. In this study, we performed a common garden experiment by seeding mixes of 20 native and 20 non‐native pollinator friendly plant species at separate neighboring plots at three sites in Maryland, USA, and recorded flower visitors for 2 years. A total of 3,744 bees (120 species) were collected. Bee abundance and species richness were either similar across plant types (midseason and for abundance also late season) or lower at native than at non‐native plots (early season and for richness also late season). The overall bee community composition differed significantly between native and non‐native plots, with 11 and 23 bee species being found exclusively at one plot type or the other, respectively. Additionally, some species were more abundant at native plant plots, while others were more abundant at non‐natives. Native plants hosted more specialized plant–bee visitation networks than non‐native plants. Three species out of the five most abundant bee species were more specialized when foraging on native plants than on non‐native plants. Overall, visitation networks were more specialized in the early season than in late seasons. Our findings suggest that non‐native plants can benefit native pollinators, but may alter foraging patterns, bee community assemblage, and bee–plant network structures.  相似文献   

2.
The population composition and biogeochemistry of sulfate-reducing bacteria (SRB) in the rhizosphere of the marsh grass Spartina alterniflora was investigated over two growing seasons by molecular probing, enumerations of culturable SRB, and measurements of SO42− reduction rates and geochemical parameters. SO42− reduction was rapid in marsh sediments with rates up to 3.5 μmol ml−1 day−1. Rates increased greatly when plant growth began in April and decreased again when plants flowered in late July. Results with nucleic acid probes revealed that SRB rRNA accounted for up to 43% of the rRNA from members of the domain Bacteria in marsh sediments, with the highest percentages occurring in bacteria physically associated with root surfaces. The relative abundance (RA) of SRB rRNA in whole-sediment samples compared to that of Bacteria rRNA did not vary greatly throughout the year, despite large temporal changes in SO42− reduction activity. However, the RA of root-associated SRB did increase from <10 to >30% when plants were actively growing. rRNA from members of the family Desulfobacteriaceae comprised the majority of the SRB rRNA at 3 to 34% of Bacteria rRNA, with Desulfobulbus spp. accounting for 1 to 16%. The RA of Desulfovibrio rRNA generally comprised from <1 to 3% of the Bacteria rRNA. The highest Desulfobacteriaceae RA in whole sediments was 26% and was found in the deepest sediment samples (6 to 8 cm). Culturable SRB abundance, determined by most-probable-number analyses, was high at >107 ml−1. Ethanol utilizers were most abundant, followed by acetate utilizers. The high numbers of culturable SRB and the high RA of SRB rRNA compared to that of Bacteria rRNA may be due to the release of SRB substrates in plant root exudates, creating a microbial food web that circumvents fermentation.  相似文献   

3.
Biological invasions can strongly influence species interactions such as pollination. Most of the documented effects of exotic plant species on plant-pollinator interactions have been observational studies using single pairs of native and exotic plants, and have focused on dominant exotic plant species. We know little about how exotic plants alter interactions in entire communities of plants and pollinators, especially at low to medium invader densities. In this study, we began to address these gaps by experimentally removing the flowers of a showy invasive shrub, Rosa multiflora, and evaluating its effects on the frequency, richness, and composition of bee visitors to co-flowering native plants. We found that while R. multiflora increased plot-level richness of bee visitors to co-flowering native plant species at some sites, its presence had no significant effects on bee visitation rate, visitor richness, bee community composition, or abundance overall. In addition, we found that compared to co-flowering natives, R. multiflora was a generalist plant that primarily received visits from generalist bee species shared with native plant species. Our results suggest that exotic plants such as R. multiflora may facilitate native plant pollination in a community context by attracting a more diverse assemblage of pollinators, but have limited and idiosyncratic effects on the resident plant-pollinator network in general.  相似文献   

4.
Restored grasslands comprise an ever‐increasing proportion of grasslands in North America and elsewhere. However, floristic studies of restored grasslands indicate that our ability to restore plant communities is limited. Our goal was to assess the effectiveness of restoration seeding for recovery of key plant community components on former exotic, cool‐season pastures using a chronosequence of six restoration sites and three nearby remnant tallgrass prairie sites in West‐Central Iowa. We assessed trends in Simpson's diversity and evenness, richness and abundance of selected native and exotic plant guilds, and mean coefficient of conservatism (mean C). Simpson's diversity and evenness and perennial invasive species abundance all declined with restoration site age. As a group, restoration sites had greater richness of native C3 species with late phenology, but lower richness and abundance of species with early phenology relative to remnant sites. Total native richness, total native abundance (cover), mean C, and abundance of late phenology C3 plants were similar between restoration and remnant sites. Observed declines in diversity and evenness with restoration age reflect increases in C4 grass abundance rather than absolute decreases in the abundance of perennial C3 species. In contrast to other studies, restoration seeding appears to have led to successful establishment of tallgrass prairie species that were likely to be included in seeding mixtures. While several floristic measures indicate convergence of restoration and remnant sites, biodiversity may be further enhanced by including early phenology species in seeding mixes in proportion to their abundance on remnant prairies.  相似文献   

5.
Previous work has shown exotic and native plant species richness are negatively correlated at fine spatial scales and positively correlated at broad spatial scales. Grazing and invasive plant species can influence plant species richness, but the effects of these disturbances across spatial scales remain untested. We collected species richness data for both native and exotic plants from five spatial scales (0.5–3000 m2) in a nested, modified Whittaker plot design from severely grazed and ungrazed North American tallgrass prairie. We also recorded the abundance of an abundant invasive grass, tall fescue (Schedonorus phoenix (Scop.) Holub), at the 0.5-m2 scale. We used linear mixed-effect regression to test relationships between plant species richness, tall fescue abundance, and grazing history at five spatial scales. At no scale was exotic and native species richness linearly related, but exotic species richness at all scales was greater in grazed tracts than ungrazed tracts. Native species richness declined with increasing tall fescue abundance at all five spatial scales, but exotic species richness increased with tall fescue abundance at all but the broadest spatial scales. Severe grazing did not reduce native species richness at any spatial scale. We posit that invasion of tall fescue in this working landscape of originally native grassland plants modifies species richness-spatial scale relationships observed in less disturbed systems. Tall fescue invasion constitutes a unique biotic effect on plant species richness at broad spatial scales.  相似文献   

6.
Phenotypic variation within species is widespread among salt marsh plants. For Spartina alterniflora, the dominant species of low intertidal wetlands across the Altantic and Gulf coasts of the US, distinct phenological and morphological differences among populations from different latitudes have been found. To determine whether S. alterniflora plants from lower latitudes and those regenerated from Delaware tissue cultures would maintain differences from that of native plants, we conducted a field study in a natural salt marsh in Delaware, US. After two growing seasons, plant height, stem density, above- and belowground biomass, elemental composition, and nutrient resorption were measured. Natural variation in porewater salinity influenced physiological traits of Na+/K+ ratio regulation and nitrogen resorption efficiency similarly across populations. While plant height exhibited plasticity where populations tended to converge to a similar height, several other traits remained distinct. Delaware plants had a greater rate of rhizome growth than Georgia and Louisiana plants, which correlated with a greater magnitude of fall senescence. If traits such as seasonal translocation are plastic and can change with the length of the growing season, climate warming may alter belowground biomass production of S. alterniflora in wetlands of the mid-Atlantic.  相似文献   

7.
The brown marmorated stink bug, Halyomorpha halys (Stål) (Hemiptera: Pentatomidae) is an invasive plant-feeding insect native to eastern Asia. This herbivore is highly polyphagous, feeding on and damaging diverse plants, including field crops, vegetables, tree fruits, and ornamentals. Woody ornamental plants provide early- and late-season resources for adults emerging from and returning to overwintering sites, as well as feeding and breeding sites for H. halys throughout the growing season. In this study, we quantify the use of diverse plants by H. halys in two commercial nurseries in Maryland, recording data on the abundance of egg masses, early and late instar nymphs, and adults over a three-year study period. Our specific goals were to provide a quantitative comparison of the use of diverse plant species and cultivated varieties, identify non-hosts that could be used to create landscapes refractory to H. halys, and determine whether the use of plants varied across life stages of H. halys or the taxonomic status of plants. We found broad use of diverse plants in this study, identifying 88 host plants used by all life stages of H. halys. We also highlight the 43 plant taxa that did not support any life stage of H. halys and are thus classified as non-hosts. Interestingly, some of these plants were congeners of highly-used plants, underscoring high intrageneric and intraspecific variation in the use of plants by this polyphagous herbivore. We discuss how the selective planting of non-hosts, especially gymnosperms, may aid in reducing the agricultural and nuisance pest status of this invasive insect.  相似文献   

8.
Since Spartina alterniflora was introduced into the Chongming Dongtan Nature Reserve in 1995, there has been rapid expansion of this species, seriously threatening the overall biodiversity. During 2005 and 2006, a field experiment to examine physical controls on S. alterniflora, including digging and tillage, breaking of rhizomes, mowing and biological substitution with Phragmites australis, was conducted to find a means of controlling this invasive plant. The growth parameters of plant density, coverage and above-ground biomass were used to evaluate the efficiency of different treatments. The results showed that for all treatments, the plant density, coverage and above-ground biomass were significantly lower than those of the control in the first growing season. However, in the second season, the differences between the treatment and the control were not significant and there were no significant differences by the end of the second growing season. The breaking of rhizomes treatment inhibited the growth of S. alterniflora significantly in the first growing season and inhibition increased with the depth of the treatment. However, the inhibition of growth disappeared after two growing seasons and there were no significant differences among the treatments and the control. The mowing treatment significantly inhibited the growth of S. alterniflora in the first growing season. By the end of the second growing season, the growth of S. alterniflora had recovered to some extent, and only the treatments of JUN, JUL, AUG and SEP significantly inhibited its growth. The treatment of AUG might be the most suitable time for controlling via mowing. In the biological substitution treatment, the transplanted P. australis survived quite well over both growing seasons and both the plant height and fruiting percent increased considerably in the second growing season. A realistic strategy for controlling and managing the invasion of S. alterniflora in the nature reserve should involve integrating all four control measures on the basis of their intensity, frequency, timing and area. Further work on longer-term field experiments is required in order to test these conclusions further and provide useful information for the wetland management of the nature reserve.  相似文献   

9.
番茄根际微生物种群动态变化及多样性   总被引:6,自引:1,他引:5  
采用盆栽试验的方法对番茄根际主要微生物种群在不同生育期的动态变化进行了跟踪研究.结果表明,在番茄整个生育期内,可培养细菌数量在初花期和初果期时最多;放线菌数量从苗期到末期逐渐减少;真菌数量逐渐增多.番茄对细菌根际效应明显.DGGE图谱显示不同生育期番茄根际均具有较高的细菌多样性.根际细菌种类和数量在初花期发生较为显著的变化,初果期根际群落多样性指数(H)和物种丰度(S)值都达到最高,微生物最丰富,是筛选拮抗菌的较好时期.  相似文献   

10.
Invasions by non-native plants can alter ecosystem functions and reduce native plant diversity, but relatively little is known about their effect on belowground microbial communities. We show that invasions by knapweed (Centaurea stoebe) and leafy spurge (Euphorbia esula, hereafter spurge)—but not cheatgrass (Bromus tectorum)—support a higher abundance and diversity of symbiotic arbuscular mycorrhizal fungi (AMF) than multi-species native plant communities. The higher AMF richness associated with knapweed and spurge is unlikely due to a co-invasion by AMF, because a separate sampling showed that individual native forbs hosted a similar AMF abundance and richness as exotic forbs. Native grasses associated with fewer AMF taxa, which could explain the reduced AMF richness in native, grass-dominated communities. The three invasive plant species harbored distinct AMF communities, and analyses of co-occurring native and invasive plants indicate that differences were partly driven by the invasive plants and were not the result of pre-invasion conditions. Our results suggest that invasions by mycotrophic plants that replace poorer hosts can increase AMF abundance and richness. The high AMF richness in monodominant plant invasions also indicates that the proposed positive relationship between above and belowground diversity is not always strong. Finally, the disparate responses among exotic plants and consistent results between grasses and forbs suggest that AMF respond more to plant functional group than plant provenance.  相似文献   

11.
Studies of plant invasions rarely address impacts on molluscs. By comparing pairs of invaded and corresponding uninvaded plots in 96 sites in floodplain forests, we examined effects of four invasive alien plants (Impatiens glandulifera, Fallopia japonica, F. sachalinensis, and F.×bohemica) in the Czech Republic on communities of land snails. The richness and abundance of living land snail species were recorded separately for all species, rare species listed on the national Red List, and small species with shell size below 5 mm. The significant impacts ranged from 16–48% reduction in snail species numbers, and 29–90% reduction in abundance. Small species were especially prone to reduction in species richness by all four invasive plant taxa. Rare snails were also negatively impacted by all plant invaders, both in terms of species richness or abundance. Overall, the impacts on snails were invader-specific, differing among plant taxa. The strong effect of I. glandulifera could be related to the post-invasion decrease in abundance of tall nitrophilous native plant species that are a nutrient-rich food source for snails in riparian habitats. Fallopia sachalinensis had the strongest negative impact of the three knotweeds, which reflects differences in their canopy structure, microhabitat humidity and litter decomposition. The ranking of Fallopia taxa according to the strength of impacts on snail communities differs from ranking by their invasiveness, known from previous studies. This indicates that invasiveness does not simply translate to impacts of invasion and needs to be borne in mind by conservation and management authorities.  相似文献   

12.
Interspecific facilitation contributes to the assembly of desert plant communities. However, we know little of how desert communities invaded by exotic species respond to facilitation along regional-scale aridity gradients. These measures are essential for predicting how desert plant communities might respond to concomitant plant invasion and environmental change. Here, we evaluated the potential for Bromus tectorum (a dominant invasive plant species) and the broader herbaceous plant community to form positive associations with native shrubs along a substantial aridity gradient across the Great Basin, Mojave, and San Joaquin Deserts in North America. Along this gradient, we sampled metrics of abundance and performance for B. tectorum, all native herbaceous species combined, all exotic herbaceous species combined, and the total herbaceous community using 180 pairs of shrub and open microsites. Across the gradient, B. tectorum formed strong positive associations with native shrubs, achieving 1.6–2.2 times greater abundance, biomass, and reproductive output under native shrubs than away from shrubs, regardless of relative aridity. In contrast, the broader herbaceous community was not positively associated with native shrubs. Interestingly, increasing B. tectorum abundance corresponded to decreasing native abundance, native species richness, exotic species richness, and total species richness under but not away from shrubs. Taken together, these findings suggest that native shrubs have considerable potential to directly (by increasing abundance and performance) and indirectly (by increasing competitive effects on neighbors) facilitate B. tectorum invasion across a large portion of the non-native range.  相似文献   

13.

Background

Plants selectively attract particular soil microorganisms, in particular consumers of root-excreted compounds. It is unclear to what extent cultivar type and/or growth stage affect this process.

Methodology/Principal Findings

DNA-based pyrosequencing was used to characterize the structure of bacterial communities in a field cropped with potato. The rhizospheres of six cultivars denoted Aveka, Aventra, Karnico, Modena, Premiere and Desiree, at three growth stages (young, flowering and senescence) were examined, in addition to corresponding bulk soils. Around 350,000 sequences were obtained (5,700 to 38,000 per sample). Across all samples, rank abundance distributions best fitted the power law model, which indicates a community composed of a few highly dominant species next to numerous rare species. Grouping of the sequences showed that members of the Actinobacteria, Alphaproteobacteria, next to as-yet-unclassified bacteria, dominated. Other groups that were consistently found, albeit at lower abundance, were Beta-, Gamma- and Deltaproteobacteria and Acidobacteria. Principal components analyses revealed that rhizosphere samples were significantly different from corresponding bulk soil in each growth stage. Furthermore, cultivar effects were found in the young plant stage, whereas these became insignificant in the flowering and senescence stages. Besides, an effect of time of season was observed for both rhizosphere and bulk soils. The analyzed rhizosphere samples of the potato cultivars were grouped into two groups, in accordance with the allocation of carbon to starch in their tubers, i.e. Aveka, Aventra and Karnico (high) versus Premiere and Desiree (low) and thus replicates per group were established.

Conclusions

Across all potato cultivars, the young plant stages revealed cultivar-dependent bacterial community structures, which disappeared in the flowering and senescence stages. Furthermore, Pseudomonas, Beta-, Alpha- and Deltaproteobacteria flourished under different ecological conditions than the Acidobacteria.  相似文献   

14.
Phenotypically and genetically variable salt marsh plants are needed for wetland creation and restoration efforts. Selected tissue culture regenerants of five salt marsh monocots, Spartina patens, Spartina alterniflora, Juncus gerardi, Juncus roemerianus, and Scirpus robustus, were planted in a simulated marsh field plot that was flood-irrigated with 10 ppt salt water to compare their phenotypic variation for potential use in wetland projects. Plant growth was evaluated after one growing season. Phenotypic variation among regenerants was found in S. alterniflora, S. patens and J. gerardi, indicating the occurrence of somaclonal variation. In S. alterniflora, significant differences occurred among regenerants in stem density. In J. gerardi, significant differences occurred in height and clone circumference. In S. patens, two of the nine regenerants exhibited higher biomass and stem density than some of the other regenerants. By using the random amplified polymorphic DNA (RAPD) technique, genome DNA variation in S. patens regenerants was detected. Genetic variation not only occurred among phenotypically different regenerants, but also among those phenotypically similar for the characteristics measured. Tissue culture–regenerated plants often have desirable genetic characteristics and adaptability as a result of somaclonal variation and may enable a species to perform its ecological functions in created or restored wetlands where ideal environments cannot be achieved. Thus, some previously unrestorable sites may be restorable or marginal marshes made more productive.  相似文献   

15.
The biotic resistance hypothesis predicts that more diverse communities should have greater resistance to invasions than species-poor communities. However for facultative and obligate epiphytic invaders a high native species richness, abundance and community complexity might provide more resources for the invader to thrive to. We conducted surveys across space and time to test for the influence of native algal species abundance and richness on the abundance of the invasive facultative epiphytic filamentous alga Lophocladia lallemandii in a Mediterranean Cystoseira balearica seaweed forest. By removing different functional groups of algae, we also tested whether these relationships were dependent on the complexity and abundance of the native algal community. When invasion was first detected, Lophocladia abundance was positively related to species richness, but the correlation became negative after two years of invasion. Similarly, a negative relationship was also observed across sites. The removal experiment revealed that more complex native communities were more heavily invaded, where also a positive relationship was found between native algal richness and Lophocladia, independently of the native algal abundance. Our observational and experimental data show that, at early stages of invasion, species-rich seaweed forests are not more resistant to invasion than species-poor communities. Higher richness of native algal species may increase resource availability (i.e. substrate) for invader establishment, thus facilitating invasion. After the initial invasion stage, native species richness decreases with time since invasion, suggesting negative impacts of invasive species on native biodiversity.  相似文献   

16.
Methane (CH4) is an important greenhouse gas whose emission from the largest source, wetlands is controlled by a number of environmental variables amongst which temperature, water-table, the availability of substrates and the CH4 transport properties of plants are most prominent and well characterised. Coastal wetland ecosystems are vulnerable to invasion by alien plant species which can make a significant local contribution to altering their species composition. However the effect of these changes in species composition on CH4 flux is rarely examined and so is poorly understood. Spartina alterniflora, a perennial grass native to North America, has spread rapidly along the south-east coast of China since its introduction in 1979. From 2002, this rapid invasion has extended to the tidal marshes of the Min River estuary, an area that, prior to invasion was dominated by the native plant Cyperus malaccensis. Here, we compare CH4 flux from the exotic invasive plant S. alterniflora with measurements from the aggressive native species Phragmites australis and the native species C. malaccensis following 3-years of monitoring. CH4 emissions were measured over entire tidal cycles. Soil CH4 production potentials were estimated for stands of each of above plants both in situ and in laboratory incubations. Mean annual CH4 fluxes from S. alterniflora, P. australis and C. malaccensis dominated stands over the 3 years were 95.7 (±18.7), 38.9 (±3.26) and 10.9 (±5.26) g m?2 year?1, respectively. Our results demonstrate that recent invasion of the exotic species S. alterniflora and the increasing presence of the native plant P. australis has significantly increased CH4 emission from marshes that were previously dominated by the native species C. malaccensis. We also conclude that higher above ground biomass, higher CH4 production and more effective plant CH4 transport of S. alterniflora collectively contribute to its higher CH4 emission in the Min River estuary.  相似文献   

17.
Acknowledgments     
In this study we investigated the temporal variability of N-source utilization of pioneer plant species in different early successional stages of dry acidic grasslands. Current theory states that plant species occupy distinct ecological niches and that there are species-specific, temporal N-uptake patterns. We hypothesized that small-scale dynamics in the natural habitat may affect niche differentiation among plant species. We investigated N-uptake patterns of two co-occurring plant species from different functional groups (Corynephorus canescens, Rumex acetosella) under natural conditions using 15N-labeled nitrate and ammonium in three different early successional stages during early and late summer. We found (1) marked seasonal dynamics with respect to N-uptake and N-source partitioning, and (2) different uptake rates across successional stages but a similar N-form utilization of both species. Nitrate was the main N-source in the early and later successional stages, but a shift towards enhanced ammonium uptake occurred at the cryptogam stage in June. Both species increased N-uptake in the later successional stage in June, which was associated with increasing plant biomass in C. canescens, whereas R. acetosella showed no significant differences in plant biomass and root/shoot-ratio between successional stages. Ammonium uptake decreased in both species across all stages with increasing drought. Nevertheless, the peak time of N-uptake differed between the successional stages: in the early successional site, with the lowest soil N, plants were able to extend N-uptake into the drier season when uptake rates in the other successional stages had already declined markedly. Hence, we found a pronounced adjustment in the realized niches of co-occurring plant species with respect to N-uptake. Our results indicate that ecological niches can be highly dynamic and that niche sharing between plant species may occur instead of niche partitioning.  相似文献   

18.
The response of deposit-feeding animals to plant invasions is still unclear, because their food sources are often difficult to identify. We examined the effect of the exotic plant species, Spartina alterniflora, on the food source composition of two dominant snail species, Assiminea latericea and Cerithidea largillierti, in the Yangtze River estuary salt marsh using a combination of stable isotope and fatty acid analyses. We collected the snails and their potential food materials (sediment organic matter, particulate organic matter, and plant material) in S. alterniflora and native plant Phragmites australis marshes and then determined the composition of food sources of snails based on fatty acid markers and stable isotope composition. Our results indicated that A. latericea and C. largillierti are deposit feeders grazing on sedimentary particles originating from diatoms, bacteria, and vascular plants. Invasive S. alterniflora did not result in a change in the relative contribution of microalgae, bacteria, and vascular plants to the food source of the snails. Spartina alterniflora was confirmed to be assimilated by both snail species. The higher assimilation of S. alterniflora by A. latericea compared with C. largillierti is probably related to the greater ability of A. latericea to assimilate plant materials from detritus, as evidenced by fatty acid composition. Overall, S. alterniflora can be incorporated into the food web of the estuarine salt marsh by the dominant snail species with generalist-feeding habits.  相似文献   

19.
The exotic plant Spartina alterniflora is expanding rapidly along China''s coast regions, seriously threatening native ecosystems. Soil bacteria are important for biogeochemical cycles, including those of carbon, nitrogen, and sulfur, in wetland ecosystems. There is growing evidence that microorganisms are important in case of plant invasion. In the present study, we studied the interlacing area of S. alterniflora and Suaeda heteroptera, selected soil of invaded and non‐invaded regions and explored the effect of the composition and diversity of bacterial communities in coastal wetlands. The bacterial community composition of invasive and noninvasive areas was subjected to high‐throughput sequencing. In the five areas tested, the main bacterial phyla were Proteobacteria, Bacteroides, and Acidobacteria; the richness of the bacterial community in the soil increased after S. alterniflora invasion, most changes occurred at the genus level. The relative abundances of Desulfobulbus and Sulfurovum were higher in invasive areas than in noninvaded areas. PCA, RDA, and LEfSe analyses found that the S. alterniflora invasion significantly influenced the bacterial community and physicochemical properties of wetland soil. In conclusion, soil microbial community composition was tightly associated with S. alterniflora invasion. This study provide an important scientific basis for further research on the invasion mechanism of Salterniflora.  相似文献   

20.
Invasive alien plants can compete with native plants for resources, and may ultimately decrease native plant diversity and/or abundance in invaded sites. This could have consequences for native mutualistic interactions, such as pollination. Although invasive plants often become highly connected in plant-pollinator interaction networks, in temperate climates they usually only flower for part of the season. Unless sufficient alternative plants flower outside this period, whole-season floral resources may be reduced by invasion. We hypothesized that the cessation of flowering of a dominant invasive plant would lead to dramatic, seasonal compositional changes in plant-pollinator communities, and subsequent changes in network structure. We investigated variation in floral resources, flower-visiting insect communities, and interaction networks during and after the flowering of invasive Rhododendron ponticum in four invaded Irish woodland sites. Floral resources decreased significantly after R. ponticum flowering, but the magnitude of the decrease varied among sites. Neither insect abundance nor richness varied between the two periods (during and after R. ponticum flowering), yet insect community composition was distinct, mostly due to a significant reduction in Bombus abundance after flowering. During flowering R. ponticum was frequently visited by Bombus; after flowering, these highly mobile pollinators presumably left to find alternative floral resources. Despite compositional changes, however, network structural properties remained stable after R. ponticum flowering ceased: generality increased, but quantitative connectance, interaction evenness, vulnerability, H’2 and network size did not change. This is likely because after R. ponticum flowering, two to three alternative plant species became prominent in networks and insects increased their diet breadth, as indicated by the increase in network-level generality. We conclude that network structure is robust to seasonal changes in floral abundance at sites invaded by alien, mass-flowering plant species, as long as alternative floral resources remain throughout the season to support the flower-visiting community.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号